Department of Chemistry, Faculty of Science, University of Kurdistan |
MM/PB(GB)SA calculations The molecular mechanics energies combined with the Poisson–Boltzmann or generalized Born and surface area continuum solvation (MM/PBSA and MM/GBSA) methods are popular approaches to estimate the free energy of the binding of small ligands to biological macromolecules. They are typically based on molecular dynamics simulations of the receptor-ligand complex and are intermediate in accuracy and computational effort between empirical scoring and strict alchemical perturbation methods. They have been applied to many systems with varying success [1]. You can use the following procedure to perform such calculations by AMBER. 1. Set up the receptor file as described on the AMBER-MD page2. Dock your ligand into the receptorTo prepare the ligand-receptor PDB file (complex.pdb), you can follow the following web page's instructions explaining the docking procedure using AutoDock Vina. https://prof.uok.ac.ir/m.irani/index_files/Page512.htm
3. Prepare the topology and coordinate files3.1 Solvate the complex.pdb fileRun tleap as the following and the tleap.in-MD file (see below). It solvates the complex and creates prmtop and prmcrd files for MD simulations. Include the lines that are shown in boldface in the tleap.in-MD file only if you have disulfide bridges in your system. The first and second numbers in each line represent the residue number of the corresponding cysteine group. For more information on this, see section 2.4 on the AMBER-MD page. tleap -s -f tleap.in-MD
A sample tleap.in-MD file source leaprc.ff14SB source leaprc.gaff source leaprc.water.tip3p addPath /home/Mehdi/docpbsa/Parms loadAmberPrep lig.in loadAmberParams lig.dat x=loadpdb complex.pdb bond x.3.SG x.64.SG bond x.11.SG x.57.SG bond x.48.SG x.86.SG bond x.75.SG x.116.SG bond x.79.SG x.103.SG solvateOct x TIP3PBOX 10 saveamberparm x prmtop prmcrd savepdb x pdbout quit
3.2 Create topology and coordinate files of the complexRun tleap as the following and the tleap.compl file (see below). It creates compl.prmtop and compl.prmcrd files for MM/PB(GB)SA calculations.
tleap -s -f tleap.compl A sample tleap.compl file source leaprc.ff14SB source leaprc.gaff source leaprc.water.tip3p addPath /home/Mehdi/docpbsa/Parms loadAmberPrep lig.in loadAmberParams lig.dat x=loadpdb complex.pdb bond x.3.SG x.64.SG bond x.11.SG x.57.SG bond x.48.SG x.86.SG bond x.75.SG x.116.SG bond x.79.SG x.103.SG saveamberparm x compl.prmtop compl.prmcrd savepdb x compl.pdbout quit
3.3 Prepare topology and coordinate files for the receptor3.3.1 Remove the ligand coordinates from the complex.pdb file and create the receptor.pdb file.sed '/LIG/d' complex.pdb > receptor.pdb
3.3.1.1 Run tleap as the following and the tleap.receptor file (see below). It creates receptor.prmtop and receptor.prmcrd files for MM/PB(GB)SA calculations.
tleap -s -f tleap.receptor A sample tleap.receptor file source leaprc.ff14SB source leaprc.gaff source leaprc.water.tip3p addPath /home/Mehdi/docpbsa/Parms x=loadpdb receptor.pdb bond x.3.SG x.64.SG bond x.11.SG x.57.SG bond x.48.SG x.86.SG bond x.75.SG x.116.SG bond x.79.SG x.103.SG saveamberparm x receptor.prmtop receptor.prmcrd savepdb x receptor.pdbout quit
3.4 Prepare topology and coordinate files for the ligand3.4.1 Cut the ligand coordinates from the complex.pdb file and create lig.pdb file.grep "LIG" complex.pdb >lig.pdb Run tleap as the following and the tleap.lig file (see below). It creates lig.prmtop and lig.prmcrd files for MM/PB(GB)SA calculations.
tleap -s -f tleap.lig A sample tleap.lig file source leaprc.ff14SB source leaprc.gaff source leaprc.water.tip3p addPath /home/Mehdi/docpbsa/Parms loadAmberPrep lig.in loadAmberParams lig.dat x=loadpdb lig.pdb saveamberparm x lig.prmtop lig.prmcrd savepdb x lig.pdbout quit
3.4.2 solvate the receptor and ligandOptionally, you can also solvate the receptor and the ligand files, perform MD simulations independently, and use the resulting trajectory files (instead of the complex) to extract the receptor and ligand coordinates.
tleap -s -f tleap.lig-md tleap -s -f tleap.receptor-md
A sample tleap.receptor-md file
source leaprc.ff14SB source leaprc.gaff source leaprc.water.tip3p x=loadpdb receptor.pdb solvateOct x TIP3PBOX 10.0 saveamberparm x receptor.prmtop-md receptor.prmcrd-md savepdb x receptor.pdbout-md quit
A sample tleap.lig-md file source leaprc.ff14SB source leaprc.gaff source leaprc.water.tip3p addpath /home/Mehdi/docpbsa/Parms/ loadAmberPrep lig.in loadAmberParams lig.dat x=loadpdb lig.pdb solvateOct x TIP3PBOX 10.0 saveamberparm x lig.prmtop-md lig.prmcrd-md savepdb x lig.pdbout-md quit
4. Run MD simulations4.1.1 MD simulations for the solvated complexRun MD simulations with the following commands and the sander.in files listed in section 2.6 on the AMBER-MD page.
pmemd.cuda -O -i sander.in1 -o sander.out1 -r mdrest1 -p prmtop -c prmcrd -ref prmcrd pmemd.cuda -O -i sander.in2 -o sander.out2 -r mdrest2 -p prmtop -c mdrest1 -ref prmcrd pmemd.cuda -O -i sander.in3 -o sander.out3 -r mdrest3 -p prmtop -c mdrest2 -ref prmcrd pmemd.cuda -O -i sander.in4 -o sander.out4 -r mdrest4 -p prmtop -c mdrest3 pmemd.cuda -O -i sander.in5 -o sander.out5 -r mdrest5 -p prmtop -c mdrest4 -x mdcrd5
4.2 MD simulations for the solvated receptor and ligandIf you did point 3.4.2 you need to execute the following commands to run MD simulations for the solvated receptor and ligand. Commands for MD simulations for the solvated receptor:
pmemd.cuda -O -i sander.in1 -o sander.out1-receptor -p receptor.prmtop-md -r mdrest1-receptor -c receptor.prmcrd-md -ref receptor.prmcrd-md pmemd.cuda -O -i sander.in2 -o sander.out2-receptor -p receptor.prmtop-md -r mdrest2-receptor -c mdrest1-receptor -ref receptor.prmcrd-md pmemd.cuda -O -i sander.in3 -o sander.out3-receptor -p receptor.prmtop-md -r mdrest3-receptor -c mdrest2-receptor -ref receptor.prmcrd-md pmemd.cuda -O -i sander.in4 -o sander.out4-receptor -p receptor.prmtop-md -r mdrest4-receptor -c mdrest3-receptor -ref receptor.prmcrd-md pmemd.cuda -O -i sander.in5 -o sander.out5-receptor -p receptor.prmtop-md -r mdrest5-receptor -c mdrest4-receptor -x mdcrd-receptor
It is recommended to use the sander module instead of pmemd.cuda to run MD simulations of the solvated ligand. Commands for MD simulations for the solvated ligand. mpirun -bind-to core -np 18 sander.MPI -O -i sander.in1-lig -o sander.out1-lig -p lig.prmtop-md -r mdrest1-lig -c lig.prmcrd-md -ref lig.prmcrd-md mpirun -bind-to core -np 18 sander.MPI -O -i sander.in2-lig -o sander.out2-lig -p lig.prmtop-md -r mdrest2-lig -c mdrest1-lig -ref lig.prmcrd-md mpirun -bind-to core -np 18 sander.MPI -O -i sander.in3-lig -o sander.out3-lig -p lig.prmtop-md -r mdrest3-lig -c mdrest2-lig -ref lig.prmcrd-md mpirun -bind-to core -np 18 sander.MPI -O -i sander.in4-lig -o sander.out4-lig -p lig.prmtop-md -r mdrest4-lig -c mdrest3-lig -ref lig.prmcrd-md mpirun -bind-to core -np 18 sander.MPI -O -i sander.in5-lig -o sander.out5-lig -p lig.prmtop-md -r mdrest5-lig -c mdrest4-lig -x mdcrd-lig
5. Run MM/PB(GB)SA calculationsRun MM/PB(GB)SA calculations with the MMPBSA.py.MPI module and the mmpbsa.in file in the following. Change the number shown in the boldface (18) to the number of CPU cores of your machine. mpirun -np 18 MMPBSA.py.MPI -O -i mmpbsa.in -o MMPBSA.dat -sp prmtop -cp compl.prmtop -rp receptor.prmtop -lp lig.prmtop -y mdcrd5 If you did point 3.4.2 execute the following command instead. mpirun -np 18 MMPBSA.py.MPI -O -i mmpbsa.in -o MMPBSA.dat -sp prmtop -srp receptor.prmtop-md -slp lig.prmtop-md -cp compl.prmtop -rp receptor.prmtop -lp lig.prmtop -y mdcrd5 -yr mdcrd-receptor -yl mdcrd-lig
A sample mmpbsa.in file Input file for running PB and GB &general verbose=1 interval = 1 startframe = 1 entropy=1, / &gb igb=2, saltcon=0.100 / &pb istrng=0.100, inp=1, radiopt=0 /
6. References[1] S. Genheden, U. Ryde, The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities, Expert Opin. Drug Discov. 10 (2015) 449–461. https://doi.org/10.1517/17460441.2015.1032936.
|
Mehdi Irani Teaching duties Methods |