

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

UML Applied – Second Edition
Object Oriented Analysis and Design

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

About Ariadne

Ariadne Training Limited was established in September 2000 and since then
we have built a reputation based on our excellent courses, our
responsiveness to our customer's needs and our "in the field" experience.

Our Courses

Ariadne's courses are designed to be fun to attend, whilst at the same time
covering the topics in depth. During the course, you will have plenty of time to
practice and apply your new found skills.

The courses are all written in-house, by experienced IT professionals with
genuine "in the field" experience of their subject. We also ensure that our
trainers are first class teachers, and able to explain the most difficult concepts
clearly. Above all, your trainer will work hard to make the course enjoyable
and productive.

Ariadne's Mentoring Scheme

For many of our customers, what really matters is: "can I really apply
what I have learnt to my real work?".

Part of our solution is to ensure that as many of our courses as possible are
backed up with a Mentoring Scheme, as an integral part of the course. The
scheme means that after you have attended an Ariadne course, your project
are entitled to an equal number of days of free mentoring, where the trainer
will work with your delegates to help them apply their knowledge. Exactly how
the trainer does this is up to you, but examples include:

• The trainer works with you to kick-start a project, such as helping
define your requirements or creating an initial architecture.

• Leading a team of (for example) programmers and helping them
through their first real attempt at applying the work

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The goal of the mentor is to get you, as a project, to the point where you can
"fly solo", and their services are no longer required!

Ongoing Backup

After the course, every attendee is also entitled to unlimited support from their
trainer, via direct contact by email and telephone. Although we can't promise
to answer queries immediately, we do promise that we will always be there to
help out once you're back "in the real world".

Ariadne's Case Studies

On an Ariadne course, you will spend half of your time following an in-depth
Case Study, a major practical exercise designed to simulate the kinds of
problems you are likely to face when you return to work.

Why the name 'Ariadne'?

We get this question on every course! Ariadne is the name of an ancient
Greek princess, who guided her lover Theseus out of the labyrinth and the
dangers of the Minotaur with a ball of thread. This labyrinth can still be visited
today in the beautiful Knossos Palace in Iraklion on the Mediterranean island
of Crete.

Our Mission

We are dedicated to bringing understanding to the techniques used by the
software industry - the simplicity of which is so often shrouded by a fog of
detail.

In short, we aim to show that software engineering can be very simple.

This book may be distributed, hosted on websites/intranets, printed or stored
providing the original copyright message and ariadnetraining.co.uk URL is
preserved at the foot of each page.

4 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Introduction

This book is provided as a companion to the Ariadne training course UML
Applied – Object Oriented Analysis and Design. Although some of the book is
written in standard book format and can be read without attending the course
itself, readers using the book without attending the course may find some
details of the course are omitted, or some aspects are not explained in depth.
Usually this will be because the lecturer covers some material not covered in
the book.

In particular, the case study, which makes up 50% of the course, is not
mentioned in this text (we often rotate our case studies, so it would not be
possible to do so).

References to other books are denoted by a number in square brackets – for
example, [4] means to check reference 4 in the bibliography at the back of this
book.

Intended Audience
There are no specific prerequisites to attend the UML Applied course.

Experienced Analysts who are looking for information about the UML will find
the accompanying course Business Systems Analysis with the UML to be
more useful.

The course itself is hands-on and fairly intense, so it essential that all
attendees take an active and enthusiastic part in the case study.

To submit comments or questions, please email info@ariadnetraining.co.uk,
or see our website at www.ariadnetraining.co.uk.

The Cover Art

The cover art by Laura Morgan was one of the first she did
for Ariadne. The members of the orchestra are playing
different instruments, and yet are all reading their instructions
written in the same language. The language might look a bit
archaic to non-musicians, but for the musicians, it is a
standard language. This is the aim of the UML.

© 2000 Laura
Morgan

5 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Running Order

About Ariadne ... 2

Introducing the UML... 14

The Unified Process ... 22

Introducing the Diagrams .. 42

Object Orientation... 53

Beginning the Project... 63

Discovering Use Cases .. 66

The Domain Model .. 78

The State Model .. 93

Ranking Use Cases .. 107

Specifying Use Cases .. 109

Interaction Modelling.. 119

Polymorphism, Inheritance and Composition... 140

Design Heuristics.. 158

The Sequence Diagram .. 167

Design Patterns... 173

UML 2.0 .. 193

Transition to Code (not covered on course).. 198

Example Code ... 210

6 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Detailed Contents
Each heading listed here coresponds to a screen used during
presentations on the training course.

About Ariadne ... 2

Our Courses .. 2
Ariadne's Mentoring Scheme .. 2
Ariadne's Case Studies ... 3
Why the name 'Ariadne'? .. 3
Our Mission ... 3
Intended Audience .. 4
The Cover Art .. 4

Introducing the UML... 14

What is the UML?.. 14
A Graphical Language .. 15
The UML ‘Grammar’.. 15
Building Floorplan.. 16
Modelling Notations... 17
The “Method Wars” ... 18
The Three Amigos... 19
The UML is Simple .. 20
UML Penetration ... 21
Summary ... 21

The Unified Process ... 22

The Waterfall Lifecycle.. 23
Disadvantages of a Waterfall Lifecycle ... 24
Waterfall – Advantages ... 25
The Unified Process (UP) ... 26
Inception Phase... 26
Elaboration .. 27
Construction Phase... 28
Transition Phase ... 29
Iterative Phases... 30
Typical Timings (eg 2 year project) ... 30
Project Activities .. 31
Unified Process – The Pros .. 33
Unified Process: The Cons ... 35
Iteration Length? ... 35
Some Important Points.. 36
Project “Slices” .. 37
Extreme Programming (XP) .. 37
XP Rules and Practices – Planning .. 38

7 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

XP Rules and Practices – Designing .. 39
XP Rules and Practices – Coding... 40
XP Rules and Practices – Testing .. 40
Session Summary ... 41

Introducing the Diagrams .. 42

Models vs Diagrams.. 42
Class Diagrams ... 45
Statecharts .. 46
Interaction Diagrams ... 47
Use Case Diagrams .. 47
Deployment Model .. 49
Activity Diagrams... 49
Linking Together.. 50
Summary ... 51

Object Orientation... 53

Procedural Programming .. 53
Procedural Problems... 55
The Object Oriented Approach ... 56
Classes Define Objects... 56
Encapsulation.. 57
Object Collaboration.. 58
OO Jargon... 58
Why Objects? .. 59
Our General Strategy .. 60
Inheritance... 60
Database Mapping .. 60
Bridging the Gap ... 61
Persistence Frameworks... 61
Summary ... 62

Beginning the Project... 63

Using the UML... 63
Digression : UML Stereotypes .. 64
Deployment Syntax ... 65

Discovering Use Cases .. 66

Use Cases... 66
Use Case Symbol.. 67
Bring on the Actors.. 67
An Actor is someone (or something) who can trigger a use case. In our
previous example of Withdraw Money (on the Actors 67
Example Use Case Diagram... 68
The Purpose of Use Cases ... 68
More on Actors .. 69
Use Case Granularity.. 70
Just to return back to the example of the time based actor in ity 72
Cockburn’s Use Case Levels .. 72

8 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Use Case Levels ... 73
Example .. 74
Example Use Case Model... 74
Finding Use Cases.. 74
Brainstorming Advice .. 75
Final Notes on Use Cases .. 76
Primary and Secondary Actors ... 76
Summary ... 77

The Domain Model .. 78

The Domain Model .. 78
What is a UML Domain Model? .. 79
What is a Domain Object? .. 79
Finding Classes of Objects ... 80
A Class in UML Notation ... 80
Documenting Domain Classes.. 81
Adding Attributes ... 82
UML Notation .. 82
Attribute Guidelines... 83
Example Attributes .. 83
Associations .. 84
Reading Direction.. 86
Multiplicities ... 87
Multiple Associations... 87
Many-to-Many Associations .. 88
Association Classes .. 89
Building the Model – Approach ... 90
CRUD Associations... 91
Example Matrix.. 91
Summary ... 92

The State Model .. 93

Capturing More Business Rules.. 93
Class State Diagrams ... 93
Events and States ... 93
Births, Deaths, Marriages.. 94
States of Interest ... 94
Capturing State Diagrammatically .. 94
A Life ... 95
UML State Diagrams... 95
State Model ... 96
A State... 96
Start State ... 96
End State... 97
Transition... 97
Event ... 98
Summary of the Basic Notation... 98
The 'Person' State Diagram .. 99

9 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Business Rules and State ... 99
More Notation.. 100
TrafficLight State Diagram .. 101
Extending the Traffic Light .. 101
Turn Off Event - Version 1 .. 102
Turn Off Event with Sub-States... 102
Reset Event... 104
Revised Person Statechart ... 104
Now we can return to our person Statechart (which we last saw in and
State .. 104
Conditional Transition ... 105
Actions... 106
Event Sources ... 106
Which Classes Have State Diagrams? ... 106
Summary ... 106

Ranking Use Cases .. 107

Ranking and Estimation .. 107
High Ranking Use Cases .. 107

Specifying Use Cases .. 109

Why Specify Use Cases?.. 109
UML Definition of Specification ... 110
Use Cases vs Requirements... 110
Where Use Cases Fit In .. 110
Key Information Required ... 111
Pre Conditions... 112
Post Conditions ... 112
Use Case Main Flow ... 112
Main Flow .. 113
Extension Flows .. 113
Style Guidelines .. 114
CRUD Use Cases ... 115
Graphical Form.. 115
Example Activity Diagram ... 115
Use Case “Storyboard” ... 117
Summary ... 117

Interaction Modelling.. 119

Transition to Detailed Design .. 119
Responsibility and Collaboration... 120
Simple Real Life Example ... 120
The Collaboration Sequence (step 1) ... 121
The Collaboration Sequence (step 2) ... 123
The Collaboration Sequence (step 3) ... 124
The Collaboration Sequence (step 4) ... 125
The Collaboration Sequence (step 5) ... 126
Objects and Existing Associations .. 126

10 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Objects .. 127
Method Calls ... 127
Parameters.. 127
Return Values.. 128
Looping Messages .. 128
Creating Objects.. 129
Conditions ... 129
Full Worked Example .. 130
The GUI?... 130
The Class Diagram and Use Case Description .. 132
Building the Diagram – Step 1 .. 133
Continuing the Diagram .. 134
Finishing the Diagram ... 135
Uncovered Methods .. 135
Association Direction... 136
The Alternate Flows .. 137
Only Model “Interesting” Flows ... 138
Collaboration : Guidelines ... 138
Summary ... 139

Polymorphism, Inheritance and Composition... 140

Inheritance in UML .. 140
Protected Methods .. 141
Summary of Visibility Levels ... 142
Inheritance => Coupling .. 143
The 100% Rule.. 144
The “Is A Kind Of” Rule ... 145
Overriding Methods... 146
Abstract Methods and Classes ... 147
Polymorphism.. 148
Example .. 149
First Cut Design... 149
Example Use Case.. 150
Solving Using Polymorphism .. 150
Example Pseudocode – Client .. 151
The Big Payoff... 152
Interfaces... 152
Composition /Aggregation... 153
Composition .. 154
Aggregation ... 155
Programming Language Note ... 155
Composition vs Inheritance... 156
Summary ... 157

Design Heuristics.. 158

“Talk to the Expert”.. 158
“Talk to the Expert” Example... 158
“Talk to the Expert” Solution.. 159

11 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Tight Cohesion .. 160
Tight Cohesion Heuristics ... 160
Refactoring the LiftController .. 161
Loose Coupling ... 162
Spotting Coupling.. 163
Heuristic : Don’t Talk to Strangers .. 164
More Coupling Heuristics .. 164
Heuristics Summary .. 165

The Sequence Diagram .. 167

Collaboration Diagram .. 167
Equivalent Sequence Diagram.. 168
“Focus of Control”.. 169
Iteration ... 169
Sequence Commentary .. 170
Deleting Objects .. 171
Which are Best? .. 171
Summary ... 172

Design Patterns... 173

The Origin of Design Patterns... 173
Design Patterns / GoF... 174
Design Patterns Book ... 174
Intent and Problem in Context... 175
The 23 GoF Design Patterns .. 175
Adapter (1) .. 176
Adapter (2) .. 176
Adapter (3) .. 177
Adapter (4) .. 177
Design Patterns Complexity.. 178
Another Design Scenario .. 178
Partitioning the Design .. 179
Packaging.. 180
Problem ... 181
Solution – A Facade.. 181
Façade Implementation... 182
Façade “Field Notes”... 182
A Design Situation... 183
A New Requirement .. 183
Adding Circle Support ... 184
Chaos! ... 186
What’s Gone Wrong?.. 186
Optional Exercise .. 187
The Bridge Design Pattern.. 188
Bridge (1)... 188
Bridge (2)... 188
Bridge (3)... 189
Final Improvement... 189

12 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The Adapter... 190
Extending the Design .. 191
The Bridge in Java .. 191
More Java Notes ... 192
Patterns – Last Words... 192
Summary ... 192

UML 2.0 .. 193

Behavioural Diagrams... 193
Structural Diagrams... 194
Timing Diagram... 195
Interaction Overview Diagram... 196
Model Driven Architecture (MDA) ... 196
Summary ... 197

Transition to Code (not covered on course).. 198

Mapping a Class.. 198
Defining a Class (Java) ... 199
Defining a Class (C#) .. 200
Defining a Class (C++).. 201
Defining a Class in VB.NET .. 202
Defining a Class (Ada) .. 203
Ada Class Definition.. 203
Adding Reference Attributes ... 204
Containers/Collections .. 205
Coding a Use Case ... 206
Testing a Use Case... 207
Code Generation ... 207
Implementation Frameworks... 207
J2EE.. 208
J2EE and MVC.. 208
.NET .. 208
Summary ... 209

Example Code ... 210

Java Code ... 212
File : EnterSKUFrame.java ... 212
File : EnterSKUController.java .. 213
File : StockFacade.java... 214
File : Catalgoue.java ... 215
File : SKU.java... 216
C Sharp Code.. 217
C++ Code .. 218
File : EnterSKUFrame.cpp .. 218
File : EnterSKUControl.h / .cpp... 219
File : StockFacade.h / .cpp.. 220
File : Catalgoue.h / .cpp .. 221
File : SKU.h / .cpp ... 223

13 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Ada Code .. 225
File : main.ada... 225
Control Package.. 225
Stock Package .. 226
Visual Basic.NET Code... 229
File : EnterSKUFrame.vb .. 229
File : EnterSKUController.vb ... 229
File : StockFacade.vb.. 230
File : Catalgoue.vb .. 231
File : SKU.vb ... 232
Recommended Books... 234

14 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Chapter 1
Introducing the UML

In this session, we will describe the UML, or the Unified Modelling
Language. As well as charting the history and development of the UML, we
will explain what the UML tries to do – and perhaps more importantly, we will
explain what the UML does not do.

What is the UML?
“UML” stands for “Unified Modelling Language”, and is designed to be a
graphical language. The UML user guide claims that the UML is designed for
“specifying, visualising, constructing and documenting the artifacts1 of
software systems”. A rather grandiose definition – what does it really mean?

In everyday English, an “Artefact” is a product of human workmanship. So in
the context of building software systems, an Artefact will be the pieces of work
that we generate in the course of building the system. Think of the diagrams,
documents, test plans, code and so on.

So, to rephrase the definition from the UML User Guide:

“The UML is a graphical language that enables us to write down on
‘paper’ the work that we produce in the course of building a software
system.”

We don’t necessarily mean ‘on paper’; in fact the UML is designed to be
electronic as well as easy for humans to sketch on paper (or on the back of
cigarette packets).

What do we mean by a “graphical language”?

1 The user guide uses the American spelling. We’ll use English from now on.

15 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

A Graphical Language
Consider a normal, everyday language (not a programming language, but a
language such as English or French). The language will consist of:

• A notation; the symbols we can use to write down the language

• A syntax and grammar; a collection of rules that determine what we
can and cannot do with the notation to produce meaningful results

The UML is no different. It contains a collection of symbols we can use to
write down the language. The difference between a natural language like
English and the UML is that the UML’s symbols are graphical; rather like
icons. Here are some examples of the UML’s notation:

Figure 1 - Some UML Symbols

(Don’t worry about what these symbols mean for now – we’ll be explaining
them in detail (if we need them) as we progress through the course).

The UML ‘Grammar’
The symbols on their own are not a great deal of use; we have to connect
them together to construct meaningful statements from them (in the same way
as connecting letters together to make meaningful sentences).

Here is an example of three UML symbols connected together – a stick man,
an oval and a line joining the two together:

16 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

End Calendar Year

End of Year

Figure 2 - UML Symbols joined together

Does the picture in ke any sense? If so, what does it make any sense? If so,
what does it mean?

Learning the UML symbols is easy; we could sketch them down in a couple of
minutes and explain most of them in an hour or so. This is no different to
learning an alphabet – all very well but you can’t read or write a book after
learning the alphabet.

So in order to understand the UML, it is necessary to learn its grammar; in
other words, how to put the symbols together…

Building Floorplan
To digress for a second, have a look at the figure below – an extract from an
architectural floor plan. What does the symbol inside the oval represent?

17 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 3 - Extract from an architectural floor plan

Full marks if you recognised the symbol as a door (or in this case, double
doors). Most readers of this book won’t be au fait with architectural plans, yet
the symbol is so simple, it is easy to recognise what it is representing. The
UML has similar aims…

Modelling Notations
If we were a building construction professional, we would not consider
performing a task without using a standard notation to create plans. Ideally
the plans would need to be understood by the architect, the builders, the
planners and even (with a little help, and at a fairly high level) by the future
owners. Although there is only one house to be built, there may be many
different versions of the plan representing different levels of detail – the
electrical contractors would require a very different (and more detailed) plan
than the future owners.

18 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The IT Industry has, until recently, lacked such a standard notation. It was
impossible to “draw up the plans” for an IT System in any standard manner –
any project had a bewildering choice of conflicting modelling notations…

The “Method Wars”
Between 1989 and 1994, there were more than fifty modelling languages in
common use – goodness knows how many more there were. This period was
known as the Method Wars (perhaps Notation Wars would have been a more
accurate term).

Any project starting up in this period would be faced with a daunting choice –
which one to adopt?

Which one was the best? Well, none of them really. They all had strengths
and weaknesses; they all did pretty much the same thing, but probably all in
slightly different ways.

As an example, here is an item of notation from the “Booch” syntax,
developed by industry Guru and one of the original members of Rational
Software, Grady Booch:

Purchase
Order Archive

19 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 4 - The Booch "Cloud" Icon

If you have never worked in Booch before, the “Cloud” icon will be
meaningless to you. In fact, it merely represents a concept that is present in
all modelling languages, but using a very strange and bizarrely shaped icon.

Anyway, through the mid 1990’s, three of the notations began to gain strong
industry acceptance.

• Booch, the notation developed by Grady Booch, as mentioned above.

• OMT, the “Object Modelling Technique”, developed by James
Rumbaugh during his work with General Electric

• OOSE, or “Object Oriented Software Engineering”, a technique
developed by Ivar Jacobson at Eriksson.

There were other methods and notations, such as Jackson (JSD), SSADM
and Shlaer-Mellor, but the three notations listed above were to become the
most significant…

The Three Amigos
In 1994, James Rumbaugh moved to Rational to join Grady Booch, and to
begin an effort towards combining their ideas into a single “method”, which
they originally called the “Unified Method”. In 1995, Ivar Jacobson joined the
unification team, adding the ideas behind his OOSE method into the mix. As
we’ll see later, one of the key ideas in OOSE was a Use Case, which is now
the cornerstone of the modern day UML.

The Object Management Group, or OMG2 are an industry standards body, run
as a not-for-profit organization. Concerned at the lack of an industry standard
modelling language, the OMG issued a challenge to the software industry to
develop one. The UML was eventually adopted by the OMG as the standard
modelling language.

Although Booch, Rumbaugh and Jacobson are credited with the initial
development of the UML (and they are certainly the major contributors to the
language), in fact the industry in general have contributed to the UML, with
many organizations and individuals adding their own ideas.

Although Rational may have been credited with the initial impetus for its
creation, the UML is now “owned” by the OMG; it is non-proprietary and is

2 www.omg.org

20 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

available to all. The specification of the UML is available as a free download
from the OMG website.

The UML is Simple
Ariadne are guaranteed to get floods of complaints about this statement. It is
certainly true that the UML specification is a complex and difficult read – but
then the document isn’t really intended for use by users of the UML – it is
targeted at tool developers or academics.

To put the above assertion into less controversial terms, we mean “the UML
aims to allow us to produce uncluttered, focused, clear and understandable
models produced at the correct level of abstraction”. In a similar way to the
floor plan in a door (or in this case, double d, the UML symbols should be
recognizable and understandable to all – even to those not connected to IT.

As the project progresses, the designers and programmers may well need to
build more detailed diagrams using the UML; but these diagrams will
complement the more general and high level diagrams that we are likely to
produce in Analysis.

Some people seem to want to make the UML as complex as possible, using
the logic that Complex Systems => Complex Method.

Client

View Account

Deposit Funds

Withdraw Funds

Create Account

Login

21 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 5 - One of the UML models, shown here almost in its entirety. Don’t worry about
its meaning – we’ll be studying it later, but hopefully it should be obvious that it is very

simple and straightforward.

The UML is a communication tool, and we should take
care to produce models that are clear and understandable

to our target audience.

UML Penetration
All of the above is all very well, but the UML would be useless if the industry
had ignored it. In fact, the UML seems to be achieving its goal of becoming
the ‘lingua franca’ of the software industry.

Many tools support the UML as their primary notation, and most of them
support the full range of UML models, with Business Process Models,
Analysis Models and Architecture models.

Some of the tools also support “Round Trip” engineering, where program
code can be generated from the models, and models generated from the
code.

Summary
• The UML is a notation for capturing the “artefacts” of software intensive

projects

• A graphical language, and one that is aiming to become a “standard”
language in the software industry

• The UML is overseen by the OMG; membership is required to have
voting rights

• The UML aims to be simple and a versatile toolbox rather than a
prescriptive method or process

22 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Chapter 2
The Unified Process

It is very, very important to remember that the UML is a bare language. We
hope that we have convinced you so far that this isn’t a bad thing; the UML
aimed to gain industry acceptance as a common language, and it seems to
have done so. If the goals of the UML had been broader and had incorporated
a process, it would not have stood a chance – every project on the planet
does things in different ways, and processes are very contentious3.

The UML does not tell you how to develop software; it is
definitely not a method, a methodology or a process.

Omitting any question of process from the UML is generally a laudable move
– but it does leave us with the question of how to apply the UML on our
projects.

In fact, although the UML makes no mention of processes, it was designed to
be used alongside Object Oriented (or OO) projects; many of the notations in
the UML are heavily influenced by the OO way of thinking. That said, it can
be certainly applied to non-OO projects as well.

Similarly, the UML can be used alongside any project lifecycle4, but the most
natural fit for the UML is an iterative lifecycle. We’ll look at the iterative

3 A loose definition of process; a method of developing software that rigorously defines the
steps to be followed and the tasks to be carried out)

4 They include Waterfall, V-Model, DSDM, RAD, RUP, Iterative, Incremental, Spiral et al

23 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

lifecycle in a few moments, but first we’ll look at the most common lifecycle in
use today, the waterfall lifecycle…

The Waterfall Lifecycle
In the waterfall lifecycle (first proposed by Winston Royce in 1970 – although
he didn’t call it the waterfall at the time), the project is broken down into a
series of discrete steps. These steps vary from project to project, but we
would expect to see at least the following on most projects:

• Analysis; where the problem is analysed and requirements are
gathered

• Design; where a solution to meet the requirements is planned

• Implementation; where the solution is realised in the form of code

• Testing; where the solution is tested against the requirements

• Deployment; where the solution is delivered to the client site

These steps are perhaps a little simplistic; on many projects we would expect
to see activities such as Business Analysis, high/low level design, unit testing,
system testing, acceptance testing, integration and so on.

The lifecycle gets it name because the steps are carried out in strict
sequence; it is not acceptable to move on to the next stage until the current
stage is 100% complete. Once the project has moved on, it is difficult (or
impossible) to move back “up” the lifecycle:

24 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Analysis

Design

Implementation

Testing

Deployment

Figure 6 - The Waterfall Lifecycle

Disadvantages of a Waterfall Lifecycle
This simplistic (and easy to manage) process begins to break down as the
complexity and size of the project increases. The main problems are:

• Even large systems must be fully understood and analysed before
progress can be made to the design stage. The complexity increases, and
becomes overwhelming for the developers.

• Risk is pushed forward. Major problems often emerge at the latter stages
of the process – especially during system integration. Ironically, the cost to
rectify errors increase exponentially as time progresses.

• On large projects, each stage will run for extremely long periods. A two-
year long testing stage is not necessarily a good recipe for staff retention!

25 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 7 –Over time on the waterfall, both the risks and the cost to rectify errors
increase

Also, as the analysis phase is performed in a short burst at the outset of the
project, we run a serious risk of failing to understand the customer’s
requirements. Even if we follow a rigid requirements management procedure
and sign off requirements with the customer, the chances are that by the end
of Design, Coding, Integration and Testing, the final product will not
necessarily be what the customer wanted.

Waterfall – Advantages
Having said all the above, there is nothing wrong with a waterfall model,
providing the project is small enough. The definition of "small enough" is
subjective, but essentially, if the project can be tackled by a small team of
people, with each person able to understand every aspect of the system, and
if the lifecycle is short (a few months), then the waterfall is a valuable process.
It is much better than chaotic hacking!

In summary, the waterfall model is easy to understand and simple to manage.
But the advantages of the model begin to break down once the complexity of
the project increases.

26 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The Unified Process (UP)5

We’ll leave the waterfall model behind for a short while (but bear in mind its
advantages and disadvantages). The UML is often applied alongside a
lifecycle that is radically different from the waterfall – although is does feature
some of the waterfall’s ideas.

The Unified Process6 (or UP) is divided into four major phases: Inception;
Elaboration; Construction and Transition. These phases are performed in
sequence, but the phases must not be confused with the stages in the
waterfall lifecycle. This section describes the four phases, and outlines the
activities performed during each one.

Figure 8 - the four phases of the Unified Process

Inception Phase

Startup the Project

Inception Elaboration Construction TransitionInception Elaboration Construction Transition

Figure 9 - Inception; the starting phase for the project

5 See http://www.unifiedprocess.org/ for more information

6 Development of an industry standard process is some way behind the development of a
unified notation. Many of the topics we present here are in a state of flux at the time of writing
(after all, developing an industry standard process is a massive task). You may see the term
Rational Unified Process, or RUP mentioned elsewhere – the RUP can be thought of as the
UP, with proprietary extensions offered by Rational. Thus, the RUP is a commercial product.
A newer process for Enterprise Systems called the EUP
(http://www.enterpriseunifiedprocess.info/) is also being constructed; the EUP has exactly the
same base as the UP we study here – it merely adds some extra concepts which are useful
for enterprise systems development.

27 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The inception phase is concerned with establishing the scope of the project
and generally defining a vision for the project. For a small project, this phase
could be a simple chat over coffee and an agreement to proceed; on larger
projects, a more thorough inception is necessary. Possible deliverables from
this phase are:

• A Vision Document
• An initial exploration of the customer’s requirements
• A first-cut project glossary (more on this later)
• A Business Case (including success criteria and a financial forecast,

estimates of the Return on Investment, etc)
• An initial risk assessment
• A project plan

Inception in a sentence: Determine what needs to be
done, examine the ways it could be achieved and decide

whether it makes business sense to go ahead

Elaboration

Figure 10 - The general goal of the elaboration phase is to identify and eliminate risks

The purpose of elaboration is to analyse the problem, develop the project plan
further, and eliminate the riskier areas of the project. By the end of the
elaboration phase, we aim to have a general understanding of the entire
project, even if it is not necessarily a deep understanding (that comes later,
and in small, manageable chunks).

You may recognise that this phase sounds very much like Analysis. This isn’t
at all true. The four phases of the Unified Process each contain a variety of

28 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

different tasks and activities (and we’ll see what these are in detail shortly).
One of the activities is indeed Analysis, but it is certainly not the only job to do
in elaboration.

Elaboration summary: Gain a broad appreciation of the
problem. De-risk the project by identifying potential risks
and eliminating them (perhaps by prototyping). Develop

the basic initial “architecture”, upon which the future
work can be built upon.

Construction Phase

Build the Product

Inception Elaboration Construction TransitionInception Elaboration Construction Transition

Figure 11 - In construction, we build the product

The construction phase is the easiest to define. At the end of elaboration, we
have a clearer idea of the problem. We are also sure that the work is feasible
due to our derisking and prototyping activities. Apart from prototypes, we have
no running code.

At the end of Construction, we have a complete and fully working product!

Clearly, this is a huge phase and will encompass lots of different activities,
such as:

• Analysis

• Design

• Coding

• Integration

• Documentation

• Testing (all levels including acceptance testing)

29 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

So we’ll need to break the phase down a little bit… we’ll look into this shortly.

Construction: Build the Product!

Transition Phase

Deliver the Product

Inception Elaboration Construction TransitionInception Elaboration Construction Transition

Figure 12 - In Transition, we make the client take ownership of the finished work

The final phase is concerned with moving the final product across to the
customers. Typical activities in this phase include:

• Beta-releases for testing by the user community
• Factory testing, or running the product in parallel with the legacy system

that the product is replacing
• Data takeon (ie converting existing databases across to new formats,

importing data, etc)
• Training the new users
• Marketing, Distribution and Sales

The Transition phase should not be confused with the traditional test phase at
the end of the waterfall model. At the start of Transition, a full, tested and
running product should be available for the users. As listed above, some
projects may require a beta-test stage, but the product should be pretty much
complete before this phase happens.

Transition: Hand the product over to the customer

30 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Iterative Phases
Any of the phases, but in particular Construction, can (and should) be carried
out as a series of “mini waterfalls”. The idea is that we take the work that
needs to be done and break it down into a series of separate “chunks”, and
build each “chunk” in turn.

At the end of Iteration 1, the first chunk of the system will be complete. It won’t
be very much of the system, but it probably will be running and stable code
(albeit with lots of “to-dos”).

How we define these “chunks” is critical and difficult; thankfully the UML
provides a tool that provides an ideal way of defining the sizes of the chunks;
we’ll be studying this shortly.

Inception Elaboration Construction TransitionInception Elaboration Construction Transition

Analysis

Design

Code

Test

AnalysisAnalysis

DesignDesign

CodeCode

TestTest

Iteration 1

Analysis

Design

Code

Test

AnalysisAnalysis

DesignDesign

CodeCode

TestTest

Iteration 2

Analysis

Design

Code

Test

AnalysisAnalysis

DesignDesign

CodeCode

TestTest

Iteration 3

Analysis

Design

Code

Test

AnalysisAnalysis

DesignDesign

CodeCode

TestTest

Iteration n

…

Figure 13 - The Construction phase is performed in an iterative fashion

Typical Timings (eg 2 year project)
How long should each of the four phases last? This is entirely up to individual
projects, but a loose guideline is 10% inception, 30% elaboration, 50%
construction and 10% transition.

31 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 14 - Possible timings for each phase. This example shows the length of each
phase for a two year project.

The timing of 30% for elaboration surprises many people; this effectively
means that after 40% of the total development time, construction of the
system has not begun.

However, bear in mind that this chart represents the elapsed time and not the
expanded effort. Generally, the inception and elaboration phases are lightly
staffed. The Elaboration phase is a specialist job and will require a tight and
focussed team of domain experts or senior analysts. By the time elaboration
is complete, relatively few “person hours” will have been spent, but the project
team (as part of the elaboration deliverables) should have confidence that it is
safe to proceed.

The commencement of construction usually sees the staffing profile increase,
as separate teams are allocated to different chunks of software.

Project Activities
Let’s stamp out a major and common misconception:

• Inception is not Analysis

• Elaboration is not Design

• Construction is not Coding

• Transition is not Testing

32 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

All of these phases are in fact a collection of related activities – we have seen
for example that construction features analysis, design, coding and testing.

The following diagram is a chart describing the activities that take place
through each phase, and how intense that activity is:

PlanningPlanning

RequirementsRequirements

ArchitectureArchitecture

BuildBuild

IntegrateIntegrate

DesignDesign

10%10% 30% 50%Phase as % of
whole Project 10%10% 30% 50%Phase as % of
whole Project

TestTest

Construction Trans-
ition

Incep-
tion Elaboration

Prelim
Iter’n

Iter’n
1

Iter’n
n

Iter’n
n+1

Iter’n
n+2

Iter’n
n+3

Iter’n
m+1

Iter’n
mIterations

Construction Trans-
ition

Incep-
tion Elaboration

Prelim
Iter’n

Iter’n
1

Iter’n
n

Iter’n
n+1

Iter’n
n+2

Iter’n
n+3

Iter’n
m+1

Iter’n
mIterations

Trans-
ition

Incep-
tion Elaboration

Prelim
Iter’n

Iter’n
1

Iter’n
n

Iter’n
n+1

Iter’n
n+2

Iter’n
n+3

Iter’n
m+1

Iter’n
mIterations

Previously called
“workflows”, now

called
“disciplines”

Figure 15 - The activities performed through the lifecycle

The diagram above is just an extract; there are other activities such as
“Project Environment” (ie setting up the equipment for the project), and so on.

Let’s look at each activity in turn:

• Planning is a continuous, on going activity through the entire project.
This is in stark contrast to the waterfall set up, where the project would
often be planned using Gantt charts and fixed milestones. The project
is constantly reviewed – particularly at the end of each iteration, and
the progress is checked against the plans.

Note, however, that the planning effort will get a little less intense as
the project progresses; in theory after the first couple of construction
iterations, the project should get into a “groove”. This is a
generalisation though, and the needs of individual projects will vary.

• Requirements – the analysis of requirements is an analysis activity
that may well be started during inception, but the bulk of the effort is
done during elaboration. Due to the iterative nature of the process,
some tinkering may need to be done during construction, but these
changes should be minor.

33 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

• Architecture is a term that has many meanings in the IT industry; here
we use it in the sense of “the plans for the overall structure of the
software”. For example, we may decide that the solution will be coded
as three distinct “subsystems”.

In the UP, one of the main activities in the Elaboration phase is the
development of a sound architecture. The means for developing the
architecture is usually though developing prototypes that exercise the
proposed architecture.

Ideally, once elaboration is complete, we would have a complete and
perfect architecture – meaning that Construction becomes a much
simpler process of “slotting in” the code developed in each iteration.
This ideal never happens of course, and so the refinement of the
architecture continues throughout construction – and will often be done
by a specialist “architecture team”.

• Design begins in elaboration (and will often be the design of the
prototypes), and this effort naturally continues through construction.
The design effort begins to peter off as time goes on, because the later
iterations will tend to be simpler, more trivial blocks of functionality.

• Building, similarly commences in Elaboration (the prototypes), and
continues throughout construction (building in this context means the
same as “coding”)

• Integration is the process of taking a collection of separate pieces of
the system and making them run together. In the Unified Process,
integration is a major job, due to the iterative lifecycle – at the end of
each iteration, the system has to be integrated.

Although integration is a big task, and projects following the Unified
Process may do more integration throughout the lifetime of the project,
the integration is done is small chunks – ie at the end of each of the
“mini waterfalls”. Therefore, the integration is relatively straightforward
– if you have worked on a large waterfall project before, you can
compare this to the “big bang” approach used on those projects, where
integration is a long, tedious process.

• Testing is performed at the end of each iteration; the testing processes
gets progressively more intense as time progresses, as the system is
getting bigger and bigger (and more regression testing is needed).

Unified Process – The Pros
• Early, regular feedback (from customer)

34 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

If required, we can work very closely with the customer on a UP
development; we can involve them in the testing process at the end of
each iteration and give them sight of the developing product. Whether
this is practical or not is down to the nature of your project, but if it is
possible, it is an excellent way of killing small problems before they turn
into project killers.

• Risks attacked early in the process

The elaboration phase is committed to the attacking of risk; rather than
hiding them and hoping that they go away later on, risks are exposed
through the construction of prototypes.

• Scale and complexity of work discovered earlier

Again, due to the elaboration effort, the scale and complexity of the
work can be discovered earlier (ie before construction and not during).
Of course, this isn’t a given – it will depend on the skill and experience
of the elaboration team – and we’ll also need a collection of tools and
techniques to make this happen. Perhaps the UML will help here!

• Development Process tested early

This is a huge boon. By the end of the first construction iteration (ie just
a little over 50% of the way through the project), the entire
development process has been exercised7. Say for example that our
QA process was badly thought out and implemented – we made the
whole process too intrusive, many forms had to be signed and the
coding effort was delayed by over two weeks as a result. Well, we have
found out straight away and can easily modify it in time for iteration 2.

• Regular Releases => Morale boost!

This advantage cannot be understated. The development teams get to
see a regular expansion in the functionality of the system, and get to
feel that progress is constantly being made (as opposed to waterfall
projects, where running code might not emerge for years!) UP projects
should ensure that they celebrate hard at the end of each iteration!!

7 Well, apart from Transition but it is fair to say that Transition is relatively simple and
shouldn’t worry us here.

35 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Unified Process: The Cons
The big downside of the Unified Process cannot be emphasized enough – it is
much harder to manage than linear processes. Check the “planning” activity
in the diagram on page 32; it is a constant effort and when things go wrong, it
will be immediately obvious.

Much of the management effort is concentrated on the running of the process
(ie the progression of the phases and the iterations within) rather than the
micromanagement of what the development teams are actually up to.
Successful UP projects will generally have an attitude of empowerment for
their development teams – and genuine empowerment too, rather than
paying lip service to it.

It is also harder to understand than the linear processes. We have taken
several pages to describe it here, and we have only scratched the surface.
Yet we can explain most of the waterfall lifecycle in a few sentences.

It ought to stand to reason that a process that is robust enough to support a
project of any duration and complexity is going to be harder to take on board –
but it should be recognised that learning how the Unified Process works is
hard.

Since the UP is a different way of thinking, it can be an extreme and painful
culture change for many organisations. It is often introduced at the same time
as other changes (for example, OO development, new operating systems),
and it can easily cripple a project if things aren’t done properly. Bearing in
mind that the Unified Process is harder to understand, it is not surprising that
many projects go off half cocked.

Finally, although at the time of writing the UP is considered to be the
enlightened method of software development and is very much “state of the
art”, it is not the most used process – the waterfall will continue to hold that
crown for many years to come. There is far less “in the field” experience of the
UP.

Iteration Length?
A single iteration should typically last between 2 weeks and 2 months. Any
more than two months leads to an increase in complexity and the inevitable
“big bang” integration stage, where many software components have to be
integrated for the first time.

A bigger and more complex project should not automatically imply the need
for longer iterations – this will increase the level of complexity the developers
need to handle at any one time. Rather, a bigger project should require more
iterations.

36 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Some factors that should influence the iteration length include: (see Larman
[2]).

• Early development cycles may need to be longer. This gives developers a
chance to perform exploratory work on untested or new technology, or to
define the infrastructure for the project.

• Novice staff
• Parallel developments teams
• Distributed (eg cross site) teams [note that Larman even includes in this

category any team where the members are not all located on the same
floor, even if they are in the same building!]

To this list, I would also add that a high ceremony project will generally need
longer iterations. A high ceremony project is one that might have to deliver a
lot of project documentation to the customer, or perhaps a project that must
meet a lot of legal requirements. A very good example would be any defence
related project. In this case, the documentary work will extend the length of
the iteration – but the amount of software development tackled in the iteration
should still be kept to a minimum to avoid our chief enemy, complexity
overload.

Some Important Points
It is worth fixing some common UP misconceptions…

As we previously stated, it is a common misconception to assume that
Inception = Requirements; Elaboration = Design and so on. As the previous
discussion has proved, each phase in the UP is a combination of activities,
and requirements, design, coding and all the other disciplines required on a
project are “threaded” around the four phases.

It is not necessary to define most of the requirements before starting design or
implementation – in other words, a long and tortuous “requirements analysis”
is not required before any work can be done on the design or build. As the
diagram on page 32 shows, requirements is an on going activity that needs to
be revisited through the elaboration phase (and possibly through construction
too).

Complex projects do not mean long iterations. Long iterations means
waterfalls (if your project wants to use a waterfall, then fine – but if you are
using UP then short iterations are the order of the day). Complex projects
mean more iterations.

Despite the apparent complexity of the UP (and we cannot hide the fact that it
is harder to understand, and there is a lot to learn), the UP is not intended to
be a formal, heavyweight and complex process - it can be as agile or as
prescriptive as your project requires. There is no law stating that your project

37 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

must produce elaborate test plans for example – it is entirely down to your
own project’s needs.

UP projects cannot be planned in detail from start to finish – whilst this is often
seen as a drawback of the UP, it is really a strength. Anyone who thinks that a
two year long waterfall project can be planned in detail up front, and then to
hope that the project will proceed as planned, is being optimistic at best. With
UP, you produce estimates of the project plans, and these plans become
more accurate as the project proceeds through its iterations.

Project “Slices”
It as all very well saying “attack small slices of the project in each iteration”.
This is a very vague statement, and doesn’t address the question of how on
earth do we work out what is in each iteration?

If we are using the UML, the answer comes in the form of Use Cases. As we
will see later (a whole session is devoted to them), Use Cases form the core
of our entire development process.

We need to have a basic understand of what a Use Case
is even before we study them in depth, so a quick and

dirty definition to be going on with: A Use Case describes
an instance of using the system (eg – “Spell Check

Document”)

Extreme Programming (XP)
XP is an up and coming movement that is often seen as direct competition to
the Unified Process. The goal of XP is to “deliver the software that is needed
when it is needed”.

XP is designed to be “lightweight” in recognition of the fundamental problem
of heavyweight, prescriptive methods - the complexity means that people
don’t understand them, and therefore ignore them.

It is perhaps quite a niche area at present; however it is a lively topic and
many of the forward thinkers are committed XP practitioners

We are not experienced XP users, but we can describe the general principles
briefly. To get a handle on what the XP community are trying to say, it is worth
looking at their collection of (relatively) simple “Rules and Practices”.

38 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

XP Rules and Practices – Planning
“User Stories” are written

User Stories are similar to Use Cases. There are some differences, but to be
honest it is a bit hard to discern exactly what those differences are. It is a little
worrying that there are breakaway camps claiming to be radically different
when there isn't really. One interesting idea is that the User Stories are written
by the customer (directly). In XP, the customer (or a representative) is part of
the team (not a visitor, a full blown member).

Make frequent small releases

The project aims to deliver small releases to the customer, and often.

The “Project Velocity” is measured

The project velocity is a measure of how much progress is being made on the
project. The user stories (and not lines of code) are used as the measure of
progress.

The project is divided into iterations

XP suggests a schedule of about 10-12 iterations of a duration of about 1-3
weeks each. They also suggest that the iteration length be a constant.

Iteration planning starts each iteration

XP is often mistaken as a hacker's paradise, but really this is a long way from
the truth. One example of the control aspects of XP is the concept of an
iteration planning meeting - this is held at the start of each iteration, and plans
the tasks to be carried out during iteration.

Move people around

Staff on an XP project are regularly moved around - to avoid excessive
knowledge being held by individuals and to reduce the "bus count" of the
project.

A Stand-Up meeting starts each day

The "stand up meeting" is held each day, a short meeting to which all project
members must attend. The style of a standup meeting is that it is extremely
short, problems are aired rather than solved (solutions should be found
outside of the meeting), and attendees must (as the name suggests) stand up
when they speak. By making people stand up when they speak, the meeting
is less likely to sag and drown in waffle.

39 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Fix XP when it breaks

XP encourages projects to change the rules when they don't work!

XP Rules and Practices – Designing
Simplicity

The XP mantra is "find the simplest thing that could possibly work". XP
encourages that functionality should NEVER be added until it is needed.

Choose a “system metaphor”

System Metaphor means to have a consistent naming convention across the
whole project. The UP has similar ideas (in the form of “project glossaries”.

Use CRC cards for design sessions

XP encourages the use of CRC (Class Responsibility and Collaboration
Cards). This technique (invented by the same people driving the idea of XP) is
a common Object Oriented design technique - we'll be doing something
similar later.

Create “spike solutions” to reduce risk

Spike solutions are kind of throwaway non-production quality "prototypes", to
reduce technical risk.

No functionality is added early

XP encourages that only the work required for the current iteration should be
done now. They argue that only 10% of the extra work that you put so much
effort into will ever be used.

Refactor whenever and wherever possible

Refactoring, a technique made popular by Martin Fowler is the process of
improving the quality of code (or design) that already works. XP encourages
constant refactoring. By putting refactoring at the heart of the project, designs
are less likely to become unmaintainable, stale or unwieldy.

40 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

XP Rules and Practices – Coding
The customer is always available

XP requires that the customer, or a representative (not one of their trainees -
an expert is required!), is a part of the development team.

Code must be written to agreed standards

Coding standards must be set and adhered to – again proof that XP is not and
has never been a “hacker’s charter”

Code the unit test first

In XP, the idea of writing automated unit tests (that can be run as part of the
build process rather than manually) is central. Also of importance is that the
unit tests are written before the code!

All production code is pair programmed

Perhaps the most famous XP practice. All code that is intended to be included
in the production system must be coded by two programmers working
together. XP’s findings show that two people working at a single computer will
do as much work as the two would have achieved separately – and critically
the work will be of a higher standard. The idea is that whilst one programmer
is “heads down”, the other programmer can think tactically and objectively.

Leave optimisation until last

Code is only optimised at the end of the project – not as the code is being
written. This is an ancient practice and is included in XP for good reasons.
“Premature optimisation is the root of all evil” according to Donald Knuth, and
we’re not going to argue with him!

No overtime

My favourite (and a rule that I’ve applied on non XP projects too). The
extremeprogramming.org website explains that working overtime sucks the
spirit and motivation out of a team. We’ll also add to that the wise law
invented by the late great C Northcote Parkinson : “Work expands to fill the
time available” – so overtime is a waste of time, anyway.

XP Rules and Practices – Testing
All code must have unit tests

As we said earlier, automatic unit tests are of vital importance to XP. All
production code is unit testable in this fashion.

41 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

All code must pass all unit tests before it can be released

This rule, I think, speaks for itself.

When a bug is found tests are created

On discovery of a bug, tests are written to guard against it returning.

Acceptance tests are run often and the score is published

Acceptance tests are derived from the user stories, and rather than delaying
running them until the end of the project, the acceptance tests are run from an
early stage. Although many of the tests will fail in the early stages of a project,
as time progresses more and more of the tests will pass. The “score” of how
many tests have passed are published regularly to the development team, so
a clear view of progress made can be seen by all. Contrast this with the
approach of counting lines of code written per day as a metric of progress…

Session Summary
• The UML is a bare language and must be implemented alongside a

solid process

• An iterative lifecycle offers many advantages over the traditional
waterfall

• The Unified Process (UP) is built around four phases - Inception,
Elaboration, Construction, Transition

• XP is an interesting movement; it is really only intended for smaller
projects (<30 developers), but it is gaining momentum and you cannot
fault the core ideas - although it does seem to be in head to head
competition with UML style thinking….

42 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Chapter 3
Introducing the Diagrams

Conscious of the fact that we are well into the course now and we’ve hardly
seen any UML, we are going to briefly introduce the diagrams so that you
have least seen most of them. You don’t need to understand what they are
about yet – of course, we’ll be working through them in detail through the rest
of the week.

We will give a quick description of what each diagram is usually used for -
don’t take the quick descriptions too literally as we’ll be a little bit technically
imprecise for the moment!

Although there are about nine different diagrams, there are only five classes
of diagram:

• The Use Case Model

• Interaction Models

• State Models

• Implementation Diagrams

• Static Model (Class Diagram)

Note: This material is applicable to UML1.5 (and previous versions). UML 2.0
(only just released at the time of writing and not supported by all tools) adds
extra diagrams and renames some of the existing ones. However, the
changes are relatively minor and we will cover these in a later chapter.

Models vs Diagrams
Before we begin, it is worth clearing up a common confusion in the UML about
the difference between Models and Diagrams. Many practitioners use the
terms interchangeably, but there is a difference.

43 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

A Model is a collection of information about your project, its artefacts and its
relationships. The model could be stored in a database.

A Diagram is a visual representation of some of the data in your Model.

Many UML tools are quite keen on the difference; often changing the Diagram
does not alter the Model.

Take this example from the Enterprise Architect tool. Here, we have two
classes on a Class Diagram (Customer and Order). Note that the two classes
appear in the tree on the right hand side – this tree is showing the Model and
how it hangs together…

Figure 16 - Two Classes in the Model and the Class Diagram

However, look what happens when we delete the “Order” class from the
diagram (using the del key)…

44 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 17 - Deleting the Order class from the diagram

However, notice that the Order class is still in the Model! This is because
EA is very strict on the distinction between the Model and the Diagram. By
pressing delete, we are merely asking EA not to display the class on the
Diagram. The class itself is still preserved entirely, including the relationships
it has with other classes.

Although it is an important difference (especially when working with tools),
don’t get too precious about it. We’ll often refer to a Model as a Diagram,
when we really should say “The Model which is visualized by the following
diagram”, or vice versa.

45 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Class Diagrams

Booking

- dateOfBooking: date
- status: int

Company

- name: String
- credi tLim it: int

constraints
{credi tLim it >= 0}

Delegate

- name: String
- notes: String

Resources::CourseEv ent

- startDate: date
- duration: int

0..*

is made for

1

0..*

represents

1

0..*

is reserved for

1

Figure 18 - A Class Diagram

Class Diagrams enable us to capture details about the objects that exist in the
problem and/or solution. They are built initially during analysis. This model is
transferred into design where it is expanded and eventually transformed into
code.

Class diagrams are perhaps the most commonly used UML models.

46 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Statecharts

on

Off Red

Red Amber

Green

Amber

create

on

cycle

cycle

cycle

cycle

turn off

Figure 19 - A State Model

State Charts enable us to ensure that information that we hold is held in the
correct state. They are used extensively during analysis and are usually
transferred to design.

Projects with safety or time critical behaviour will rely on these diagrams
during design.

47 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Interaction Diagrams

ViewWeatherControl ler

selected:Country Region

ViewWeatherScreen
User

viewWeather

getWeatherData(countryID)

update

*[for each region]:getWeatherData

Figure 20 - An Interaction Diagram

Interaction Diagrams allow us to plan how the software will work “under the
hood”. They are used in detailed software design, and the “core” of object
oriented design work goes on here.

Use Case Diagrams
The Use Case Diagram holds the whole model together…

48 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

(from Business Process Model)

Cancel
Prov isional

Booking

(from Business Process Model)

Confirm Course
Ev ent

(from Business Process Model)

Confirm
Prov isional

Booking

Bookings
Administrator

(from Business Process Model)

View Course
Ev ent Details

Product
Manager

Figure 21 - A Use Case Model

This will be the first diagram we build in the UML this week. They are created
during Analysis, but these diagrams go on to form the basis of the entire
project

49 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Deployment Model

Database

Client

«fi le»
Data File

«executable»
Client

Program
Data Access

«rmi»
Netw ork
Serv er

Server

DB

Database

Local Serv er

Figure 22 - A Deployment Model

The Deployment Model describes the configuration of the physical artefacts. It
is used by architects and hardware engineers.

Activity Diagrams
That’s it for the five classes of UML model. However, there is another diagram
available in the UML that doesn’t neatly fit in to any of the five classes. It is a
general purpose diagram called an “Activity Diagram”. You will probably
recognize it as a flow chart – it has 101 uses – it is usually used wherever
there is a need to capture “flow” – but it is not used for Object Oriented
Design!

50 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

start

Ensure Sufficient
Ingredients

Anything
m issing? Go Shopping

Chop
Vegetables

Cook Meat

Add
Vegetables

Wait 10
Minutes

Serv e

Eat

Finished

yes

no

Figure 23 - An Activity Diagram

Linking Together
So we’ve seen the diagrams, but how do they fit together? The real answer is
that the UML specification doesn’t explicitly say – in order to allow us to use
the UML Diagrams as tools for us to exploit.

However, throughout this course we will present a method of linking the
diagrams together to suit our software development…

51 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

cd UML Model Structure

Implementation Model

Statecharts

Interaction Diagrams

Data

Customer

Order

Use Case

Database

Use Case
Use Case

Actor1

:Order

:Customer

Initial

Ov erdrawn

Approv ed

deleted

PC Modem

Manipulates
describes the interaction between

contrains the behaviour of

Defines the Physical Construction of

is implemented by

Figure 24 - Possible UML Framework for Software Implementation

Summary
• There are five classes of UML Diagram:

o Use Case Model

o Class Model

o Interaction Model

o Implementation Model

o State Model

• There is also a “catch all” diagram called the Activity Diagram

52 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

• We’ll look at all of these models in detail this week

53 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Chapter 4
Object Orientation

The UML is primarily geared towards Object Oriented (OO) development -
although many aspects of the UML are independent of this. To be able to get
a grip on the UML, it is important to understand what OO is, why it is a good
thing, and what OO is trying to achieve.

This session won’t cover OO in technical detail, but it will establish the basics
- we will also use some “pseudocode” to illustrate a few concepts.

As an opening gambit, we will look (in very rough terms) at the “structured”
approach…

Procedural Programming
First of all, let's examine (in very rough terms) how software systems are
designed using the Structured (sometimes called Functional) approach.

In Structured Programming, the general method was to look at the problem,
and then design a collection of functions that can carry out the required
tasks. If these functions are too large, then the functions are broken down
until they are small enough to handle and understand. This is a process
known as functional decomposition.

Most functions will require data of some kind to work on. The data in a
functional system was usually held in some kind of database (or possibly held
in memory as global variables).

As a simple example, consider a college management system. This system
holds the details of every student and tutor in the college. In addition, the
system also stores information about the courses available at the college, and
tracks which student is following which courses.

54 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

A possible functional design would be to write the following functions:

add_student8
enter_for_exam
check_exam_marks
issue_certificate
expel_student

We would also need a data model to support these functions. We need to
hold information about Students, Tutors, Exams and Courses, so we would
design a database schema to hold this data.9

Figure 25 - Simple Database Schema. The dotted lines indicate where one set of data is
dependent on another. For example, each student is taught by several tutors.

Now, the functions we defined earlier are clearly going to be dependent on
this set of data. For example, the "add_student" function will need to modify
the contents of "Students". The "issue_certificate" function will need to access
the Student data (to get details of the student requiring the certificate), and the
function will also need to access the Exam data.

8 I'm using underscores to highlight the fact that these functions are written in code.

9 Note that throughout this chapter, I am not using a formal notation to describe the concepts

55 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The following diagram is a sketch of all the functions, together with the data,
and lines have been drawn where a dependency exists:

Figure 26 - Plan of the functions, the data, and the dependencies

Procedural Problems
There is nothing inherently wrong with the procedural approach. However, it
has been shown to begin to break down once the complexity of the problem
reaches a “certain size”.

The main problems causing this break down are:

• Separating the Data from the Functions is artificial and leads to
stability problems

• As the functions can directly access the data, if the structure of the
data needs to change, a major impact can be felt across the code

• The real world doesn’t work like this; hence our solutions tend to be
overly complex

In other words, it is a “poor abstraction” because it does not model the real
world well. This might not have been a problem a decade ago, but as our
software systems become more and more complicated we need a better
solution.

Object Orientation has been around since the early 1960’s, so it is hardly a
new idea. But it is only in recent years that much research has gone into OO;
these days it is the programming style of choice for most modern languages.

56 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The Object Oriented Approach
In OO, we group together the functions together with the data the functions
will access in a single, coherent module

We call this module a “Class”…

Data
Name
DOB

Expel Student

Get Age

Enrol
Change
Name

Data
Name
DOB

Expel Student

Get Age

Enrol
Change
Name

Figure 27 - A schematic of a class

Classes Define Objects
A Class defines the structure (ie the data contents) and the behaviour (the
functions) for a type of object

In other words, it classifies an object.

To represent actual data when our program is running, we will create
instances of the class; these instances are called objects.

57 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Data
Name
DOB

Expel Student

Get Age

Enrol
Change
Name

Data
Name
DOB

Expel Student

Get Age

Enrol
Change
Name

Data
Richard
Knowles
9/6/68

Expel Student

Get Age

Enrol

Change
Name

Data
Richard
Knowles
9/6/68

Expel Student

Get Age

Enrol

Change
Name

Data
John

Golledge
16/10/67

Expel Student

Get Age

Enrol

Change
Name

Data
John

Golledge
16/10/67

Expel Student

Get Age

Enrol

Change
Name

Data
Kenny

Dundas
1/5/71

Expel Student

Get Age

Enrol

Change
Name

Data
Kenny

Dundas
1/5/71

Expel Student

Get Age

Enrol

Change
Name

Figure 28 - Classes Define Objects; Objects hold the actual data

So each object holds its own personal collection of data; in theory10 each
object has its own functions.

Encapsulation
This jargon term means that only the functions of an object can access (read,
write, update) the data for the object

Our program will work purely through the interaction between methods

In this example, the only way to change the name of the student is through
the “Change Name” function.

Data
John

Golledge
16/10/67

Expel Student

Get Age

Enrol

Change
Name

Data
John

Golledge
16/10/67

Expel Student

Get Age

Enrol

Change
Name

Figure 29 - The data can only be changed through another object calling the object’s
methods

10 Java will only really have one copy of a function per class, but it doesn’t hurt to think of
each object as having its own collection of functions.

58 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The next question is where does this call come from?

Object Collaboration
An Object Oriented system works through chains of objects communicating to
fulfil a particular task…

This is called “Object Collaboration”

Data
X
Y

Data
X
Y

Data
W
z

Data
W
z

Data
s

Data
s

Data
T,u,v
Data
T,u,v

Data
P

Q, r

Data
P

Q, r

Figure 30 - A Schematic to represent a task being fulfilled through a chain of objects
calling each other’s functions in a sequence

How on earth do we work out what these chains should be? Well, this is the
art behind object orientation; don’t worry about where all this comes from for
now as we’ll be practicing this through the Java case study.

One thing you can think about – where does the first function call in an Object
Oriented system come from?

OO Jargon
Unfortunately, OO is overburdened with a vast array of jargon. We call the
data in a class the attributes of the class. We call the functions (or
procedures) in a class the methods of the class.

There is a technical difference between a function and a method, but it isn’t
really worth worrying about the difference. We don’t (much), and if you want to
think of a method as being a function or procedure, you won’t go far wrong.

59 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Why Objects?
Throughout this chapter, I have referred to these collections of related data
and functions as being "modules". However, if we look at the characteristics of
these modules, we can see some real world parallels.

Objects in the real world can be characterised by two things: each real world
object has data and behaviour. For example, a television is an object and
posses data in the sense that it is tuned to a particular channel, the scan rate
is set to a certain value, the contrast and brightness is a particular value and
so on. The television object can also "do" things. The television can switch on
and off, the channel can be changed, and so on.

We can represent this information in the same way as our previous software
"modules":

Figure 31 - The data and behaviour of a television

In some sense, then, real world "objects" can be modelled in a similar way to
the software modules we discussed earlier.

For this reason, we call the modules Objects, and hence we have the term
Object Oriented Design/Programming.

Since our software systems are solving real world problems (whether you are
working on a College booking system, a Warehouse Management System or
a Weapons Guidance System), we can identify the objects that exist in the
real world problem, and easily convert them into software objects.

In other words, Object Orientation is a better abstraction of the Real World. In
theory, this means that if the problem changes (ie the requirements change,
as they always do), the solution should be easier to modify, as the mapping
between the problem and solution is easier.

60 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Our General Strategy
Although this chapter has briefly touched on the benefits of Object Orientation
(ie more robust systems, a better abstraction of the real world), we have left
many questions unanswered. How do we identify the objects we need when
we're designing a system? What should the methods and attributes be? How
big should a class be? I could go on! This course will take you through a
software development using Object Orientation (and the UML), and will
answer all these questions in full.

One significant weakness of Object Orientation in the past has been that while
OO is strong at working at the class/object level, OO is poor at expressing the
behaviour of an entire system. Looking at classes is all very well, but classes
are very "low-level" entities and don't really describe what the system as a
whole can do. Using classes alone would be rather like trying to understand
how a computer works by examining the transistors on a motherboard!

The modern approach, strongly supported by the UML is to forget all about
objects and classes at the early stages of a project, and instead concentrate
on what the system must be able to do. Then, as the project progresses,
classes are gradually built to realise the required system functionality.
Through this course, we will follow these steps from the initial analysis, all the
way through to class design.

Inheritance
Inheritance is an important feature of Object Orientation (and it is therefore
fully supported in Java). It allows us to “reuse” existing classes by taking their
definitions and extending them into new, more specialised classes. Although
an attractive idea, inheritance must be used with care - we’ll study inheritance
in more detail towards the end of the course.

Database Mapping
Relational Databases were not designed with OO in mind (OO was not a
commonly accepted way of thinking when EF Codd invented the concept of
relational databases in the late 1960’s/early 1970’s). Many organizations rely
on relational database stores, and cannot dispense with their systems lightly.
Although there is some similarity between OO and RDBMS, there are
sufficient differences to make the “bridging” between the two ways of thinking
an expensive pain. Much research is being done in this area, however, and
many products exist to help us to bridge the gap (see reference [8] for some
thoughts on this serious issue.

61 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The difference in the relational way of thinking to the OO
way is often called the “OO/RDBMS impedance

mismatch”

Bridging the Gap
The resolution between this “mismatch” is something that only your
architecture can address11. There are many different solutions:

• Direct calls to the database from the objects (not OO at all)

• Data Access Objects (still not OO but a workable solution)

• A more serious database mapping “layer” – this is often called a
“Persistence Framework”. This layer could be built by yourselves (but
this is unlikely as Persistence Frameworks are very, very difficult to
implement from scratch)

If your solution is to use a Persistence framework, many open source options
exist…

Persistence Frameworks
For example, in the Java world, there are dozens of open source mapping
frameworks (although this is an area that changes rapidly).

The current contenders for leading framework are:

• The Spring Framework (see Rod Johnson’s book “J2EE without EJB”)
or springframework.org

• Hibernate (see Hibernate.org)

• Entity EJBs (but not considered to be much of a solution)

11 Our aim for this course is remain architecture neutral. However, we do currently offer
courses that cover concrete solutions for Java based developments – Hibernate, Spring
Framework and EJB.

62 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Keep an eye on developments in this field as there are still many issues to be
resolved…

Summary
• Object Orientation is a slightly different way of thinking from the structured

approach

• We combine related data and behaviour into classes

• Our program then creates instances of the class, in the form of an object

• Objects can collaborate with each other, by calling each other’s methods

• The data in an object is encapsulated - only the object itself can modify the
data

• A major consideration in OO is persistence; only your architecture can
address this

63 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Chapter 5
Beginning the Project

Now that we have understood the reasons for using Object Orientation and
some basic theory and notation, we shall read in the requirements for the
project.

We are also going to imagine that we are going to perform a site visit and
capture, using the UML, our findings from the site visit.

To do this, we are going to deliver, as a part of inception, a UML Deployment
diagram12.

Using the UML
It is now time to use the UML for the first time. For our site visit, we are
required to capture the hardware configuration that our client will eventually
need. A deployment diagram (one of the “Implementation Diagrams” in the
five classes) is ideal for this, as it is usually used to describe the physical
hardware layout of the system.

To be completely honest, it is a poor, under specified diagram with little
“weight” in the UML - tool support in particular is exceedingly poor.

However, it is still a useful diagram. We are now going to build a deployment
diagram to prove we understand the client’s requirements

12 We are not implying that a deployment diagram is a usual deliverable from the Inception
phase – it just happens to be an excellent starting point, and an ice breaker, in our case
study.

64 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Digression : UML Stereotypes
A UML Stereotype enables us to take an existing piece of notation and to give
it a different meaning; often this different meaning is a stronger or more
specific interpretation of the icon’s original intention.

As an example, consider a diagram where we wish to express that we need to
connect two PC’s (a server and a client) together using an RS232 link. The
icon for a PC in the UML is a Cube, and the connection is notated using a
simple line (the UML calls this an association).

Main Serv er Client

«RS232»

Figure 32 - the UML representing our Client/Server setup

The diagram above is reasonable and is certainly valid UML. But we haven’t
captured the requirement that the connection must use RS232. Now, the UML
as it stands does not contain any elements to represent an RS232 link. But
we can take the association graphic (the straight line) and apply a stereotype
to give it the stronger, more specific meaning. To apply a stereotype, you
simply tag the required icon with the name of the stereotype in Guillemets13
(French quotation marks). The diagram now looks like this:

Main Serv er Client

«RS232»

Figure 33 - Using the RS232 Stereotype

There is nothing to stop your project defining their own stereotypes to suit
your own requirements. Bear in mind that if you do this, you are producing

13 Pronounced “gee-may”. Quite why the designers of the UML chose such a symbol is a
mystery. Jacobson concedes in the UML spec that “typographically challenged” people can
use double angle brackets like <<this>>.

65 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

proprietary extensions to the UML. More commonly, we use standard
stereotypes14.

Deployment Syntax
The syntax for this model is very simple indeed. Here it is, in pretty much its
entirety:

Figure 34 - The UML Deployment Diagram

14 These standard stereotypes are defined in documents called “UML Profiles”. A profile is a
way of using the UML in a different context. A profile exists for Real Time/Embedded
systems, and one exists for analysis work.

66 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

 Chapter 6
Discovering Use Cases

This session covers:

• The purpose and importance of Use Cases in the UML

• Actors and Use Cases defined

• Uncovering Use Cases from the business processes

• Creating the Use Case Model

• Ranking use cases

Use Cases
Let’s be more specific about what a Use Case is. A Use Case describes a set
of interactions with the system that supports a particular business goal. We
need to be able to capture and describe these Use Cases, so all Use Cases
have a name that describes the goal of the Use Case – usually a verb/noun
combination.

Use Cases are almost always described using a simple,
clear and concise verb/noun combination.

For example, imagine we are working on a submarine control system – a
possible name for a Use Case could be “Fire Torpedoes”, as this is almost
certainly something that one of the users on a submarine may wish to do from
time to time.

67 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Using the UML, we can capture these Use Cases on a simple diagram. Don’t
let the simplicity of the diagram deceive you; Use Cases are incredibly
powerful…

Use Case Symbol
The symbol for a Use Case is a simple oval, with the name of the Use Case
inside or below the oval (depending on your tool):

Withdraw Money

Figure 35 - The Symbol representing a Use Case

Now let’s look at Actors…

Bring on the Actors
An Actor is someone (or something) that can trigger a use case. In our
previous example of Withdraw Money, the actor was probably Customer.

Here is the UML notation for an actor:

Withdraw Money

Customer

Figure 36 - Adding an Actor to the diagram

Notice that the actor is connected to the Use Case they are able to trigger via
an association line. Some tools will add an arrow head to the end of the line;
however this isn’t really meaningful, as the actor is always the trigger for the
Use Case (so the arrow is implicit).

68 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Example Use Case Diagram
Of course, a full Use Case Diagram will contain many Use Cases and Actors.
An actor can trigger more than one Use Case, and a single Use Case can be
triggered by one or more actors. Here’s a quick example:

Withdraw Money

Customer

Banker

Check Balance

Refill Machine

Shutdow n

Figure 37 - Example Use Case Diagram

The Purpose of Use Cases
We have established so far that the Use Case diagram is simple and easy to
draw. Are Use Cases themselves simple, or perhaps trivial? In fact, the Use
Case diagram is considered to be the cornerstone of the UML. Here are a few
key uses of the Use Case diagram:

• Use Cases define the scope of the System - the “sum” of the use cases
is the whole system. Therefore, Use Cases can take the place of
functional requirements – and if we use them correctly, they can do a
much better job of representing the requirements.

69 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

• They allow for communication between the customer, analyst and
developers. Because the diagram is so simple, even non-IT literate
people can grasp them – yet they still contain sufficient detail for the
developers to work with (albeit as a starting point)

• Guide the development teams through the development process. We
discussed in detail in “ mind its advantages and disadvantages). The
UML ” (Page 26) that iterative development depends on us slicing the
development into independent “chunks”. Well, practical experience
suggests that Use Cases are an ideal method of creating these
“chunks” – therefore…

• Use Cases are the method for planning and estimation; put simply, a
system of 20 Use Cases, with time for 4 Use Cases per one month
iteration means a 5 month project.

• Use Cases can be tested; once a Use Case has been coded, it is a
large and significant enough block of functionality to be tested in its
own right.

• Use Cases help with the creation of user guides; often a single Use
Case is big enough to warrant a chapter in the user guide, and the
steps inside the use case should be roughly the content of the user
guide (because the descriptions of the use cases, which we will see
later, are written from the user’s point of view).

More on Actors
Actors are often real people – as we saw with the previous example of
“Customer”. But, don’t forget that we defined an actor to be anything that can
trigger a Use Case. Therefore, actors could also be:

• another computer system

• a mechanical object

• or some kind of time-based event- for example, “end of the month”

In Real Time Systems, actors are often time or event based systems15

15 Some practitioners define an actor to be “an entity that derives benefit from a Use Case”.
This definition really prevents the use of time based actors (how can End of the Month derive
a benefit from sales figures being run)? In fact, this isn’t an issue since the UML specification

70 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

End of the Month

Generate Sales
Figures

Figure 38 - A time based (aka temporal) Actor

Use Case Granularity
One of the biggest and most open questions when producing Use Cases is
how big should they be – and it isn’t a question that is really addressed in the
UML specification.

We need a rule of thumb; some guidance that will help us get 99% of our Use
Cases correct, even if it is a rule that we occasionally break (if we have a
good reason).

As an example, let us consider the example of the ATM machine. We need to
build the ATM system to allow a user to withdraw money. We might have the
following series of common interactions in this scenario:

• Read Card
• Read Pin Number
• Read Amount Required
• Dispense Cash
• Eject Card
• Print Receipt

Should each of these steps be a Use Case?

does not define an actor to require a benefit from the use case, although this is a useful rule
of thumb, as we’ll see later on.

71 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Customer

Read Card Read PIN

Read Amount
Required

Dispense Cash

Ej ect CardPrint Receipt

Figure 39 - A Useful Use Case Diagram?

According to the definition of Use Cases, this diagram is perfectly correct, but
in practice it probably won’t be very useful. We have generated a large
number of small, almost inconsequential Use Cases. In any non-trivial
system, we would end up with a huge number of Use Cases, and the
complexity would become overwhelming.

To handle the complexity of even very large systems, we need to keep the
Use Cases at a fairly “high level”. The detail can be attacked later in the
process (at detailed analysis and design). The best way to approach a Use
Case is to keep the following rule-of-thumb in mind:

A Use Case should satisfy a goal for the actor

Apply the rule to these Use Cases, and you’ll find that really, none of them
describe the goal of the user. The goal of the user is to withdraw money, and
that should be the use case!

72 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Withdraw Money

Customer

Figure 40 - A more focused Use Case

Just to return back to the example of the time based
actor in ity
One of the biggest and most op again, note that our rule of thumb doesn’t
quite apply, as the “end of the month” doesn’t really have a goal as such – but
that doesn’t matter. The goal of the business is to receive a Sales Figures
Report at the end of the month, so the granularity “feels” about right – trust
your own judgement.

Finally, be especially careful not to confuse a Use Case with a Business
Process. A Use Case is IT based, and will be designed and coded and
appears in the final system. A Use Case is usually achieved in a single
“sitting” by the actor, whereas a Business Process is usually “end-to-end” and
can last for days or weeks – and could involve non IT activities as well.

Cockburn’s Use Case Levels
Alistair Cockburn, a leading thinker on the effective use of Use Cases, has
proposed that Use Cases can be categorised into three levels:

• Summary Goals

• User Goals

• Subfunctions

This is a useful categorisation, and can help clarify the granularity we are
aiming for…

73 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Use Case Levels

Bookings
Process

Take
Booking

Cancel
Booking

Review
Delegates

List
Courses

View
Delegate

Enter
Course Code

Summary

Goal Level

Subfunction

Bookings
Process

Take
Booking

Cancel
Booking

Review
Delegates

List
Courses

View
Delegate

Enter
Course Code

Summary

Goal Level

Subfunction

Figure 41 - Cockburn's Use Case Levels

Effectively, Cockburn is saying that Summary Level Use Cases (Use Cases
describing high level business functions) are useful when you are aiming to
capture your high level detail. We tend to handle this level of detail with
Business Process Modelling (see Ariadne’s Business Analysis course for
more details).

The Goal Level Use Cases are the level we have been discussing in this
chapter.

Subfunction Use Cases are smaller, step-oriented Use Cases that an actor
would expect to execute as a step in a Goal Level Use Case.

Sometimes, it is useful to identify Subfunction Use Cases, but the danger is
that the Use Case diagram bloats into a complex mess – and the Use Case
Diagram simply isn’t good at functional decomposition.

It may be the case that at the next level of design detail, you do wish to
organise your diagram and pull out “common” Use Cases – this is fine, but
identify your Goal Level Use Cases first.

Note – some projects have misinterpreted Cockburn’s classifications as
permission to perform functional decomposition using Use Cases. They
usually regret.

74 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Example
Here’s a simple set of requirements; can you identify the major Use Cases?

• The Computer Bookmaking System shall allow users to place bets on a
particular horse race. The system invites users to select a race, and
once the race is selected, they are provided with a list of the runners in
the race together with their odds.

• Once their selection has been made, the user enters their stake, and
the money is deducted from their betting account.

• At the end of each race, the bets on the race are settled. Winning bets
are credited to the account.

Example Use Case Model
Space is provided here to note down your answer:

Finding Use Cases16
One approach to finding Use Cases is via interviews with the potential users
of the system. This is a difficult task, given that two people are likely to give
two completely different views on what the system should do (even if they
work for the same company)!

Certainly, most developments will involve some degree of direct one-to-one
user communication. However, given the difficulty of gaining a consistent view
of what the system will need to do, another approach is becoming more
popular – the workshop.

The workshop approach pulls together a group of people interested in the
system being developed (the stakeholders). Everyone in the group is invited
to give their view of what the system needs to do.

Key to the success of these workshops is the facilitator. They lead the group
by ensuring that the discussion sticks to the point, and that all the

16 Business Process Modelling is perhaps the best way to identify Use Cases if you are
building a system for a business you are not familiar with – see Ariadne’s detailed Analysis
with UML course for details.

75 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

stakeholders are encouraged to put their views across, and that those views
are captured. Good facilitators are priceless!

A scribe will also be present, who will ensure that everything is documented.
The scribe might work from paper, but a better method is to connect a CASE
tool or drawing tool to a projector and capture the diagrams “live”.

The simplicity of the use case diagram is critical here – all stakeholders, even
non-computer literate stakeholders, should be able to grasp the concept of the
diagram with ease.

A simple method of attacking the workshop is:

1) Brainstorm all of the possible actors first

2) Next, brainstorm all of the possible Use Cases

3) Once brainstorming is complete, as a group, justify each Use Case
through by producing a simple, one line/paragraph description

4) Capture them on the model

Steps 1) and 2) can be reversed if desired.

Some good advice on the workshop:

• don’t work too hard trying to find every single Use Case and Actor! It is
natural that some more use cases will emerge later on in the process.

• If you can’t justify the Use Case at step 3), it might not be a use case. Feel
free to remove any Use Cases you feel are incorrect or redundant (they’ll
come back later if they’re needed!)

The above advice is not a license to be sloppy, but remember the benefit of
iterative processes is that everything doesn’t have to be 100% correct at
every step!

Brainstorming Advice
Brainstorming is not as easy as it sounds; in fact I have rarely seen a well-
executed brainstorm. The key things to remember when participating in a
brainstorming session are:

• Document ALL ideas, no matter how outrageous or nonsensical they
seem. Stupid ideas might turn out to be very sensible ideas after all

• Also, silly ideas may trigger off more sensible ideas in other people’s mind
– this is called leapfrogging ideas

• Never evaluate or criticise ideas. This is a very hard rule to observe – we
are trying to break human nature here!

76 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

“mmm. No, that won’t work. We won’t bother to document that!”

The facilitator should keep on their toes and ensure that all ideas are
captured, and that all of the group participate.

On the course, a Use Case Workshop will be carried out alongside our client.

Final Notes on Use Cases
It is possible to “relate” use cases and to break use cases up into smaller use
cases. However, there is a danger that this idea can be abused or used as an
excuse for functional decomposition - It is arguably too early in our project to
do this “detailed” work just now anyway, so we will leave this concept to one
side (it is interesting to note that many projects ban the use of Use Case
relationships anyway).

A commonly used concept is of “primary” and “secondary” actors – this is not
formally part of the UML, but many projects find this exercise beneficial…

Primary and Secondary Actors
A primary actor is the actor that receives the benefit of the Use Case. A
secondary actor is an actor that plays a part in, or supports in some way, the
Use Case. A secondary actor (like a primary one) will be outside the system,
and often an external computer system.

Identifying Secondary actors helps to clarify external interfaces and the
protocols to communicate with them.

Customer Credit reference agencyCustomer Credit reference agency

Figure 42 - Using Primary and Secondary Actors

A common practice (again, NOT a UML rule) is to place primary actors on the
left, and secondary actors on the right.

On our project, they are not mandated, but use them if you wish, or if your real
life project employs them.

77 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Summary
In this session we covered:

o The purpose and importance of Use Cases in the UML

o Actors and Use Cases defined

o Brainstorming to discover Use Cases

o Creating the Use Case Model

o Primary and Secondary Actors

In this session, we have produced first cut (Short) Use Cases; formal detail
will follow later

78 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

 Chapter 7
The Domain Model

In this session, we will:

• Introduce the idea behind Domain Modelling

• Introduce a technique for starting off the model

• Define the necessary jargon terms

• Build a very simple Domain Model

The Domain Model
The Domain Model is a UML Model that aims to establish a common
vocabulary for the project. It is simply not possible to create detailed use case
descriptions, business rules or state-charts unless we first agree a common
terminology.

The model essentially provides a definition of the classes of objects that exist
in the business and how they are related. It will also help us to define some of
the business rules.

The overall aim is to obtain a deeper insight into the business, thereby
ensuring that other analysis and design activities are more complete.

The Domain Class Model can be thought of as an Analysis activity; however it
is also the starting point for the design.

79 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

What is a UML Domain Model?
In UML it is a diagram showing:

• The classes of objects from the problem domain

• The attributes of those classes (or the data that is pertinent to each
class of object)

• The associations between the classes; in other words, how the
classes of objects are related

It is a first cut attempt to identify the major business classes - it will evolve into
design class model(s) later (and in fact the model we build here should form
the basis of the eventual code).

It looks very much like an Entity Relationship Diagram (from other methods)
or a Data Model.

Beware – the biggest danger with this model is to start to lapse into
design! The key here is to Capture The Requirement!

What is a Domain Object?
We have mentioned the term Domain several times so far without formally
defining it.

A Domain Class (we’ll call it simply “class” from now on) is a type of object or
entity which is fundamental to, and recognised by the business.

We are looking for objects (or things, or ideas) that the user understands or
recognises, so some good examples of domain classes from various different
businesses/domains:

• Lift

• Cloud Formation

• Footballer

• Postal Order

• TV Channel

And here are some bad examples:

• OrderPurgeDaemon

80 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

• EventTrigger

• CustomerDetailsForm

• DbArchiveTable

All of these bad examples are pure IT “fabrications” – leave these until we
understand the problem.

The art of building a Domain Model is in finding the classes in the first place…

Finding Classes of Objects
Use singular, noun-phrase names from the Business domain. The best way of
finding out what the classes should be is probably through a facilitated
workshop with representatives from the business present.

Following the brainstorming session, test the validity of each class by asking :
“Is it easily described?” (and can you come up with a simple description?)

As a start point, consider the following:

• Physical or tangible objects in the problem

• Places

• Containers for other Objects

• Other Systems external to the system (eg Remote Database)

A Class in UML Notation
A class in UML is denoted as follows. The Class is divided into three boxes. In
the top box, we write the name of the class, in the second we list the attributes
and in the third, we list the operations:

81 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

CourseCourse Name

Attributes

Operations
(Usually not required in
Analysis; this part can be
omitted for now)

Figure 43 - A Class in UML Notation

We’ll look at what the attributes box should contain in a moment. The
Operations box is usually not required in analysis; we’ll return to this at
design.

Documenting Domain Classes
Domain classes should be documented in the class specification. As a
minimum the class should have a description, a list of synonyms (aliases, if
any) and an indication of volume (current number of instances) and projected
growth rate (this will help in database or memory sizing).

Figure 44 - The description for a course class

82 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Adding Attributes
An attribute describes a piece of information associated with a class:

• A text string (Name, Address)
• A numerical value (Quantity, Weight)
• A boolean (IsCancelled)
• A date/time (DateOrdered, TimeReceived)

An attribute is usually (but not always – this is a rule of thumb) a single valued
primitive.

UML Notation
Some projects capture the data types at this stage. The UML notation for
datatypes is shown below.

Figure 45 - Listing attributes

If this activity is carried out as an analysis task, then the datatypes can be
omitted, or a project wide list of “analysis types” are maintained (eg, date,
alphabetic, constrained, positive, sequence, etc…). The mapping to true code
types is done later.

Notice the style of the attribute definition – it is formally stated as follows:
attributeName : AttributeType = DefaultValue

83 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Attribute Guidelines
The most important question to ask is “does the user recognise them?”. Other
questions to ask are:

• If the attribute is composite (eg Address), should it be a class instead?
Not necessarily – use your own judgement.

• Don’t include association (or “foreign key”) attributes. Associations will
be implemented using association attributes when designing/coding but
NOT NOW

The question of whether a possible attribute should be a class instead is a
thorny one – your own judgement should be sufficient to make the decision
but don’t agonise over it! It is probably an attribute if you think of it as a
‘primitive’ - eg a number or a textual string associated with a class

It is probably a separate class if you think of it as a collection of information or
other classes.

Example Attributes
Here are some attributes added to the domain model for a college
management system (we are sure you could do a lot better!)

84 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Student

- name: String
- studentID: String
- age: int

Exam

- name: String
- code: String
- duration: int

Tutor

- name: String
- payrol lNumber: int
- yearsOfExperience: int

Room

- roomNumber: String
- capaci ty: int

CourseEv ent

- startDate: date
- duration: int

Course

- name: String
- prequisi tes: String

Figure 46 - Example Attributes for a College Management System

Notice the “-“ signs – they are put in automatically by the tool – these denote
that the attributes are “private”. This is the default option and we should
always keep them set as such; they should rarely be changed, and only at
design if so.

Associations
Few classes live on their own, in isolation. Many of the classes we have
identified will be related, in some way, to each other. The relationships we are
looking for are those which are meaningful to the business. We can name
these associations on the Domain Model to capture more detail about the
business problem.

85 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Here’s an example of the relationship between Courses, Course Events and
Rooms…

Course

- name: String
- prequisi tes: String
- isCurrent: boolean

CourseEv ent

- startDate: date
- duration: int

Room

- roomNumber: String
- capaci ty: int

1

runs as

0..*

0,1

is al located to

1

Association nameAssociation name

MultiplicityMultiplicity

Figure 47 - Example Relationships

Classes that have an association are joined together via a line (called, not
surprisingly, an association). The association is named - more on this is a
moment - and we also add numbers to each end of the line to denote how
many instances of each side take part in the association – again, more in a
moment.

This diagram is now getting a little technical, but it should still be meaningful
and (relatively) understandable to the business – even if we have to guide the
client through the diagram.

If we write the diagram carefully, it can be read back as an English statement;
the association name and the multiplicity forming part of the sentence.

Starting with the Course class, we follow a simple mechanical rule: start with
the word “Each”, followed by the name of the class. Then say the name of the
association. Then say the name of the multiplicity on the target side, and
finally say the name of the class on the other end of the association…

Each. Course. Runs as. Zero or More. Course Events.

86 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

“Each course runs as zero or more course events”. This makes good sense,
and captures a business rule. If it reads back incorrectly, change the diagram
accordingly.

Note that the multiplicity alongside “Course” (in this case, 1) plays no role at
all here – this comes into play when reading back the association in the other
direction.

Let’s have a look at reading the association back in the reverse direction. We
have a problem here, because the association name is written to make sense
in one direction only. When reading back in the reverse direction, we
“mentally invert” the association name. It is awkward, but this is done to avoid
clogging up the diagram with twice as many association names.

Each. CourseEvent. “is for”. One (and only one). Course.

So “each course event is for one and only one course”. Again, that seems to
make sense. A course event might be “needlework for beginners”, but it
cannot be more than one course.

The convention for the “normal” way to read the diagram is to move from left
to right or top to bottom, and the “mental inversions” are done when reading
from right to left or bottom to top.

Reading Direction
By convention, the associations are read “top down” and “left right” - the need
to only write for “one direction” cuts down diagram clutter.

The “reading direction arrow” can be used to override the default reading
direction. It has NO other meaning. Note however that many tools don’t
support it; you can use < or >.

CourseEv ent Room

1

can host

0,1

CourseEv ent Room

1

can host

0,1

Figure 48 - A reading direction arrow, used to override the default reading direction.
Here, each room can horse a single course event

Do NOT use arrowheads on the association link; this has a very specific
design meaning which we cannot make a decision on yet.

87 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Multiplicities
The UML uses a very simple notation for capturing the multiplicities. Here is a
list of examples which should cover most requirements:

Unspecified “many” (weak)
A B

* Unspecified “many” (weak)
A B

*

One or More
A B

1..* One or More
A B

1..*

One to Eight
A B

1..8 One to Eight
A B

1..8

Exactly Twenty Four
A B

24 Exactly Twenty Four
A B

24

Specified set
A B

{2,3,5,7,11} Specified set
A B

{2,3,5,7,11}

Figure 49 - Example Multiplicities

The Unspecified “Many” is the only odd one; it is often used when the precise
figure is not known; it is weak in its meaning and shouldn’t be used when you
mean “one or more” or “zero or more”.

Multiple Associations
Sometimes, multiple associations are required. Here is an example of the
relationship between tutor and course. We have added the extra requirement
that each course is owned by one (and only one) tutor, even though a course
could be taught by a variety of tutors…

88 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Tutor

- name: String
- payrol lNumber: int
- yearsOfExperience: int

Course

- name: String
- prequisi tes: String

0..*

can teach

0..*

1

owns

0..*

Figure 50 - A Multiple Association

Read back in English, the above diagram states:

• “Each Tutor can teach zero or more Course(s)”

• “Each Course can be taught by zero or more Tutor(s)”

and…

• “Each Tutor owns zero or more Course(s)”

• “Each Course is owned by one, and only one, Tutor”

Many-to-Many Associations
This is especially for those with extensive data modelling experience. It is
surprising to learn that “Many-to-many’s” are perfectly valid in Domain
Modelling – they may cause headaches at implementation time, but that is not
our concern in analysis. Consider the following example – is it valid?

“Each Customer banks with one or more banks”
“Each Bank is patronised by one or more customers”

BankCustomer

1..*

banks with

1..*

Figure 51 - A many to many relationship – is it valid?

When asking if the diagram is valid or not, it is sufficient to read the diagram
back and to ask if it makes sense (from a business point of view). The

89 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

phrases “Each Customer banks with one or more banks” and “Each Bank is
patronised by one or more customers” are fine and make perfect sense to the
business.

It is not implementable in a relational database, but remember we are not
building a relational database! We are building a model of the business.

However, often there is something missing between two classes that are
related in a many-many fashion. In this case, it seems to be Account, as
follows:

BankCustomer Account

1

holds

1..* 1..*

is held at

1

Figure 52 - Adding an Account to the Domain Model

… again, reading the diagram back, it makes perfect sense to the business.

Don’t worry about many-to-many’s, and don’t agonise
about getting rid of them, but do check that you haven’t

overlooked an “intermediate” class.

Association Classes
Just for the sake of completeness, we’ll mention Association Classes. This is
a special symbol used to denote a class that sits in the middle of a many-to-
many association, as in our Customer-Account-Bank example.

The following diagram is equivalent to the diagram in erfect sense to the
business.

Don’t worry about many-to-many’s, and don’t agonise
about getting rid of them, but do check that you haven’t

overlooked an “intermediate” class.

90 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

:

BankCustomer

Account

1..* 1..*

Figure 53 - An Association Class

This is sometimes called the “hanging basket” notation. It may have uses in
design, but at the business level it really only serves to obscure the message
of the model. We recommend that this notation is avoided, as the diagram in
erfect sense to the business.

Don’t worry about many-to-many’s, and don’t agonise
about getting rid of them, but do check that you haven’t

overlooked an “intermediate” class.

 says exactly the same thing, but in much clearer terms.

Building the Model – Approach
Following this 7 step plan to build the model:

1. Read the existing documentation

2. Convene a facilitated workshop with users and developers

3. Brainstorm classes without reservation

91 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

4. Qualify and describe classes

5. Determine associations

6. Determine and place attributes

7. Capture and fully document all model components

CRUD Associations
A technique which has been around for decades (especially in Data
Modelling) is the construction of CRUD Matrices to check the completeness of
our Use Case and Domain Modelling; the general question we are asking
here is “have we identified all of the use cases, and do we have enough
classes to support them?”

In general, each Use Case is able to Create, Read, Update and/or Delete an
instance of the classes we have identified in the data model. For example, the
“Create Provisional Booking” Use Case will create a new instance of the
“Booking” class.

It might look like a tedious exercise, but it is an illuminating exercise…

Example Matrix
Here we have constructed (using a simple spreadsheet package) a matrix for
the Use Cases and Domain Model we have built as the example through this
course so far…

Figure 54 - CRUD Matrix for the College Management System

92 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

This CRUD matrix has highlighted some worrying omissions in our analysis;
several of the classes have no “Create” operation, meaning that something is
missing. As an example, there is no way of creating a new tutor in our system!
This suggests a Use Case along the lines of “Register Tutor” is required (and
the same applies for Course Event, Course, Location and Room).

Also of concern is that many of the classes cannot have their instances
deleted. This isn’t a showstopper, but it may not be what is required. Perhaps
we don’t care that Rooms cannot be deleted (it may be a very minor
requirement), but the Data Protection Act would probably be violated by us
neglecting to provide a mechanism to delete a Delegate.

Although many of the omissions are because we have reduced the number of
Use Cases to keep our examples simple, we hope that this exercise has
proved that it is easy to forget Use Cases and/or classes, and the CRUD
Matrix is a very valuable tool!

Summary
In this session we covered:

• The purpose of the Class model in general and Domain class
modelling in particular

• The UML modelling notation

• Classes

• Associations

• Attributes

• The CRUD Matrix

93 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Chapter 8
The State Model

In this session, we will:

• Look at the UML State Model and see how it can benefit our Analysis
effort

• Define ‘States’ and ‘Events’

• Learn the structure, usage and notation of the state diagram

Capturing More Business Rules
Many classes (and Use Cases) are governed by complex business rules
which dictate what changes are permissible and when. For instance, it may
not be permissible to allow a ‘withdrawal’ event on an account which is in the
state ‘overdrawn’.

It is vitally important that such business rules are agreed with the user,
designed into the system and implemented correctly and consistently.

Class State Diagrams
When we create a state diagram for a class we are showing all of the events
that can impinge on a class including its creation and deletion. All changes to
the state of a class are caused by Use Cases and we can therefore use State
Diagrams as cross checks on Use Case completeness.

Events and States
The best way to understand the concepts of states and events is by example.
We will use several examples and build up the notation as we go. Let us start
with the Registry of Births, Deaths and Marriages…

94 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Births, Deaths, Marriages
Our customer, the Registry Office, wishes to record certain events in people’s
lives. The Events of interest might be:

• Birth

• Coming of Age

• Marriage

• Divorce

• Widowhood

• Death

States of Interest
We are also interested in the resulting ‘state’ of a person’s record after
undergoing each event:

Event State
after Birth Person becomes Child
after Coming of Age Person becomes Adult
after Marriage Person becomes Married
after Divorce Person becomes Divorced
after Death of Spouse Person becomes Widowed
after Death Person becomes Deceased

Figure 55 - The events that can happen to a person, and the resulting state they will be
in after the event

Capturing State Diagrammatically
The preceding table is not too bad, but adding a few more states and events
would make the table impossible to follow

Instead, we can capture these states and events on a picture…

95 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

A Life

Figure 56 - Drawing the States and Events as a picture

This diagram is fine – it is certainly more readable and understandable than
the previous table. The UML has a mechanism for representing states and
events – although it is (of course) more formal…

UML State Diagrams
The UML has a very rich notation for modelling state17. We will now present
the main elements of the state diagram and then use the Registry to show
how they fit together…

17 The UML didn’t invent the notation; rather it is an existing notation by David Harel

96 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

State Model
Events, States and their transitions are captured in the UML on a State
Diagram (sometimes called a State-Transition Diagram or Statechart). The
diagram captures the permissible states of an ‘entity’ during its lifetime, and
what events cause the state to change over time.

These entities could be any software artefact or process that has important
state (class, database entity, use case, operation...). Our interest is in classes
(and this is usually the most common use of a statechart in OO systems) so
we concentrate on the states and events pertinent to the single class
'Person'…

A State
A State is shown as a rounded box with the state name enclosed18.

Married

Figure 57 - The "Married" state

A state is normally important to the business being modelled (eg: the state of
marriage is important to the Registry). This is important to remember – there
is little to be gained from clogging the diagram with lots of states that are
meaningless or unimportant to the business. In the example of the registry, a
person passing their driving test is totally unimportant – although you could
add it to the diagram!

Start State
Almost all statecharts begin with a “Start State”. This is the state before the
object of the class is created (the state a person is before birth - unknown to
the Registry).

18 Notice that in the following diagram, the CASE tool has added a line across the box; we’ll
see that extra information can be added to the lower “window” later, but in the absence of
extra information this line is optional and your tool might not add it

97 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 58 - The Start State

A start state can have a label or name attached, but often this is omitted as it
is implicitly called “start”.

End State
An end state is shown as a ‘target’:

Archiv ed

Figure 59 - An end state

It is the state after the object is destroyed - not ‘death’ in the Registry because
the person object will still be known to system. Normally there is a period of
time which elapses before the person is removed or archived and thus
becomes unknown. There isn’t always an end state and the label is once
again optional.

Transition
A transition is shown as an arrow between one event and another:

Married Deceased

Figure 60 - The Transition from Married to Deceased

98 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The presence of a transition means it is possible to move from married to
deceased – it might not happen, but it is possible.

There is no transition present moving from Deceased to Married, so this
denotes that this transition is not allowed in this system.

Event
For a state transition to occur, an event must happen. We capture the name
of the event on the transition line. On the statechart, you must include the
name of the event (otherwise we cannot see why or when the transition would
happen).

Married Deceased
death

Figure 61 - The Transition from Married to Deceased happens as a result of the “death”
event

Events originate via:

• Use Cases - an attempt to create, update or delete an object (Log
Birth, Notify Death etc)

• Time Passing (A Person becomes adult) – this is called a temporal
event

Summary of the Basic Notation

State

Before creation

Transi tion

State

Event causing a
state change

After destruction

Event not causing a
state change

event
event3

event2

Figure 62 - The Basic Notation Summarised

99 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The only concept we haven’t mentioned so far is the event not causing a state
change. This is an event that is permissible but doesn’t affect the object’s
state. For example, an event called “change of address” is permissible in the
“Married” state, but it doesn’t cause the state to change.

Be careful not to overdo this type of event; remember to only capture events
that are interesting to the business. It may well be the case that the Registry is
not interested in changes of address – in which case it would merely clutter
the diagram.

The 'Person' State Diagram

Married

Archiv ed

Deceased

Child Adult

Widow ed Div orced

death

coming of age

spouse death

marriage

divorce

marriage

death

death

death

death

100 years elapsed

Figure 63 - The Person's statechart, redrawn using the UML

Business Rules and State
The state diagram captures Business Rules. It determines the constraints on
data modification and (as we shall see) actions that must be carried out as a
result of attempts to modify data.

100 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Using the registry example, a person:

• Can’t do anything until born
• Can’t become an adult unless a child
• Becomes an adult at 18
• Can’t get married unless an adult, divorced or widowed
• Can’t divorce or become widowed unless married

These rules must be implemented in the eventual design and code.

More Notation
Let's use a very simple and familiar scenario in order to explore more state
notation. The scenario we will consider is as follows:

• A TrafficLight class is designed to record the state of real traffic lights
in a complex city centre traffic light control system

• A TrafficLight object should correctly record the traffic light being
created (becoming part of the system), turned on, turned off, cycled
and reset…

101 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

TrafficLight State Diagram

Off Red

Red Amber

Green

Amber

create

on

cycle

cycle

cycle

cycle

Figure 64 - First attempt at the Traffic Light State Diagram

Extending the Traffic Light
So far, so good but we still have some way to go:

• We have no ‘Turn Off’ Event

• We have no ‘Reset’ event to set the lights immediately to Red in an
emergency

• We have no ‘Destroy’ Event

There is a simple way to achieve the Turn Off event but it’s not very elegant…

102 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Turn Off Event - Version 1

Off Red

Red Amber

Green

Amber

create

on

cycle

cycle

cycle

cycle

turn off

turn off

turn off

turn off

Figure 65 - First attempt at adding the Turn Off event

This is very inelegant and messy (it would be worse if we had more than four
states to switch off).

There must be a better way? Well, if you look at the diagram, we really have
two classes of state in play here. We have the overall state of the light – this
can be “On” or “Off”. But if the state of the light is “On”, it can be in four further
substates – Red, RedAmber, Green and Amber…

Turn Off Event with Sub-States
The notation for super states and sub states is as follows:

103 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

on

Off Red

Red Amber

Green

Amber

create

on

cycle

cycle

cycle

cycle

turn off

Figure 66 - Using Super and Sub states to tidy the diagram

Here, when the light is turned on, it moves to the “On” superstate, and at the
same time it assumes the “Red” substate.

The light can be turned off at any time while it is in the “on” state, regardless
of the colour of the light.

104 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Reset Event

on
Off Red

Red Amber

Green

Amber

cycle

on

reset

cycle

cycle

cycle

turn off

create

Figure 67 - A reset event added

Here we have added the “reset” event, which can happen at any time; the sub
state will resume from its default state, Red.

Revised Person Statechart

Now we can return to our person Statechart (which we
last saw in and State
The state diagram capt) and tidy up the diagram using sub states. The
problem with the chart was the proliferation of “death” events…

105 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Liv ing

Married

Archiv ed

Deceased

Child Adult

Widow ed Div orced

marriage

divorce

marriage

100 years elapsed

spouse death

birth

coming of age

death

Figure 68 – Person Statechart redrawn using a “Living” superstate

Conditional Transition
Sometimes transitions are only permissible under certain circumstances. To
notate this, we can use a guard condition. For example, imagine that in a
certain country it is not permissible to get married until a year after the divorce
is finalized:

Married Div orceddivorce

marriage [12 Months Divorced]

Figure 69 - Adding a Guard Condition

This diagram can be read as “if the marriage event occurs AND the guard
condition ‘12 months divorced’ is also true”. Notice that the guard condition is
written inside square brackets.

106 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Actions
When a event occurs, it is often useful to initiate some action on entry or exit
from a state or on the transition

Here the birth event triggers an action to issue a birth certificate…

Child

+ On Entry / Issue Birth Certi ficate
birth

Figure 70 - Entry Action

Event Sources
It should be obvious from this session that objects respond to events and that
some objects have rich and complex rules governing their response. Every
event on the state diagram originates from a Use Case so check every event
and ensure you can trace it to a Use Case. If you can’t you have probably
missed some Use Cases.

Which Classes Have State Diagrams?
Not every class will need a state diagram, but every class should be treated
suspiciously. Justify why you are not going to create a state diagram for the
entity – you should always have a good reason.

Summary
In this session we covered:

• Definition of states and events

• The structure, usage and notation of the state diagram

• How the state model captures business rules

107 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Chapter 9
Ranking Use Cases

Ranking and Estimation
Recall that Use Cases are the unit of development (and the unit of estimation)

All iterations (both elaboration and construction phase) are planned according
to the ‘rank’ of the uses cases. The higher the rank, the earlier the use cases
are scheduled.

Elaboration Construction

Cancel Delivery Run ChecksGroup Orders Archive
Purge DataPrint Report

Iteration 1 Iteration 2 Iteration 3 Iteration 1 Iteration 2 Iteration 3

Figure 71 - Iterations are planned using Use Cases

High Ranking Use Cases
We cannot give you hard and fast rules on how to rank your use cases; this
will be a decision your project will have to make using judgement and
experience. However, high ranking Use Cases are likely to be those that:

o Exercise the Architecture – ie those are going to cross a lot of the
software architecture (using many of the classes identified), or Use
Cases that will make heavy demands on your hardware architecture
(eg a Use Case that updates thousands of records a second is an
excellent use case to derisk your database implementation)

o Exercise many and/or complex business rules

108 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

o Involve new technology, need research, are time-critical or very
complex

o Are very significant to the business

In short - use cases that tackle RISK - although it is also fine for “Quick Wins”
to appear early to build confidence.

109 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Chapter 10
Specifying Use Cases

In this session, we will:

• Take our basic, bare bones Use Cases and build them into more
formalised, detailed Use Cases

• We will determine the pre-conditions, post-conditions, main, alternate
and exception flows

Note that this work is very detailed and we would usually only formally
develop the Use Cases scheduled for the particular iteration we are in.

A real problem in writing a UML course is that the UML does not define in any
way how to produce detailed and formal descriptions of Use Cases. However,
a handful of approaches are common in the industry, and we’ll try to provide a
flavour of each one in this session. Remember though, that none of this is set
in stone, and it is up to your project to use the approach that suits you best.

Why Specify Use Cases?
Most use cases, and especially those that will be built in the early iterations,
are complex/important enough to require a formal description. The description
gives us the detail behind the requirements to build the use case.

This specification of the use case isn’t actually design; it is providing more
detailed requirements in advance of the design and build stage.

So how does the UML define how to perform this specification?

110 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

UML Definition of Specification
There is none! The heavily tool-influenced UML Spec ignores any issues that
need to be addressed with text. Conventions have, however, sprung up
throughout the industry – but as is often the case with ad-hoc solutions, some
organisations write Use Case specifications very poorly (some don’t write
them at all).

We will follow an approach distilled from our own experience; we also lean
heavily on Alistair Cockburn’s work. If you need to set project standards, his
book (reference [9]) is an excellent start.

Use Cases vs Requirements
It should be remembered that Use Cases are Requirements - they are, in
fact, all of your functional requirements.

Use Cases aren’t all of your requirements though (Cockburn suggests about a
third of them):

• Performance

• Availability, Reliability and Maintainability

• I/O Protocols

• Data Formats

• Business Rules

• UI Requirements

Where Use Cases Fit In
Use Cases can be thought of as being at the heart of the requirements; they
hold the whole system together - but the Use Case Descriptions themselves
cannot specify everything. Alistair Cockburns “Hub and Spoke” model of
requirements reflects this:

111 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Perform
ance

Business

Rules

UI

Req
uire

men
ts

Data

Form
ats

Use
Cases

Perform
ance

Business

Rules

UI

Req
uire

men
ts

Data

Form
ats

Use
Cases

Figure 72 - Cockburn's Hub and Spoke Model

Key Information Required
The short description contained Name, Intent, Description, Requirements
Cross Reference and Outstanding Issues.

We will need to add at least the following information in our formalised use
case:

• Pre and post conditions

• Main and Extension Flows

• If necessary, descriptions (sketches or prototypes) of the GUI

We’ll look first at pre and post conditions and provide a working definition of
them – but heed the warning : your real life project may use a different
working definition that changes the emphasis of the conditions

112 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Pre Conditions
Preconditions state what must be true before the use case can even begin.
These preconditions are not tested within the use case; they are assumed to
be true before the use case starts. In other words, it is a statement about what
has already happened in other use cases. Try to avoid trivial pre conditions,
such as “the system is on”!

Good example:

The user has logged in and authenticated as a system administrator

Post Conditions
Post conditions are declarations about the state of the system on completion
of the Use Case. They detail how the system was changed:

• What entities have been created and/or deleted

• What attributes have been modified

• What associations have been created and/or deleted

Note: They describe WHAT changed not how the change was achieved.

1. An attendee was removed from a Course Event

Figure 73 - Example Post Condition

Use Case Main Flow
The main flow in the text document describes the normal sequence of events
that takes place between the actor and the system (the “80%” flow). It is
concerned only with the user actions and the system’s response to those
actions.

113 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Main Flow

Cancel Booking Use Case Description

Short Description – as before

Requirements covered : R71.2; R72 (all); R12 (part covered)

Other Use Cases Impacted : Cancel Course

Actor : Training Administrator

Pre-Conditions :

1. The training administrator has successfully logged in

Post-Conditions:

1. An attendee was removed from the Course Event

Success Criteria:

1. The delegate has a booking against the course event they have quoted

2. The booking is in the status confirmed

3. The corresponding course is in the status “scheduled”

Main Flow:

1. The Actor selects to cancel a course booking

2. The System displays a list of available Course Codes

3. The Actor selects the Course Code required

4. ….etc

Figure 74 - An example textual main flow

An alternative style is to use two columns, with the actors actions on the left
and the system response on the right (see Larman [2]).

Extension Flows
Extension flows are any other scenarios that form the use case that vary from
the main flow (you may see the terms “Alternate Flow” and “Exception Flow”;
these refer to roughly the same idea).

114 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Main Flow:

1 The Actor selects to cancel a course booking

2 The System displays a list of available Course Codes

3 The Actor selects the Course Code required

….etc

13 The booking has its status set to “cancelled”

14 A message is displayed indicating the booking has been cancelled

Extension Flows

8a No bookings are found for the selected course event. [use case ends]

13a The course is no longer viable; Trigger the “Cancel Course” Use Case

13b A Message is displayed to the user warning that the course has now been
cancelled [return to main flow]

Figure 75 - Example Extension Flows

The style suggested by Cockburn is to number the extensions to match the
Main Flow step they follow on from. This, as Cockburn admits, is difficult to
maintain – but then alternatives such as paragraph numbering (as suggested
by the RUP) is just as bad. Perhaps soon the CASE tools will catch on to this?

Style Guidelines
• Use Simple Grammar – “Subject, Verb, Object, Prepositional Phrase”.

“The System removes the Delegate from the nominated course”

• Always say if the action is from the system or the actor

• Write from a third party point of view

Ie “get the account balance and deduct from the total” is not clear style

• Keep each step fairly coarse grained

“Enter name, address, town, county and postcode” would be better
written as “the actor enters their name and address”

• Show the intent of the actor, and not how they should achieve it on the
interface - the job of designing an interface to support the Use Case
should follow on next. Embedding GUI steps into the storyboard makes
for clutter, and poor GUI design.

115 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

• There is nothing to stop you referencing GUI prototypes from your Use
Case document, but keep your scenario clear of GUI

CRUD Use Cases
You will nearly always encounter Use Cases that manage a particular Object
– such as for a Booking object, you may expect to see Create Booking, Read
Booking, Update Booking and Delete Booking Use Cases.

Should we roll these four Use Cases into a single Use Case (Manage
Booking)?

The answer is that there is no firm industry opinion on this.

Our suggestion is to perhaps use “Manage Booking” if the Booking has no
interesting state chart, and no complex business rules are present. In this
example, we feel that Delete Booking (really : Cancel Booking) is a fairly
serious business case and warrants a Use Case of its own.

Graphical Form
Arguably, the textual form of the Use Case Description is the most common in
the real world. However, as the UML is supposed to be graphical, we can
capture the flow information in the form of a UML diagram. To do this, we’ll
pull in the “general purpose/catch all” diagram, the Activity Diagram…

Example Activity Diagram
This is a simple example, but it covers all of the syntax of the Activity
Diagram…

116 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 76 - Activities Performed by a boring businessman on his way to work

Now let’s build a Use Case storyboard using the activity diagram…

117 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Use Case “Storyboard”

A c to r S y ste m

S e le c t " C a n c e l
B o o k in g " fr o m m a in

fo r m
G e t c o u r s e c o d e s

D is p la y c o u r s e c o d e
p ic k l is t

F in d b o o k in g s w i th
s ta tu s " P r o v is io n a l"

fo r th e s e le c te d c o u r s e

D is p la y b o o k in g s in a
p ic k l is t

G e t a n d d is p la y fu l l
d e ta i ls o f b o o k in g

D e le te c o u r s e b o o k in g

D is p la y " n o c o u r s e s
a v a i la b le " D ia lo g u e

S e le c t r e q u i r e d
c o u r s e c o d e fr o m p ic k

l is t d ia lo g

D is p la y " n o
p r o v is io n a l b o o k in g s
fo r s e le c te d c o u r s e "

e r r o r d ia lo g

S e le c t R e q u i r e d
b o o k in g fr o m p ic k l is t

U s e r c o n fi r m s
c a n c e l la tio n

D is p la y " S u c c e s s "
d ia lo g

C o u rse s
a v a i l a l b e ?

M a tc h e s
fo u n d ?

U s e C a s e
E n d

n o

y e s

o k

n o

y e s

y e s

Figure 77 - A Use Case Storyboard

Summary
In this session we covered:

• Formalising Use Cases with descriptions and Storyboards

118 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

• Determining pre-conditions, post-conditions, triggers, main, alternate
and exception flows

• Drawing Standard Storyboards

• Producing Textual Descriptions

119 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Chapter 11
Interaction Modelling

At last, we can now begin the Object Oriented Design. This process is
supported in the UML through two closely related diagrams:

• The Collaboration Diagram

• The Sequence Diagram

Both do the same job; it is really up to you which one you work with. We’ll
start with the Collaboration Diagram and consider the Sequence Diagram
later on.

Transition to Detailed Design
During inception we concentrated on WHAT had to be done and there was
little use of OO techniques. During elaboration we have extended the analysis
and have tried to lay a solid architectural foundation.

We often talk about “realizing” Use Cases. This essentially means that we
have to look at each Use Case in turn and decide how the objects we have
identified are going to make the Use Case happen. So for the first time, we
will be adding methods to our class diagram.

So, we now need to determine how the architectural elements interact to
realise the use cases. Here, there is great emphasis on three concepts:
Objects (which we’ve already studied), Responsibility and Collaboration.

120 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Responsibility and Collaboration
We could implement the behaviour for a single Use Case inside a single
method in a single class. This would be easy, but it would lead to huge,
bloated methods inside classes. It would mean the data required for the Use
Case would sit inside “dumb” objects that only hold data and don’t actually do
anything useful.

In other words, we would be designing a system in the structured/functional
way.

Instead, in Object Orientation, we have to look at the objects we have
identified and decide:

• What each object should be able to do – this is called Responsibility

• How the objects should “work together” to make the Use Case happen
– this is called Collaboration

Many real world situations need a variety of objects and people to work
together to get something done. Consider the following simple, real world
example…

Simple Real Life Example
We are going to forget about IT systems for a short while and think about how
a real-world Use Case would run. Let’s look at a library, and consider one of
their Use Cases (or business processes); in this case “Borrow Named Book”.

Customer

Borrow Named
Book

Figure 78 - Real World Use Case

By this Use Case, we mean the non-trivial case where a customer
approaches the librarian’s desk and asks for a particular book but doesn’t
know where it is in the library.

We first consider the “Domain Classes”, or the objects that are available to
take part in this Use Case. In this particular library, there is a librarian in
charge, and working for the librarian is a group of Library Assistants.

Capturing this on a class diagram, we have:

121 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Librarian

Assistant Bookshelf Book

BookIndex

0..*0..*

finds books from

0..*

1

<is in charge of

1..*

1

can check

1

Figure 79 - Domain Diagram for the Library

We are now going to work out how we can get the objects to work together to
make this Use Case happen. We’ll capture our thoughts using clip art rather
than real UML. We’ll do the UML later, but bear in mind that the thought
process we are following here is identical to the thought process we carry out
in real OO design…

The Collaboration Sequence (step 1)
First of all, the customer walks into the library. He collaborates with the
librarian, and asks for a particular book. We can capture this collaboration as
follows:

122 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Customer
asks librarian
for a named

book

Customer
asks librarian
for a named

book

Figure 80 - Capturing the first collaboration

Now we reach our first crunch decision. Should we get the librarian to run
around the library frantically searching for the book?

We think not. She is a busy librarian and has other jobs to do as well. Giving
her too much work would make the library inefficient. It is a little tenuous, but
this is exactly the kind of decision we often make in software design as well –
giving objects too much to do results in bloated, difficult to understand
classes.

So the librarian is going to have to delegate the work to some of the other
objects in the system. She needs to:

• Get someone/something to find the location of the book

• Get someone/something to retrieve the book

How can she find the location of the book without searching for it herself? The
answer is to look at the domain model and see if we can find a class which
can do the job by themselves. It looks like the “Book Index” class is ideal for
this job.

123 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The Collaboration Sequence (step 2)

Customer
asks librarian
for a named

book

Customer
asks librarian
for a named

book

The librarian cannot
remember the location
of all books; instead
she collaborates to
find the answer

Find book called “Lady
Chatterley’s Lover”

The librarian cannot
remember the location
of all books; instead
she collaborates to
find the answer

Find book called “Lady
Chatterley’s Lover”

Answer : F74Answer : F74

Figure 81 – Second collaboration.

The librarian asks the book index where the required book is. Note that
although the book index is an inanimate object, we can still think of the index
“doing” things and responding to requests from other objects. We do this often
in OO design, where objects like Purchase Orders are able to do things.

Anyway, the book index has the required information to do this job, so it can
easily return the answer: in this case, shelf F74.

So, the librarian now knows where the shelf is. But as we said, we don’t want
her scurrying around the library, so she can delegate the work and collaborate
with another object. The Library Assistant looks like a good choice here (part
of their job description is to retrieve books for customers)…

124 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The Collaboration Sequence (step 3)

Customer
asks librarian
for a named

book

Customer
asks librarian
for a named

book

The librarian cannot
remember the location
of all books; instead
she collaborates to
find the answer

Find book called “Lady
Chatterley’s Lover”

The librarian cannot
remember the location
of all books; instead
she collaborates to
find the answer

Find book called “Lady
Chatterley’s Lover”

Answer : F74Answer : F74

The librarian mustn’t
leave the front desk;
she collaborates with
an assistant to get the
job done

Oi, fetch the book from
location F74.

The librarian mustn’t
leave the front desk;
she collaborates with
an assistant to get the
job done

Oi, fetch the book from
location F74.

Figure 82 - Step 3 of the collaboration; the library assistant now joins in

The library assistant is told to get the required book, and they are told which
shelf to get the book from. They then run off and fulfil the responsibility.

125 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The Collaboration Sequence (step 4)

Customer
asks librarian
for a named

book

Customer
asks librarian
for a named

book

The librarian cannot
remember the location
of all books; instead
she collaborates to
find the answer

Find book called “Lady
Chatterley’s Lover”

The librarian cannot
remember the location
of all books; instead
she collaborates to
find the answer

Find book called “Lady
Chatterley’s Lover”

Answer : F74Answer : F74

Get BookGet BookGet Book

The librarian mustn’t
leave the front desk;
she collaborates with
an assistant to get the
job done

Oi, fetch the book from
location F74.

The librarian mustn’t
leave the front desk;
she collaborates with
an assistant to get the
job done

Oi, fetch the book from
location F74.

One of the
responsibilities of the
librarian is to check the
book out; this she does
without collaboration

One of the
responsibilities of the
librarian is to check the
book out; this she does
without collaboration

Figure 83 - The book is found and returned

Once the book has been found, it can be returned back to the librarian (note
that the diagram shows the book being “handed back” in a relay fashion back
from the bookshelves).

According to the Use Case Storyboard, once the book has been retrieved, it
must be checked out. This is one of the jobs of the librarian, so she can do
this without further collaboration.

126 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The Collaboration Sequence (step 5)

Customer
asks librarian
for a named

book

Customer
asks librarian
for a named

book

The librarian cannot
remember the location
of all books; instead
she collaborates to
find the answer

Find book called “Lady
Chatterley’s Lover”

The librarian cannot
remember the location
of all books; instead
she collaborates to
find the answer

Find book called “Lady
Chatterley’s Lover”

Answer : F74Answer : F74

Get BookGet BookGet Book

The librarian mustn’t
leave the front desk;
she collaborates with
an assistant to get the
job done

Oi, fetch the book from
location F74.

The librarian mustn’t
leave the front desk;
she collaborates with
an assistant to get the
job done

Oi, fetch the book from
location F74.

One of the
responsibilities of the
librarian is to check the
book out; this she does
without collaboration

One of the
responsibilities of the
librarian is to check the
book out; this she does
without collaboration

Use Case
Realised!
Use Case
Realised!

Figure 84 - Final Step

At last, the work is done and the book can be handed back to the “actor” that
triggered off the Use Case!

Collaborations usually end with “control” unwinding back to the actor.

Objects and Existing Associations
Note that on a collaboration diagram, the players are instances (objects) of
classes and not the classes themselves - this is (almost) always true on
interaction diagrams.

Also, the messages are sent between objects that are related on the class
diagram. It is possible that you need to send messages between two classes
that are not related on the class diagram; if this is true you must think carefully
about the validity of what you are trying to do. If you’re sure that the message
is needed, then update the diagram to add the new association.

We can now convert the previous ‘pretty’ diagrams into UML diagrams. We
will introduce the syntax of the collaboration diagram in detail, and then finish
with a detailed example…

127 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Objects
Objects are denoted by a box with a name of the object inside. The colon and
underlining means “Object” rather than “Class”.

:Assistant :Bookshelf

Figure 85 - Two Objects on the Collaboration Diagram

Method Calls
When one object needs to call a method in a second object, we connect the
two objects with a line. Then add the method you need on top.

:Assistant :BookshelfgetBook

Figure 86 - Adding a message. The "Assistant" class is calling the method called
“getBook” in the Bookshelf class

Note : if you add more messages later, no need to draw an extra association
line; just add the messages.

Parameters
Parameters are indicated in brackets. The type of the parameter can be
shown (here String, but it could be any type of data). Simply comma separate
multiple parameters.

:Assistant :BookshelfgetBook(name : String)

128 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 87 - Passing parameters with a message

Return Values
A message can return a value, in the style of a traditional function call. Any
syntax can be used, but this is standard UML; use this style if you wish to
remain language independent:
return := message (parameter : parameterType) : returnType

However, how the return type is denoted tends to vary from Case tool to Case
tool; in ours it is denoted as follows:

:Librarian :BookIndex String:= getLocation(name)

Figure 88 - Showing a return type

Note – we don’t show an arrow “pointing back” to denote a message that can
return. This annoys some people, but we assume it was done to cut down on
clutter.

Looping Messages
Note : this slide has been removed from the course as it is not part of
UML2.0; however you will see it used in existing designs, so we have left
it in the book just in case…

If you wish to send the same message to a collection of objects from the
same class, use the “Multiple Instance” notation (we call this the “deck of
cards”):

129 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

:Account

All :Transaction

*[al l transactions]: amount:= getAmount()

Figure 89 - Calling multiple objects from the same class

Notice our use of the word “all” in the figure above. This isn’t required, we just
do this to give the diagram a little more emphasis.

Creating Objects
Objects can be created using the following syntax:

:Account:Librarian
create(id, balance) :Account:Librarian
create(id, balance)

Figure 90 - Creating a new instance of an "account" object

Conditions
Read square brackets in UML as an “if”. In the following example, we are
saying “If new account, then send this message”:

130 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 91 - A conditional message

Full Worked Example
We’ll work through the Collaboration for a simple Use Case from a Share
Tracking Application. As designer, you have the following tools at your
disposal:

• The full Use Case Description, giving you full details of the flow of the
Use Case

• The Class Diagram, giving you the classes and their relationships

Keep these two artefacts “in view” and the collaboration diagram is much
easier to build.

Please note that this work is very hard to do and this example may scare you
at first; try not to panic. Often it takes several iterations to get a collaboration
diagram right; you’ll find it much easier once you’ve done a practical
exercise…

The GUI?
We haven’t referenced GUI’s at all so far - we have concentrated on the
business’ Domain Classes. As we move to design – the question has to be
answered: where does the user interface fit in?

We could, if we wanted, simply create some GUI ‘classes’ (eg Visual Basic
Forms, or a Java Swing GUI) which could do “the work”. In the next figure,
we’re showing a real life example of this. We have written, in Java (using a
GUI builder) an interface with a button that allows the user to cancel a
Purchase Order (based on an ID number they have typed into a text field).
The code takes the number and issues a database command to delete the
Purchase Order from the database…

131 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 92 - Embedding code "behind" GUI buttons

This approach is incredibly common, largely because rapid GUI development
tools (such as Visual Basic, Delphi, or any of the modern Java environments)
encourage you to do so – you usually just double click on the button in the
designer, and then you’re dropped straight into a skeleton method, and away
you go!

A much better approach is to separate the GUI classes from the Domain
Classes – then either can be varied independently. In fact this is a general
principal in design:

Identify aspects of your system that might vary independently, and
isolate them.

In most systems, the GUI and the Domain classes are two major areas that
will vary independently, so a wise architecture is to separate the two: in other
words, have classes dedicated to the GUI and classes dedicated to the
Domain.

This architectural approach to building systems is called “Model/View
Separation”.19

19 Note: in earlier versions of this book, we referred to this as the “MVC”. Unfortunately there
is a fair bit of confusion about the true nature of MVC, and the classic Smalltalk MVC is quite
different from simple Model/View Separation. We have decided to swerve the debate and be
more neutral in our terminology.

132 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The Class Diagram and Use Case Description
Here is the class diagram and Use Case Description; remember we need to
keep these on hand to see what objects are available for us to use and for
what needs to be done.

Figure 93 - The Class Diagram Fragment

Figure 94 - Buy Shares Use Case Description

133 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Building the Diagram – Step 1
We start by looking carefully at the storyboard for the Use Case. Clearly the
GUI needs to gather the symbol, the number of shares required and the name
of the portfolio they want to hold the trade in.

This means that steps 1, 2 and 3 of the Use Case Description can all be
implemented by the User Interface class. This means no collaborations, and
we therefore do not need to denote this on our design.

We find though, that denoting the user’s interactions with the GUI is an
excellent way to kick the diagram off. The actor isn’t formally part of the
collaboration diagram.

Figure 95 - Starting the Diagram

What next? This isn’t easy. Time to make a design decision. First of all, we
have to ask the Market class if we can buy the share requested by the user
(we need to know the price of the share, and if there are shares available in
the selected company…)

134 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Continuing the Diagram

Figure 96 - The next steps on the diagram

135 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Finishing the Diagram

Figure 97 - the finished Collaboration Diagram

Uncovered Methods
All this is hard work, but it is worth remembering that we have just broken the
back of the object oriented design. The methods we have uncovered can now
be added to the class diagram. For example, due to message 5, we now know
that we need a method called “recordTrade()” in the portfolio class.

If you are lucky, your Case tool will add the methods for you automatically as
you build the collaboration diagram. Ours has, and this is the result…

136 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 98 - The completed class diagram

Association Direction
You may also add arrow heads to your class diagram to indicate the direction
in which messages are sent (if the messages go in both directions [see later],
then for some reason in the UML you leave the arrowheads off)

137 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 99 - Adding arrowheads to the Class Diagram; this is denoting that the Portfolio
needs visibility of the Trade class in order to send messages to it

The Alternate Flows
After method 3, we had an exception flow – the share symbol was not found.
Do we need to include this on the Collaboration Diagram?

138 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 100 - Should we include the logic for the symbol not being found?

The answer is “probably not”. A lot of practitioners criticise the collaboration
for not being particularly good at capturing flow logic like this – but this is
missing the point of the diagram…

Only Model “Interesting” Flows
The collaboration diagram is for modelling responsibilities and collaborations.
In this case, the collaboration would simply terminate (with an error message)
after method 3, so no extra responsibilities (methods) are added.

It would have been interesting if we had to perform some special operations,
such as “unwinding” any changes or triggering a different Use Case. In this
case, it is usually better to build a separate diagram.

[In this specific case, the condition would be handled by exception handling,
which once again doesn’t fit with the style of this diagram]. A definite criticism
of the diagram is that it isn’t complete and accurate, so it doesn’t always form
a good “handover” document for a coder. It does, however, help the OO
thought process.

Collaboration : Guidelines
The key rule is to keep them as simple as possible. If the diagram gets
complicated, break it down into separate diagrams.

139 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

In particular, avoid classes that do too much work, or don’t communicate with
other classes, or have too many association links.

A spaghetti of links suggests high coupling this means
that even small changes to classes can have dramatic

impact on other classes in your design. Some coupling is
inevitable in any system; try to minimize it as much as

possible.

Only use the association links identified on the Domain Model – think VERY
carefully about adding new ones.

Summary
Interaction Modelling is the core of Object Oriented Design

Remember, we are not designing algorithms or flows through Use Cases; we
are assigning the correct methods to the correct classes

Two alternative diagrams are available

• Collaboration Diagram

• Sequence Diagram (coming later…)

Building them is hard work; but it is the core activity in OO Design

All non-trivial Use Cases require an interaction diagram

140 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Chapter 12
Polymorphism, Inheritance and Composition

Inheritance in UML
Often, several classes that you design may share several characteristics. It
can be beneficial to factor out the common attributes and operations. We can
arrange these classes into what is called an “Inheritance Hierarchy”.

Consider the following classes (which presumably come from a personnel
staff management system):

Engineer

- technicalQual i fications: List

+ assignToJob() : void

Manager

- numberOfSales: int

+ checkSalesProgress() : boolean

Employee

- name: String
- salary: int
- grade: char

+ fi re() : void
+ promote(char) : void
+ getSalary() : int

Figure 101 - UML Inheritance otation

Notice that we have taken out the common methods and attributes from
Engineer and Manager. In an OO language, the coder of Engineer and
Manager only needs to add in the extras required.

In OO, the more general class (here called “Employee”) is often called a Base
Class, whilst the more specific classes (“Engineer” and “Manager”) are often

141 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

called Derived Classes. However the terms “Parent/Child” or
“Superclass/Subclass” are often used for Base and Derived Classes
respectively.

Protected Methods
We have seen that a minus sign denotes that a method or attribute is private,
whilst a plus sign denotes public. Relating to inheritance, there is a third level
of visibility, called protected:

Transmission

+* send() : void
getMessageSize() : void

Email

+ send() : void

Fax

+ send() : void

Figure 102 - A Protected Method

Private methods are accessible to derived classes. In the figure above, we
want the getMessageSize() method to be private, because it is used as a
“helper method” from within the Transmission class. However, we also want
the method to be accessed from both the Email and Fax classes, but from no
other classes.

Protected methods allow us to achieve this, and the symbol for a protected
method in the UML is a hash symbol20 (#).

20 Pound symbol in the US

142 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Summary of Visibility Levels

- Private
Protected
+ Public

To summarise the three levels of visibility:

- denotes private and means that the method or attribute can
only be accessed from the class in which it is defined. This
should always be used for attributes, and should be considered
the “default” option for methods, although you will usually need
to relax the visibility level for methods. Private methods are only
used within the class they are definied and are often called
“helper” methods.

denotes protected and means that the method or attribute can
only be accessed from the class in which it is defined plus all
subclasses of the class21. Once again, it shouldn’t be used for
attributes (a method should be used to access the attribute).

+ denotes public and means that the method or attribute can be
accessed by any other class.

In .NET, the concept of a property is just a private attribute with accessor
and/or setter methods that read or modify the value of the attribute. The only
difference is that the method is called automatically when a programmer tries
to directly read or modify the concepts of the attribute.

There is no special notation in UML to denote read/write properties, although
some projects use stereotypes as follows:

cd spider

Customer

- name: String

+ «property» name() : String

Figure 103 - Using the <<property>> stereotype to denote a .NET property

21 Java uses a slightly different definition : a protected method can also be accessed from
other classes in the same package!

143 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Inheritance => Coupling
By the very nature of inheritance, a base class and its derived classes are
quite tightly “coupled”; this means that a change in one class could easily
affect the other classes.

When looking at simple hierarchies, it is easy to underestimate the severity of
this problem. In the real world, you might be working with trees of classes
dozens of levels deep, and the “roots” of the tree may well have hundreds of
classes dependent on them.

Obj ect

Component

Container

JComponent

AbstractButton

JButton

JTextComponent

JTextField

Window

JWindow JPopupMenu

Figure 104 - A tiny fragment of a real world inheritance hierarchy

In this heavily abridged example (taken from the Java GUI library), the
Component Class acts as the root of the entire graphical library. A change to
any method in this class will potentially have a shattering impact on the rest of
the structure.

The Java GUI library is well designed, and the classes at the top of the tree
are fairly stable – but remember that if you go wild with inheritance in your
design, you face a serious maintenance problem.

It is also worth remembering that humans aren’t particularly good at dealing
with more than 7 or 8 things at the same time – so if you’re working with a
class at the foot of a deep tree, you could find the complexity overwhelming.

Having said all this, a couple of simple rules – when applied carefully – help
us to avoid invalid inheritance…

144 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The 100% Rule
The 100% Rule says that all of the base class’ definition must also apply to
the derived class - if this rule does not apply, you are breaking the definition of
inheritance and you are setting yourself up for some serious maintenance
problems.

Queue

+ addToBack(Object) : void
+ removeFromFront() : Object

Dequeue

+ addToFront(Object) : void
+ removeFromBack() : Object

Stack

Figure 105 - Lazily Building a Stack from a Dequeue

Here a Dequeue (a “Double Ended Queue”, pronounced “Deck” – a Queue
where items can be added and removed from both the front and back) has
been built from an existing Queue class. This isn’t too bad, as all of the
methods in Queue are also appropriate to a Dequeue.

The blunder is in our construction of the “Stack” class. Stacks are collections
where items can only be added or removed to the front (they are usually used
where efficiency is needed). The developer here has had to do no further
work – but they have a Stack class that is crippled with two major problems:

1. It has too many methods (both addToBack and removeFromBack are
redundant)

145 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

2. The methods that are required are badly named – addToFront should
be called Push and removeFromFront should be called Pop (or Pull –
these names are traditional for Stacks)

Some people may claim that both problems can be solved:

1. Simply override the two redundant methods with “do nothing” stubs

2. Add two new methods in the Stack class called Pop and Push that go
on to call the existing addToFront and removeFromFront methods.

These two “solutions” are not solutions – they are bodges. If we did this, our
stack classes would now have two methods that don’t do what they say
they’re going to do, and two sets of “duplicated” methods (both sets of which
are publicly exposed).

Classes that don’t do what they say they are going to do, and badly named or
duplicated methods don’t always seem like a problem when they are created
– but they soon become a problem when the project becomes hundreds of
classes that are confusing and difficult to understand!22

The “Is A Kind Of” Rule
Correct inheritance should also pass this simple rule. Insert the phrase “is a
kind of” in the middle of the names for your derived class and base class.
Does it make sense? If so, the test has passed. If the phrase is nonsense, the
test has failed.

We have been dealing with “Engineer” and “Employee” throughout this
chapter. Let’s try the test:

“An Engineer is a kind of Employee”.

That sounds ok. In our system, an engineer is indeed a special kind of
employee (and so is a manager).

Let’s take a different example. We are designing a hierarchy to model a PC
computer system. We are looking at how to add Laptop Computer into the
model. We cleverly spot that we already have a class called “Operating
System” with the methods bootUp(), openWindow() and so on.

22 It is interesting to note that in the original Java Collections (pre 1.2), the Stack class was
indeed inherited from Vector. It was in recognition of design blunders like this that motivated
the construction of a whole new framework for 1.2 onwards.

146 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Clearly, a Laptop Computer needs to do these things too. So let’s use
inheritance to save some work…

Laptop

+ powersave() : void

OperatingSystem

+ bootUp() : void
+ openWindow() : void
+ startPowerpoint() : void

Figure 106 - Is this a valid use of inheritance?

Notice that we’ve also added the extra method “powersave()”, which we need
for laptops only.

Is this valid? We would argue not:

“A Laptop is a kind of Operating System”.

This sounds like nonsense. A Laptop isn’t a kind of operating system! The two
are related, but a laptop certainly isn’t a special type of operating system.

We’ll do an exercise at the end of this session that deals with this problem
again – but in the meantime perhaps you could think about what the real
relationship is here.

Now we’ve established when to do inheritance, lets move on and look at
some more advanced concepts…

Overriding Methods
Now imagine we have an extra requirement for our staff management system
- a Manager must now receive a £100 bonus for every sale they have made,
as part of their salary.

In OO, we can use a technique called “overriding” – this is the replacement of
the implementation of an inherited method, even though the signature of the
method remains the same (the signature is the parameter list for method
takes, and the type of value the method returns).

147 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

So, in our example, we still need a method called getSalary() in all classes,
but we need to implement it differently in the Manager class. Let’s see this in
UML:

Employee

- name: String
- salary: int
- grade: char

+ fi re() : void
+ promote() : void
+ getSalary() : int

Engineer

- technicalQual i fications: List

+ assignToJob() : void

Manager

- numberOfSales: int

+ checkSalesProgress() : boolean
+ getSalary() : int

return (numberOfSales * bonus) +
parent.getSalary();

return salary;

Figure 107 - Overriding getSalary() in Manager

We’ve used a UML note to show an example implementation of the methods.
Note that the getSalary() method is inherited, without change, in the Engineer
class.

Abstract Methods and Classes
In any OO language, we can leave some methods unimplemented, and defer
their implementation to the derived classes. We call these unimplemented
methods Abstract.

Unfortunately, the notation for an abstract method in the UML is rather clumsy
(in our opinion); the method is written in italics.

148 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Engineer

- technicalQual i fications: List

+ assignToJob() : void

Manager

- numberOfSales: int

+ checkSalesProgress() : boolean

Employee

- name: String
- salary: int
- grade: char

+ fi re() : void
+* promote(char) : void
+ getSalary() : int

Engineer

- technicalQual i fications: List

+ assignToJob() : void

Manager

- numberOfSales: int

+ checkSalesProgress() : boolean

Employee

- name: String
- salary: int
- grade: char

+ fi re() : void
+* promote(char) : void
+ getSalary() : int

Figure 108 - Making promote() abstract

Any class that has at least one abstract method is itself called an Abstract
Class. A programmer cannot create an instance of an Abstract Class;
therefore we have avoided the problem of a programmer calling the
unimplemented promote() method.

By the way, a class which is not abstract is called Concrete. So, in our
example, the programmers will implement promote() in both Engineer and
Manager, and therefore those classes are concrete.

Polymorphism
All modern object oriented languages apply the following rule:

Any method that requires a parameter of a base class can also accept
ANY derived class (even if the derived class is many levels down).

This is often referred to as the “Liskov Substitutability Principle” or LSP,
named after Barbara Liskov, Professor of Computer Science at
Massachusetts Institute of Technology. It can be difficult to grasp at first – let’s
look at a simple example:

149 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Example
A trading system needs to automatically confirm trades with both the trader
and the counterparty.

This can be done either via SWIFT messages (an automated form of Telex
used by the banking industry23), or if for some reason SWIFT is not available
or desirable, a fallback of a Fax Message is used.

These two forms of message are called “Documents”. Let’s have a look at a
first cut design…

First Cut Design

Figure 109 - First cut class hierarchy

From the design, we can see that Faxes and SWIFTs have very different
attributes. Also, a SWIFT can be recalled24, whilst a Fax can not.

23 Society for Worldwide Interbank Financial Telecommunications - See www.swift.com

24 For anyone from banking, this might not be true – we made this up for the exercise! Tell us
if this “fact” is false…

150 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

But – they can both be “sent”. The implementations of both methods are very
different, but the signatures of them are the same. This is why an abstract
class looks to be appropriate here. But apart from the nicety of the design,
have we really achieved much?

Don’t forget the LSP principle – we’ll illustrate with an example…

Example Use Case
A possible Use Case for this system is that we have to send a large collection
of Documents “on batch”. Throughout the day, Documents are added to the
queue and are sent once the day’s trading is complete.

Figure 110 - Example Use Case; “Send All Documents”

But, we have a headache - different types of document have to be sent. Let’s
see how LSP/Polymorphism helps…

Solving Using Polymorphism
Our aim is to write a client class that deals with general documents only – with
care we can avoid being specific about which type is required…

In the UML this aim would look like this…

Figure 111 - The client class “holds” documents

151 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

But isn’t this nonsense? Document is an abstract class – therefore we cannot
create any objects from the class!

So how can we pass in document objects into the “addDocument” method of
the Client class?

The LSP is the answer – recall that this means that any subclass can be
passed in to the method instead. And furthermore, it means that wherever we
refer to a Document in the code, any subclass can be switched in at runtime.
Let’s see what this would look like in the code.l..

Example Pseudocode – Client

Figure 112 - the client can be written with no knowledge about the specific type of
document

Notice that all the methods here accept a parameter of type “Document” - but
we can NEVER create a Document!

152 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

However, the LSP means that an object from any subclass can be passed in
instead. Presumably, once the system is running, actual documents (Faxes,
SWIFT or whatever) will be created outside of this class and then passed in to
the add_document method.

The Big Payoff
For illustration, imagine that 20 years later, we find our creaky old system is
still running but has been modified and must now support many more
Document types…

Figure 113 - The Design 20 years later

As an exercise, look back at the client code in tice that all the methods here
acce – how much of the code is affected and how much rework is there to do?

Interfaces
Some languages (Java, VB and C# for example) recognise the concept of an
interface.

This is defined as being a purely abstract class. The “document” class on the
previous example could have been designed as an interface instead…

153 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 114 - Making the Document class into an interface instead

The UML notation for an interface is the <<interface>> stereotype. Also, note
that the “generalises” relationship is replaced by “realize” to emphasize that
no concrete behaviour is being inherited.

Interfaces are generally considered to be more flexible in modern
programming languages that normal abstract classes – but the theory is the
same and they really are just purely abstract classes.25

Composition /Aggregation
We’ll leave inheritance behind now and look at Composition and Aggregation,
a concept that is frequently confused with Inheritance. The UML has a
diamond symbol to denote “Composition” or “Aggregation” (we’ll be more
specific about the difference between the two in a moment).

25 Most languages have now banned Multiple Inheritance, in recognition of the huge problems
that can be caused by them. However, those languages do allow multiple realization of
interfaces, as abstract methods cannot clash. This is one purpose of interfaces, but generally
interfaces are because building pure abstract classes is a very strong design principle and
modern languages feel the need to support them as “first class concepts”.

154 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Room

- roomNumber: String
- capacity: int

Location

- address: String
- manager: String

1..*

Figure 115 – A “Has A” relationship

This kind of relationship is often called “Has-A”. So – Each Location Has one
or more rooms.

Let’s look at the difference between Composition and Aggregation:

Composition
Composition tends to mean that the parent object is built from the child
objects. Without the parent object, the child objects have no meaning, and this
means in programming terms that deleting the parent means deleting the child
as well:

Class2Class3Customer
Record

Address

155 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 116 - A Composition Relationship

In this example, an address is owned entirely by a customer record, and if the
customer is deleted, then the address must be deleted as well.

Note that the diamond is solid to denote composition.

Aggregation
In aggregation, the parent still “has” an instance of the child class, but the
lifetime of the two objects are not bound together. In addition, the child object
might also be shared across many parents.

SKU

Order Line

Figure 117 - Aggregation (note the "open" diamond)

Here, the order line contains an SKU, but deletion of the line does not mean
deletion
of the SKU. In addition, an SKU could appear on many different lines.

Programming Language Note
This is only for those interested in moving towards a programming language.

• Composition will become a by value variable in the code

• Aggregation will become a by reference variable in the code

156 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Often, the difference between composition and aggregation is ignored,
especially if you are programming in a language where “by value” is not
allowed (like Java).

Composition vs Inheritance
There is a large school of thought that suggests that Composition should be
favoured over Inheritance26.

Inheritance is not inferior to composition, but it turns out that many relations
which may appear to be inheritance at first turn out to be composition - in
general terms, composition is much easier to manage.

Take the following example – here we wish to “reuse” the functionality of a
engine and a brake light, and make them part of a car.

Figure 118 - A Car Has-An Engine and Has-A Brake light – no inheritance needed for
this form of “reuse”

26 See reference [5]; this classic work argues this very strongly and even sets it as the
overriding goal of the book.

157 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Users of the Car class only need to know about the “brake” method. The low
level methods dealing with the engine and the brakes are “hidden” from the
user of the car (just as in real life, thankfully). This is Encapsulation again, just
in a slightly higher form.

Note that an attempt to model this design using inheritance would expose ALL
of the methods through the Car class, even though the brake light and engine
would be “reused”…

Summary
In this section we looked at Inheritance and Polymorphism

• Classes can be arranged into an “inheritance hierarchy”

• A sub-class must inherit all of the parent class’s public behaviour

• Polymorphism is an incredibly powerful tool to achieve code reuse

Ensure you are inheriting in a valid way, and make sure you consider the
composition/aggregation alternative first

158 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Chapter 13
Design Heuristics

In this session we will present some guidance on how to produce “good” OO
designs.

We’ll look at Loose Coupling and High Cohesion. Also, we’ll present some
simple rules (heuristics) to keep your designs on course.

“Talk to the Expert”
The first heuristic is easy to state:

Ensure that behaviour is allocated to the correct classes.

What do we mean by “the correct class”? Well, the correct class is often the
class with the information necessary to do “the job”.

It is easy to state “talk to the expert”, because we have used the collaboration
diagram, which is basically forcing you to apply this heuristic.

However easy the heuristic is to state, it is the fundamental OO design
heuristic. A sloppy and casual approach to allocating responsibilities leads to
poor quality designs.

“Talk to the Expert” should be at the forefront of your mind at all times when
designing.

“Talk to the Expert” Example
Assume that in this example, the job at hand is to calculate the cost of a
purchase order.

159 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Here is an example (rotten) solution…

PurchaseOrder

OrderLine

- quanti ty: int
- price: float

:UseCaseControl ler

:OrderLine

1 * double:= getLinePrice()

Figure 119 - A first cut solution. Not very impressive.

The solution is poor because how does the POTotalCalculator know which
lines to send its message to? There could be thousands of order lines in the
system, only 5 of which appear on our required PO!

The expert here is the Purchase Order – it knows about the contents of
purchase orders, and so it should be asked to return the total of the purchase
order, and it should make the calls to its lines…

“Talk to the Expert” Solution

:UseCaseControl ler

:PurchaseOrder

:OrderLine

1 cost:= getPOTotal()

1.1 *[for each l ine]: l ineT otal := getLinePrice()

160 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 120 - Refactored solution, with "talk to the expert” in mind

Not only is this a better solution, it is far easier to code.

Heated debate: note that more messages are required here that in the
previous solution. Is this going to perform more poorly?

In fact, you will often find that many good OO designs involve long chains of
objects passing messages to each other; many OO methods are very “thin”
methods that simply “pass the parcel” on receipt of a message.

From a performance point of view, however, this is unlikely to cause a serious
problem. Assuming that the messages are not passing across a network or
invoking database calls, the overhead involved will be negligible.

Tight Cohesion
Tight (or high) cohesion means that the responsibilities of a class (in this
case) are strongly related. A class that does too much work (ie has lots of
unrelated methods) is said to exhibit Low Cohesion.

Classes that are in-cohesive are harder to understand (and therefore harder
to maintain). The design is also more brittle; a single change to an incohesvie
class is more likely to impact other classes.

To give a real world analogy : a person in a company who does too many
different jobs can be a liability!

Tight Cohesion Heuristics
Some simple rules of thumb to avoid loose cohesion:

• Keep the responsibilities of each class focussed

• A single class should not do too much work

• Strive for classes with the minimum number of methods

• Strive for classes which represent specific objects (aka “One Key
Abstraction”)

As an example of the “One Key Abstraction” Heuristic, consider the following
class. It is trying to model a lift control system:

161 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

LiftController

get Floor()
m oveLi ft ()
set Trip()
em ergencyP rocedure()
raiseAlarm()
updateLED()
openDoors()
c loseDoors()
reset()
st art up()
shut down()
displayLog()

Figure 121 - a bloated (incohesive) class

Let’s look at how to improve the quality of this design…

Refactoring the LiftController
The problem with this class is that it is representing more than one real world
object. If we look carefully, we can see that there is a Lift, Alarm, Door and a
Fault Log being modelled by this single class.

The class diagram might look something like this:

162 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Alarm

raise()

Log

display()
clear()

can write to

Door

open()
close()

Lift

move()
updateLed()
getFloor()

c an raise

can write to

Figure 122 - The Refactored solution

The concept of High Cohesion always goes hand in hand with the concept of
Loose (or Low) Coupling…

Loose Coupling
Coupling is a measure of the level of dependency that exists between your
classes. High coupling leads to hard to maintain code, because a change to
one class leads to changes in many other classes - a single change can in
other words “ripple” throughout the system.

Always think of Coupling as a “Bad Thing” - but some coupling is absolutely
required (a design with lots of independent classes doing their own thing is
just as bad as a tightly coupled system).

The art is to reduce coupling to a minimum.

Once again, we have a set of heuristics to help us to avoid unnecessary
coupling…

163 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Spotting Coupling
Perhaps the simplest coupling heuristic is an intuitive one: “complex class or
collaboration diagrams are a bad smell”.

The term bad smell is a semi-formal OO term. We use it when we are
suspicious that something may be wrong. It may well turn out that we are
wrong and all is well, but most designers develop a sense for when something
is going wrong.

The following diagram (admittedly : it is made up) is giving off a bad smell. It
just looks complex – why so many relationships – why relationships cutting
across the diagram – why SEVEN associations coming from the “Tank
Controller” class?

Certainly, the “Tank Controller” seems to be playing too much of an important
role in this design, and you can bet that simple changes in there are likely to
impact many of the other classes.

Block

Central Store
Tank Controller

Fault

Output Log

Validator

Pressure Control

Outlets

Main Gague
Gas Valve

Inlet Flow

Block

Central Store
Tank Controller

Fault

Output Log

Validator

Pressure Control

Outlets

Main Gague
Gas Valve

Inlet Flow

Figure 123 - A worrying class design

164 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Heuristic : Don’t Talk to Strangers
Another coupling heuristic is known informally as “Don’t Talk to Strangers”.
You may see it formally called “The Law of Demeter”27.

In “Don’t Talk to Strangers”, we are simply saying : make your objects “talk” to
as few other objects as possible.

Although this is another intuitive heuristic, there is one mechanical rule you
can apply here: use your Domain Model as a guide to the minimum level of
coupling acceptable in your system.

When you decide (when building a collaboration diagram) to allow an object
talk to another object, and your have not already associated them on the
Domain model, you are raising coupling. This may be perfectly valid –
perhaps you forgot the association originally, or its need wasn’t obvious. But,
stop and ask yourself the questions:

• Is this really the best way to do it?

• Is there another way that avoids the coupling?

If you ask yourself the question and you are satisfied that you aren’t raising
coupling, then go ahead and add the new association to your class diagram.

More Coupling Heuristics
• Avoid “Two way Traffic”

Two way traffic is where you have two classes who are sending
messages to each other (rather than just one class sending messages
to the other, in one direction). There is nothing inherently wrong in
having two way traffic (and if you need it, go right ahead), but coupling
is effectively doubled when Class A depends on Class B and vice
versa.

• Don’t use public attributes28

27 The Law of Demeter has a more formal definition than our looser heuristic. See ref [2] for
the full statement

28 For .NET users : a read/write attribute is still private. It is just that special get/set methods
are provided and these methods are called implicitly when a value is read or set by a
programmer.

165 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

There are very few situations where public attributes are necessary. A
public attribute opens up the possibility of another class in the system
getting direct and uncontrolled access to the implementation of your
class. That means coupling.

• Only provide get/set methods when strictly necessary

A contentious heuristic this one, but there is no need for it to be. We
are not saying that get and set methods (ie methods that are designed
to return or modify the value of an attribute) are invalid. You will need
them, and you will need them often. But don’t just blindly put them in
(some CASE tool code generators do this!) – only put them in when
they are needed – in other words, when your collaboration diagram
highlights the need for them.

If you need lots of gets and sets, have you violated “Talk to the
Expert”?

• Minimise data flow around the system

Once again, methods with long parameter lists are a bad smell – the
best methods are the methods that can be executed by a class without
being given further information. If you have applied “expert” diligently,
you will find this is often the case. As with the other heuristics, don’t
follow this slavishly, but keep it in mind.

• Don’t consider coupling in isolation - remember High Cohesion and
Expert! You could remove coupling (well, theoretically) by making the
whole system one big class!

Heuristics Summary
Hopefully you’ll find this list of heuristics useful when designing:

• Talk to the Expert

• Keep the responsibilities of each class focussed

• A single class should not do too much work

• Strive for classes with the minimum number of methods

• Strive for classes which represent specific objects

• Complex class or collaboration diagrams are a bad “smell”

166 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

• Use your domain model as a guide to the minimum degree of
acceptable coupling

• Avoid raising coupling beyond the minimum

• Avoid “Two Way Traffic”

• Don’t use public attributes

• Only provide get/set methods when strictly necessary

• Minimise data flow around the system

• Don’t consider coupling in isolation - remember High Cohesion and
Expert

167 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

 Chapter 14
The Sequence Diagram

The Sequence Diagram is the second of the two Interaction Diagrams. It is
very, very similar to the Collaboration Diagram – in fact until recently, the UML
spec defined them as being interchangeable.

Many tools can generate one from the other – although most tools do not
provide the full suite of syntax as defined in the spec.

We’ll stick to the “implemented” features, but we will briefly mention the other
syntax as well.

Collaboration Diagram
Returning briefly to the collaboration diagram, consider the following diagram:

:UseCaseControl ler

:PurchaseOrder

:OrderLine

1 cost:= getPOTotal()

1.1 *[for each l ine]: l ineTotal := getLinePrice()

Figure 124 - A Simple Collaboration

168 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

As you’re an expert in reading collaboration diagrams now, we won’t detail
what is going on here, but we will “convert” the diagram into a sequence
diagram and look at the differences…

Equivalent Sequence Diagram
This diagram is directly equivalent to the previous collaboration diagram; it
says no more and no less…

:
UseCaseControl ler

:PurchaseOrder :OrderLine

Passage of time is
down the Y Axis

cost:= getPOTotal()

[for each l ine]: * l ineTotal := getLineTotal()

Figure 125 - The Equivalent Sequence Diagram

As you can see, the only real differences are that the objects are arranged in
a straight line at the top of the diagram, and the numbering of messages is no
longer required, as the Y-Axis in the downwards direction represents the
passage of time.

The sending of messages is denoted by an arrow crossing from one object’s
“swimlane” to another. The ordering of the objects alone the top of the
diagram is irrelevant.

You may also notice that there are “blocks” across the dotted lines on the
swimlanes – these are called “Focus of Control”.

169 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

“Focus of Control”
These blocks on the dotted lines (“Focus of Control”) are defined in the spec
as: “The period during which an instance is performing a procedure either
directly or through a subordinate procedure”.

Figure 126 - The "focus of control"

Often it is not used or ignored; many people don’t understand what it means
and some tools don’t implement it very well anyway

Iteration
Iteration can be denoted in a more graphical style than the collaboration
diagrams could achieve. Its implementation on tools is very patchy; we
certainly don’t rely on it at all.

170 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 127 - Showing iteration with a box

Sequence Commentary
A benefit of the sequence diagram is that you can annotate it easily with the
Use Case Description (as long as you don’t mind copying and pasting into
notes:

Figure 128 - Adding notes to provide a Use Case "commentary”

171 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Deleting Objects
An extra item of notation (again this has a patchy implementation in tools) is
for when an object is deleted…

Figure 129 - An object is deleted

Notice that the swimlane for the object ends abruptly, and an “X” marks the
point of deletion.

Which are Best?
In our very humble opinion, we think that Sequence Diagrams usually look
more complex than Collaboration Diagrams – largely because the Sequence
Diagram spreads from left to right – and looks horrid with more than 4 or 5

172 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

objects. It soon becomes very difficult to lay out29. The collaboration diagram
is much more “free” in terms of layout.

One perfect use for the Sequence Diagram is where you are working with two
or three objects, but you have a lot of message passing between them. This
wouldn’t look so good on a collaboration diagram (you’d have a lot of
messages all stacked up), but the sequence diagram would look quite neat.

So, our advice:

• Object Oriented model, with more than four objects collaborating =>
Collaboration Diagram

• Two or three objects with a lot of “chattiness”, say a diagram of how
components interact => Sequence Diagram

Collaboration diagrams are much better for spotting erroneous dependencies
(and therefore coupling) between the objects – it is easy to see if the diagram
has turned into spaghetti, whereas the Sequence Diagram (due to its more
rigorous structure) always looks the same regardless of the quality of your
design.

However, our advice is very humble indeed, because we find that most
developers prefer the Sequence Diagram. We think they’re missing out…

Summary
• A Sequence Diagram expresses roughly the same information as the

Collaboration Diagram

• It has strengths and weaknesses over the Collaboration Diagram

• It is due to be renovated in UML 2.0 (to make it more “engineering
strength”)30

29 Our experience of struggling to fit the sequence diagrams on to the A4 width of this book
proves the point beautifully

30 Note also that the Collaboration is due to be renamed the “Communication Diagram” (even
the UML falls foul of the rebranding curse sweeping the globe), and we are not aware of the
potential impact of any changes at present

173 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Chapter 15
Design Patterns

In this session we will introduce the concept of “Design Patterns”. Patterns are
a very interesting and vibrant topic in Object Oriented design - it is, however,
a very large topic and we can only scratch the surface in one session.

We’ll look at just a few of the design patterns that you will need to study if you
want to go further with your design patterns

The Origin of Design Patterns
The architect (of buildings, not software) Christopher Alexander founded the
concept of patterns in his classic book “The Timeless Way of Building”

A pattern defines a commonly occurring problem (conflict) in a particular
context; he describes a generic resolution of the conflict.

Different Chairs

May be part of Sequence of Sitting Spaces (142),
Sitting Circle (185), Built-In Seats (202).

Conflict

People are different sizes; they sit in different ways.
And yet there is a tendency in modern times to
make all chairs alike.

Resolution

Never furnish any place with chairs that are
identically the same. Choose a variety of different
chairs, some big, some small, some softer than
others, some with rockers, some very old, some
with arms, some wicker, some wood, some cloth.

May contain Pools of Light (252).

174 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Pools of Light

May be part of Alcoves (179), Workspace Enclosures
(183), Entrance Room (130), Sitting Circle (185), Eating
Atmosphere (182).

Conflict

Uniform illumination- the sweetheart of the lighting
engineers- serves no useful purpose whatsoever. in fact,
it destroys the social nature of space, and makes people
feel disoriented and unbounded.

Resolution

Place the lights low, and apart, to form individual pools
of light which encompass chairs and tables like bubbles
to reinforce the social character of the spaces which they
form. Remember that you can't have pools of light
without the darker places in between.

May contain Warm Colours (250).

Figure 130 - Two examples of the style of Alexander's Patterns

Design Patterns / GoF
In the early nineties, a group of OO Gurus began developing a range of
flexible solutions to commonly occurring design problems. Their work was
heavily influenced by the work of an Architect (of the building variety) called
Christopher Alexender.

The classic “Design Patterns” book by Gamma, Helm, Johnson and Vlissides
(1995) catalogued 23 of them. The four authors have become known as the
“Gang of Four”; you will often see reference to this, or “GoF”.

This book is considered as being the definitive object oriented work; every OO
team should have one. However...

Design Patterns Book
The book is not an easy read. For one thing, it uses OMT (it was written in
1995 and for some reason is still at the first edition), and C++ or Smalltalk.
These apparently minor inconveniences do make the material harder to
digest, and the style of the book is quite academic and formal.

We find the best approach when starting with design patterns is to:

• learn a few common patterns

175 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

• learn new ones as often as you can

• know what most of them refer to, even if you don’t know the detail

Helpfully, the front of the book lists all the patterns with a one sentence-ish
summary of each - learn all the summaries if you can. Other books exist that
may be easier to understand/digest (see reference [3] for a much more
approachable and no less insightful read).

Learning the design patterns is not an exercise in identifying copy-and-paste
techniques for solving design problems; the patterns distil insight.

Intent and Problem in Context
Design Patterns are not telling you how to Design Software. They are not best
practices, rules of thumb or design guidance. Many people assume that all the
patterns must be applied at all times, and that implementing a particular
pattern makes their software “good”.

To fully understand a pattern, you must understand that all Design Patterns
have an intent (describing the motivation for the pattern), and a problem (in
context) - this describes in what situations the pattern is appropriate.

The 23 GoF Design Patterns
The design patterns have defined and recognized names. If you are talking to
an object oriented designer, and you ask her to add a Decorator to the design,
they will probably know what you’re talking about – all 23 of these terms are
now standard IT lingo.

Here’s the list of 23:

• Abstract Factory
• Builder
• Factory Method
• Prototype
• Singleton
• Adapter
• Bridge
• Composite
• Decorator
• Façade
• Flyweight
• Proxy
• Chain of Responsibility

176 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

• Command
• Interpreter
• Iterator
• Mediator
• Memento
• Observer
• State
• Strategy
• Template Method
• Visitor

Adapter (1)
Imagine the following scenario…

• You are developing the client side of an application that will eventually
connect to a database

• The database will hold customer records; your client application needs
to manipulate the records

• The database is going to be developed by a third party developer, and
the “interface” to their database is not available yet

Adapter (2)
You develop your client application, and make assumptions about the
methods that might be available in the database component when it arrives…

procedure viewCustomerRecords
begin

customer
= theDatabase.getCustomerRecord(1)

displayRecord(customer)

end procedure

Client

+ viewCustomerRecord() : void

Figure 131 - Our client side application accessible the “to be delivered” database

The code in the figure above is just some made up pseudocode – the
important thing to note is that we have made a “stab in the dark” and decided

177 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

that the database will probably support a method called
“getCustomerRecord”.

Adapter (3)
Now assume that the third party database is delivered and… disaster… the
interface to it is completely different!

Database

+ getCustRec() : Customer

Figure 132 - The third party database

Their method is called “getCustRec” (they are clearly a lazy bunch of
developers who like saving keystrokes). Our client code cannot work with this
class - should we rework the client class?

Adapter (4)
A design pattern helps here – the intent of the Adapter is to (extract from
GoF):

Convert the interface of a class into another interface clients expect. Adapter
lets classes work together that couldn’t otherwise because of incompatible
interfaces

This is a simple pattern, where we simply introduce an “intermediate” class to
bridge the gap between the two incompatible classes…

Client

+ viewCustomerRecord() : void

Database

+ getCustRec() : Customer

DatatbaseAdapter

+ getCustomerRecord() : customer

function getCustomerRecord returns customer
begin

return database.getCustRec()
end

178 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 133 - Adding an Adapter

The adapter class simply is compatible with our own “client” class, and it
simply delegates the method calls to the Database class. The adapter class
will have almost no logic inside it – it will only have short methods that
delegate to the incompatible class.

Simple, but elegant! Too simple perhaps?

Design Patterns Complexity
There is nothing new, earth shattering or complex about the Adapter pattern –
but this is generally true of all design patterns. Some of them are a little
complex, but they are all merely concise statements of good practice that you
will often recognize.

However, with design patterns, we have:

• The ability to catalogue a wide variety of design issues in a consistent
form

• A common language: when faced with the problem above, we could
have said to the designer “I think we can solve the database problem
with an Adapter”; and they would know what we mean (as long as
they’ve studied design patterns of course!)

Another Design Scenario
We are going to introduce another design pattern, and along the way learn
some more UML notation. To get there, consider the following scenario:
imagine that, without proper consideration for architecture, your Design Class
Diagram began to look like this after a few iterations (we have omitted
methods and attributes for “clarity”)…

179 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 134 - Bad Smells abound here...

Partitioning the Design
Perhaps we ought to consider breaking down the complexity of the model by
breaking it up into separate chunks. It looks like many of the classes are
tightly related – for example the three classes at the bottom right are dealing
with the deliveries of orders…

180 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 135 - An attempt at partioning the design

Here we have used Powerpoint to highlight closely related classes – but there
is a formal UML tool to enable us to do this properly…

Packaging
The UML Contains a lightweight containment mechanism called a “Package”
– think of it as being like a Folder in Explorer…

We could express the portioning from the previous figure using this notation
as follows…

181 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 136 - The Package Diagram

These package symbols are simply symbols appearing on a class diagram.
However, we do this so commonly that a term has been coined for a diagram
that, like this one, contains packages only. We call this a package diagram.

The lines between the packages are called “dependencies” and they are used
to denote where a package is dependent (in some way – we can’t be specific
at this level) on another package.

Each folder can contain many classes - (most tools will allow a diagram to be
attached to the package). In the tool we are using to draw the pictures here, if
we double click on the “Delivery” package, a new class diagram opens up…

Figure 137 - The delivery package in detail

Now let’s head towards our design pattern and introduce a problem…

Problem
You are working on a class in the orders package, and you need to work with
the locations package. There could be hundreds of classes in there (and we
don’t want to think about those details - another team worked on the
package).

How could we improve the design to avoid this complexity?

Solution – A Facade
One of the Gang of Four Design Patterns – the Façade - has the following
intent:

“Provide a unified interface to a set of interfaces in a subsystem. Façade
defines a higher level interface that makes the subsystem easier to use”

182 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The application of the Façade is usually pretty simple; in our case we can add
a class to each package and treat this class as an interface to the package…

Façade Implementation

Figure 138 - We can "hide" the complexity of the package behind a simple class with
simple, high level methods

Façade “Field Notes”
Design Patterns are not slavish “cut and paste” jobs – you will see Facades in
different guises with slightly different uses. As long as the intent of the pattern
(unifying interfaces) is upheld, you are implementing a façade.

For example, you could:

• Insist that communication between packages is ONLY through the
Facades – this turns your packages into Components

• Make the facades optional – this means the Façade is used purely to
simplify a complex package for clients

• Make the facades pure “pass through” classes that introduce no
business logic

• Introduce business logic into the façade –a security or caching layer
added before the calls to the lower level classes are made

183 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

A Design Situation
Some of the Design Patterns are a little harder to understand than Façade
and Adapter. We will now provide a context and motivation for a harder
Design Pattern – we won’t reveal the pattern we are using until we have hit
the problem. We borrow heavily here from Shalloway and Trott’s superb
Design Patterns book (see reference [3]).

For this system, we are tasked with building a drawing application that must
be capable of drawing a square on the screen.

Furthermore, we have been supplied with a third party graphics library fronted
by a class called “RapideDraw”.

cd Logical Model

Client Square

+ draw() : void

RapideDraw

+ bressenheimLine() : void
+ fastCircle() : void

Figure 139 - Our first attempt at a Class Diagram for the Drawing Application

The RapideDraw package supports the drawing of straight lines implemented
using an algorithm called “Bressheim’s Algorithm”, a method of drawing
straight lines using pixels developed in 1965 (drawing a convincing straight
line on a grid of pixels is not as easy as you might think!)

A New Requirement
We are now given the requirement that the application must also support
different low level libraries – we’ll add in a second library called AccuDraw. As

184 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

a first pass, Inheritance seems like a good choice to provide these two special
types of Square (they pass is-a-kind-of and 100%):

cd Logical Model

Client Square

+ draw() : void
drawLine() : void

RapideDraw

+ bressenheimLine() : void
+ fastCircle() : void

Accudraw

+ accurateLine() : void
+ accurateCircle() : void

FastSquare

+ drawLine() : void

AccurateSquare

+ drawLine() : void

Figure 140 - Adding the new Accurate Drawing Package

On construction, the client creates a either a FastSquare or AccurateSquare.
The client doesn’t care about the difference, since they both support the
draw() operation. By polymorphism, the correct concrete code will be called.

As is always the case, we now get a new requirement – naturally we want to
implement circles in our application (which sounds reasonable, given that both
RapideDraw and AccuDraw support the requirement). But we need to add a
new class called Circle – where should it go?

After some pain, we recognize that we also have an abstract class at play
here, called “Shape”…

Adding Circle Support
This is how the new class design has panned out…

185 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

cd Logical Model

Client

Square

+ draw() : void
drawLine() : void

RapideDraw

+ bressenheimLine() : void
+ fastCircle() : void

Accudraw

+ accurateLine() : void
+ accurateCircle() : void

FastSquare

drawLine() : void

AccurateSquare

drawLine() : void

FastCircle

+ drawCircle() : void

AccurateCircle

+ drawCircle() : void

Shape

+ draw() : void

Circle

+ draw() : void
+ drawCircle() : void

Figure 141 - Using simple inheritance to add support for Circles

Things suddenly look worrying – what about if we need to support another
Drawing Library? The answer is chaos…

186 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Chaos!
cd Logical Model

Client

Square

+ draw() : void
drawLine() : void

RapideDraw

+ bressenheimLine() : void
+ fastCircle() : void

Accudraw

+ accurateLine() : void
+ accurateCircle() : void

FastSquare

drawLine() : void

AccurateSquare

drawLine() : void

FastCircle

+ drawCircle() : void

AccurateCircle

+ drawCircle() : void

PixelArt

+ simpleLine() : void
+ simpleCircle() : void

SimpleSquare

drawLine() : void

SimpleCircle

drawLine() : void

Shape

+ draw() : void

Circle

+ draw() : void
+ drawCircle() : void

Figure 142 - Adding the new drawing package

This has had an unfortunate effect on our design – we have what is referred
to as a Combinatorial Explosion in that for every new class we add we have
to support various different combinations of the existing classes.

Surely this can be done differently, and better? (By the way, if you don’t
believe that this design is now unwieldy, try adding support for a triangle!)

What’s Gone Wrong?
This is a good example of where a design starts simple enough, but suddenly
collapses into chaos. The problem is that we have two different concepts in
our design that we have mixed together - furthermore, the two concepts are
very likely to change independently.

The concepts are the Shapes and the Drawing Tools.

As we saw earlier in the session on MVC, the solution is probably to isolate
the two things that are vulnerable to change, and to separate them…

187 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Optional Exercise
Have an attempt at refactoring the solution.

We are assuming that you are not familiar with the design pattern that would
help, so we are asking you to engineer a Design Pattern from first principles!

Therefore – don’t worry if you come up with nothing more than a sheet of
paper with some frustrated scribbles on – this is only to get you thinking about
the problem!

188 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The Bridge Design Pattern
The intent of the Bridge Design Pattern is:

“Decouple an Abstraction from its Implementation so that the two can vary
independently”

This is what we need - here the abstraction is the Shape, and the
implementation is the Drawing Tool.

Let’s see if the Bridge helps us…

Bridge (1)
First of all, consider the two independent aspects of this design in isolation…

cd Logical Model

Square

+ draw() : void

Shape

+ draw() : void

Circle

+ draw() : void

cd Logical Model

RapideDraw

+ bressenheimLine() : void
+ fastCircle() : void

Accudraw

+ accurateLine() : void
+ accurateCircle() : void

DrawingTool

+ drawLine() : void
+ drawCircle() : void

Figure 143 - The Shape and DrawingTool hierarchies

Bridge (2)
Simply stated, we need to tie these two hierarchies together.

We also need a Shape to be able to call on some drawing services - so we
give Shape access to a DrawingTool via the Bridge…

189 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

cd Logical Model

Square

+ draw() : void

RapideDraw

+ bressenheimLine() : void
+ fastCircle() : void

Accudraw

+ accurateLine() : void
+ accurateCircle() : void

Shape

+ draw() : void

Circle

+ draw() : void

DrawingTool

+ drawLine() : void
+ drawCircle() : void

Figure 144 - Adding the Bridge

Bridge (3)
We can now add the implementations of the primitive behaviour drawLine()
and drawCircle() in the Shape class.

The implementations of these methods simply delegate across to the
DrawingTool31

cd Logical Model

Client

Square

+ draw() : void

RapideDraw

+ bressenheimLine() : void
+ fastCircle() : void

Accudraw

+ accurateLine() : void
+ accurateCircle() : void

Shape

+ draw() : void
drawLine() : void
drawCircle() : void

Circle

+ draw() : void

DrawingTool

+ drawLine() : void
+ drawCircle() : void

Figure 145 - Full implementations of the basic line and circle drawing abstract methods

Final Improvement
We have abstract methods called drawLine() and drawCircle() which are
currently not implemented in the Accudraw and RapideDraw classes.

31 (This violates the 100% rule by the way – ho hum)!

190 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Can we solve this problem?

cd Logical Model

RapideDraw

+ bressenheimLine() : void
+ fastCircle() : void

Accudraw

+ accurateLine() : void
+ accurateCircle() : void

DrawingTool

+ drawLine() : void
+ drawCircle() : void

Figure 146 - We haven't properly implemented the DrawingTool abstract classes

The Adapter
We have a class here that needs to use another class but cannot because of
incompatible interfaces. This should ring a bell - a job for the Adapter – a
pattern within a pattern(!)

cd Logical Model

Client

Square

+ draw() : void

RapideDraw

+ bressenheimLine() : void
+ fastCircle() : void

Accudraw

+ accurateLine() : void
+ accurateCircle() : void

Shape

+ draw() : void
drawLine() : void
drawCircle() : void

Circle

+ draw() : void

DrawingTool

+ drawLine() : void
+ drawCircle() : void

RapideAdapter

+ drawLine() : void
+ drawCircle() : void

AccudrawAdapter

+ drawLine() : void
+ drawCircle() : void

Figure 147 - The full solution complete with a pair of Adapters

191 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Extending the Design
Now let’s see how easy it is to extend the design – let’s add the new PixelArt
drawing package…

cd Logical Model

Client

Square

+ draw() : void

RapideDraw

+ bressenheimLine() : void
+ fastCircle() : void

Accudraw

+ accurateLine() : void
+ accurateCircle() : void

PixelArt

+ simpleLine() : void
+ simpleCircle() : void

Shape

+ draw() : void
drawLine() : void
drawCircle() : void

Circle

+ draw() : void

DrawingTool

+ drawLine() : void
+ drawCircle() : void

RapideAdapter

+ drawLine() : void
+ drawCircle() : void

AccudrawAdapter

+ drawLine() : void
+ drawCircle() : void

Triangle

+ draw() : void PixelArtAdapter

+ drawLine() : void
+ drawCircle() : void

Figure 148 - Adding the PixelArt package

We’ve also added a Triangle class to the system – with minimal change!

The Bridge in Java
The is just for Java users…the Bridge Design Pattern is used as part of the
fundamental structure for the Swing (JFC) Library. Can you recognise it?

cd Logical Model

JComponent PLAF

JButton JComboBox JTable WindowsLF MetalLF OpenLookLF

Java effortlessly provides the ability to
switch between different Look and Feels
(PLAF’s) to support different platforms.

The GUI components themselves are
unaffected because they are isolated from

the Look and Feel via the Bridge!
cd Logical Model

JComponent PLAF

JButton JComboBox JTable WindowsLF MetalLF OpenLookLF

Java effortlessly provides the ability to
switch between different Look and Feels
(PLAF’s) to support different platforms.

The GUI components themselves are
unaffected because they are isolated from

the Look and Feel via the Bridge!

192 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

More Java Notes
Design Patterns are used extensively in the design of the Java API:

• The Iterator is used to iterate across collections

• The Command is used (in the guise of an Action class) to replicate
behaviour across Swing GUI’s

• An instance of a JDBC Driver class is a Singleton

• The IO Library uses Decorators (hence the need for the cumbersome
constructors!)

• Swing uses MVC (not a GoF pattern)

• The creation of Borders in Swing requires the use of a BorderFactory
(the Factory Pattern)

Patterns – Last Words
Now for some final words on patterns. We’ve looked at just four of the “Gang
Of Four” patterns – but don’t forget there are 19 more – although not all of
them are as commonly used as these four.

GoF started off the “Patterns Movement”, but the movement is growing. Look
around and you will find all kinds of Patterns related books, based on:

• Real Time Patterns; where common problems in real time systems are
solved

• Analysis Patterns; where common Analysis problems (such as how to
deal with multiple currencies) are solved

• J2EE Patterns

• Architectural Patterns

• Enterprise Patterns (see reference [8])

Summary
Design Patterns are generic, elegant solutions to commonly occurring
problems. There are 23 “Gang of Four” classic patterns - the book is not an
easy read but is reckoned to be the classic, definitive work on OO.

193 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Chapter 16
UML 2.0

UML 2.0 has now been fully adopted by the OMG, and tool support is now
beginning to arrive for the new version.

We have deliberately stuck to UML1.5 on this course as most projects are still
working with UML1.5. However, there are few changes that impact us directly
– there are three new diagrams added and some of the names of the
diagrams has been changed.

Many of the loose areas of UML have also been tightened up, and internal
changes to the specification have been made to support future technologies.

Apart from the minor renaming of some diagrams, the new version of UML
has been designed to be backwards compatible.

The diagrams are now divided into two categories : Behavioural and
Structural…

Behavioural Diagrams
There are seven diagrams under the Behavioural category:

194 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

•Seven Diagrams:
– Activity

– Use Case

– State Machine

– Interaction

• Timing
• Sequence
• Communication
• Interaction Overview

Unchanged

Unchanged

Minor Renaming

New

New

Unchanged

Minor Renaming

Figure 149 - Behavioural Diagrams

The Statechart has been renamed “State Machine”, and the Collaboration
Diagram has been renamed “Communication Diagram”.

The Timing and Interaction Overview diagrams are new, and we will describe
them shortly.

By the way, many of the existing diagrams now support new features – but
you will easily pick these up via your CASE tool if you find them useful32

Structural Diagrams
There are six diagrams in the Structural category. Only the Composite
Structure Diagram is new…

32 For example, the System Boundary has now been officially recognised in the Use Case
Diagram – people have been using these for years without realising the UML1.x didn’t
mention them!

195 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

•Six Diagrams:
– Package Diagram

– Object Diagram

– Composite Structure Diagram

– Component Diagram

– Deployment Diagram

– Class Diagram

Unchanged

Unchanged

Unchanged

Unchanged

New

Unchanged

Figure 150 - Structural Diagrams

We’ll now take a very quick look at the new Behavioural Diagrams

Timing Diagram
The Timing Diagram shows how an objects behave (change state and
interact) over time:

Figure 151 - Example Timing Diagram

196 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Interaction Overview Diagram
Interaction Overview Diagrams are used to denote the flow between related
sequence diagrams. The syntax is almost identical to the Activitiy Diagram,
except instead of activities, boxes are used to denote “sub” behaviour
diagrams, or links to existing behaviour diagrams - this diagram will be used
to tie behavioural diagrams together:

Figure 152 - Interaction Overview Diagram

Model Driven Architecture (MDA)
One of the major changes in UML2.0 are internal structural changes to drive
forward the possibility of building systems using MDA. Very simplistically,
MDA effectively aims to automate the process of generating code from the
UML Model - making your UML Model “executable”.

197 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The promises made by MDA aren’t yet here; complete tool support will take
time to arrive - but keep an eye on this exciting new technology.

Summary
• UML 2.0 is now here, and we must begin the process of getting used to

the new models if we are going to work with modern CASE tools

• We can fairly easily continue using UML as most of the changes are
backwards compatible

• MDA promises much for the future

198 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Chapter 17
Transition to Code (not covered on course)

Note: this chapter won’t be covered explicitly on the course – it is quite simple
and covers several different languages. We have provided it here for
reference.

In this section, we shall:

Look at some basic coding of UML Models, and quickly look at how UML
maps to Java, C#, C++, VB, VB.Net and Ada. This is not a programming
course, so unfortunately we cannot go into any great detail, but we do hope to
show that as the UML has been designed with programming languages in
mind, the transition code is relatively simple (but this does depend on your
language, as we shall see).

We’ll look in more detail at coding a Use Case, and present a full code
example in an Appendix (we’ve shunted the full code to the back of the book
to avoid clogging the body of the book with code).

We’ll also briefly introduce the concept of forward and reverse engineering.

Mapping a Class
The most fundamental concept is how to map a class from UML to the
programming language. We’ll take our simple SKU class; we have removed
many of the attributes and methods for clarity.

SKU

- SKUID: String
- productName: String
- supplierName: String
- unitPrice: double

+ create(String, String, String, double) : void

199 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 153 - The simplified SKU Class

We’ll begin by looking at how the class is coded in Java…

Defining a Class (Java)
The mapping to Java is very clean and simple…

package pharmacare.domain.stock;

/**
* Definition of a Stock Keeping Unit
*/

public class SKU
{

private String SKUID;
private String productName;
private String supplierName;
private double unitPrice;

public SKU(String SKUID, String proudctName,
String distributor, double unitPrice)

{
this.SKUID = SKUID;
this.productName = productName;
//etc

}
}

Figure 154 - SKU Class in Java

Two main things to note:

• Java fully supports the concept of a package. The declaration at the
top states that this class belongs in the Stock package (which is
contained in a higher level package called domain, and the parent
package is called pharmacare).

• The “create” method becomes a special method called a constructor.
There’s nothing special about this method other than that this method
is automatically run when a new SKU is created (using the Java
keyword new)

200 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Finally, omitting the word “public” would have made the class package
protected, as we needed when we were set up the component/façade
architecture.

To create an instance of this SKU class, use the new keyword:

import pharmacare.domain.stock.*;

public class Test
{

public static void main (String[] args)
{

SKU newSKU = new SKU(“SKU01”,”Palitoy”,”SKN Retail”,3.74);
newSKU.methodCall(); //etc

}
}

Figure 155 - Creating an instance of an Object

Defining a Class (C#)
C# (C-Sharp), the new language that forms part of the new Microsoft .NET
framework, looks very similar to Java:

using System;

namespace pharmacare.domain.stock{

public class SKU {
private String SKUID;
private String productName;
private String supplierName;
private double unitPrice;

public SKU(String SKUID , String productName,
String supplierName, double unitPrice)

{
this.SKUID = SKUID;
this.productName = productName;
this.supplierName = supplierName;
this.unitPrice = unitPrice;

}

}//end SKU
}//end namespace stock

Figure 156 - SKU Class in C#

201 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

The namespace concept is exactly the same idea as a package, and once
again, we could have omitted the “public” keyword to make the class package
protected. Once again, the create method becomes a “constructor”; this
method is automatically called when the object is created. As with Java, the
name of the constructor is the same as the name of the class.

Creating an instance of a class in C# is identical to Java:

SKU newSKU = new SKU(“SKU01”,”Palitoy”,”SKN Retail”,3.74);

Figure 157 - Creating an Object in C#

Defining a Class (C++)
Nothing is simple in C++ (!); in C++ we require a header and an
implementation file, as follows:

// SKU.h

class SKU
{

private:
string SKUID;
string productName;
string supplierName;
double unitPrice;

public:
SKU(string, string, string, double);

};

Figure 158 - The C++ Header file, defining the structure of the class

The implementation of the class is placed in the .cpp file:

202 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

// SKU.cpp

#include "SKU.h"

SKU:SKU(string SKUID, string productName,
string supplierName, double unitPrice)

{
this->SKUID = SKUID;
this->productName = productName;
this->supplierName = supplierName;
this->unitPrice = unitPrice;

}

Figure 159 - Implementation of the class

Once again, the create method becomes a constructor; a method with the
same name as the classs.

Sadly, C++ does not support packaging. A recent addition to C++ is the
concept of a namespace, which is roughly analogous to packages in
UML/Java, and namespaces in C#, except there is no way to enforce any
“protection” on a package. So placing the SKU class in a namespace called
“stock” only really prevents name clashes with identically named classes in
other packages.

One way to create packages in C++ is to compile each package into its own
DLL (Dynamic Link Library), or whatever type of library your platform
supports. The interface to the DLL takes the place of the façade class.

Defining a Class in VB.NET
Visual Basic.NET (effectively VB 7) now takes the same kind of approach as
Java, C# and C++. Classes, objects and constructors are fully supported
(previous versions had weak implementations of OO that didn’t quite get
there).

Here’s an example of a class module in VB.NET:

203 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Namespace pharmacare.domain.stock

Public Class SKU

Private SKUID As String
Private productName As String
Private supplierName As String
Private unitPrice As double

Public Sub new(ByVal sSKUID As String, ByVal sproductName As String,
ByVal ssupplierName As String,
ByVal dunitPrice As double)

SKUID = sSKUID
productName = sproductName
supplierName = ssupplierName
unitPrice = dunitPrice

End Sub
End Class

End Namespace

Figure 160 - VB.NET Class

Although the syntax is slightly different to our previous examples, the way of
thinking is exactly the same.

Defining a Class (Ada)
Ada has always featured Objects and Classes (or at least, a direct analogy to
them). In Ada, a class maps onto an “Abstract Data Type” with a private part.

The rather annoying restriction in Ada is that all methods in a class have to be
converted into standard functions or procedures with the first parameter being
an instance of the type. By the way, this is done automatically in many other
languages – it is the “this” or “self” parameter

Everything we have said here works in Ada 83 as well as Ada 95. However,
Ada 95 is required for inheritance/polymorphism – where they are called
Tagged Types.

Ada Class Definition
Here is the package spec for the SKU class:

204 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

package Stock is

type SKU is private;

procedure initialise (this : SKU;
SKUID : String);

private
type SKU is record

SKUID : String(1..50);
-- etc...

end record;

end Stock;

Figure 161 - SKU Definition

Sadly, there is no concept of a constructor in Ada, so we have provided a
method called initialise. The only problem with this is that we will have to call it
manually ourselves.

Here is another module creating an instance of the SKU and calling its
methods:

with stock;

procedure main is
SKU_Record : Stock.SKU;

begin
Stock.initialise(SKU_Record,"SKU01");

end main;

Figure 162 – Creating an SKU and calling a method

Ada supports packages, but once again it is impossible to impose “package
protection” – so in this example, the SKU “class” is visible to the entire project
(as long as it is withed in).

Adding Reference Attributes
We’ll now look at how to relate classes. We won’t cover all of the languages
as that would be tedious, so we’ll use Java as an example.

205 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Consider the following example, where each SKU is stored at exactly one
location:

SKU

- SKUID: String
- productName: String
- supplierName: String
- size: String
- distributor: String
- unitPrice: double
- pickFaceID: String

+ create(String, double, String, String, String, String, String) : void

Location

- locationID: String
- quantityToHand:

is stored at
1

Figure 163 - Each SKU is stored at one location

Recall that during design, we didn’t hold “referenced” classes in an attribute
using a “foreign key”. At coding, however, we do have to reference the other
class. We have to decide in which direction the visibility should be (can the
SKU see the location, or can the location see the SKU, or both?) In this
example, lets assume that the SKU needs to be able to see the location. Also,
in some languages, a “by value” or “by reference” decision needs to be made.

public class SKU{
private String SKUID;
private String productName;
private String supplierName;
private String size;
private String distributor;
private double unitPrice;
private String pickFaceID;

private Location storedLocation;
}

Figure 164 - holding the location

Essentially, the Location object is simply held as an attribute of the SKU class.

Containers/Collections
When we have an aggregation, these map on to the target language as either
arrays or collections.

206 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Arrays are the classic programming construct that are of a fixed size, and
usually the size of the array has to be set at compilation time. Collections are
a more flexible alternative, and are usually of an unbounded length (they can
grow and shrink as elements are added and removed).

There’s nothing new to the concept of Collections (Linked Lists for example
are a very popular form of collection), but they are now becoming
standardized in the libraries of modern languages. Java has a Collections
framework featuring Lists, Map, Sets and so on, whilst C++ has a Standard
Template Library (STL) offering similar features. The .NET framework
contains collection classes, so programmers in any of C#.NET, VB.NET,
C++.NET and any other .NET language, have access to them.

Catalogue

- nextSKUNumber: int

+ createSKU(String, double, String, String, String, String) : String

SKU

- SKUID: String
- productName: String
- supplierName: String
- size: String
- distributor: String
- unitPrice: double
- pickFaceID: String

+ create(String, double, String, String, String, String, String) : void

0..*

public class Catalogue
{

private static int nextSKUNumber = 1;

private SKU[] skuList; // array
private Map skuList; // key/value map
private List skuList; // list

}

Figure 165- Example Java Implementation

The Java example above shows how the list of SKU’s held in the Catalogue
might be held in an Array, a Map (a kind of table of keys and values) and a
List (a dynamic form of array).

Coding a Use Case
All we’ve shown so far is how to map a class to a file on your target language.
This is really an easy step – the hard work is in building a full Use Case. We
won’t step through all of the tedious detail, and we won’t fill this chapter with
reams of code. Instead, we have provided an appendix and included
implementations (in different languages) for a very simple Use Case. See “es
at the ba”, page 210).

207 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Testing a Use Case
The test script for the Use Case test is already written - it is the Use Case
Storyboard!

The “Actors Actions” form the steps to carry out in the test. The “System
Response” forms the expected responses.

Code Generation
Some tools support Code Generation. Usually, this means the generation of
class skeletons from the class diagram (roughly to the level of detail of the
classes we’ve looked at in this chapter).

Some tools will do 100% generation, where the model is identical to the
source code, and changing one will change the other. This is an attractive
idea, but be aware this will naturally mean “busy” diagrams in your model,
with lots of detail.

Another concept that many tools support is reverse engineering. This is the
process of reading existing code and automatically generating a model from
the code. A jargon word in common use by tool vendors is “Round Tripping”;
this just means the tool can perform both forward and reverse engineering.

Reverse Engineering sounds like a good idea, but it will not, in general, create
a readable or understandable model. It is certainly not a substitute for up-front
design. It is useful if you simply need to resynch a model that has drifted from
the code, or to discover design flaws in existing code.

At Ariadne, we tend to be quite suspicious of code generation – if you have a
success story to tell about it, please get in touch with us and tell all.

Implementation Frameworks
.NET (Microsoft) and J2EE (Java Enterprise Edition) are two of the big
frameworks for implementing Enterprise Systems in the industry at the
moment

We’ll have a very brief look at both of them now…

208 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

J2EE
J2EE features the concept of EJB’s (Enterprise Java Beans), which are
effectively classes that provide additional “enterprise” services - especially
Transaction Management but they also hide network and distribution
“plumbing”.

A further feature of EJB’s is that they can be made “transparently persistent” -
in other words, data in an EJB class will be automatically persisted to a
relational data store, closing the relational/object mismatch (but this concept is
not a popular implementation choice at present).

Other technologies such as JDO (Java Data Objects) exist to close the
object/relational gap.

J2EE and MVC
J2EE is built around the framework of the Model-View-Controller. Session
EJB’s and servlets fulfil the role of a Use Case Controller extremely well.

View Control

ModelModel

JSP

Servlets

EJB Session
Bean

View Control

ModelModel

JSP

Servlets

EJB Session
Bean

Figure 166 - A J2EE Component Model

.NET

.NET features ADO.NET(ActiveX Data Objects) to provide the relational
database “bridge”.

209 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

All of .NET’s “prime” languages (C#.NET, VB.NET) are now fully object
oriented and feature everything we have covered on this course. They also
feature some syntactic sugar to hide get/set methods from the client
programmer.

.NET Remoting and SOAP enables objects to be distributed.

Summary
The UML models should map cleanly into code, and most modern languages
support the OO “way of thinking” directly.

When a Use Case is coded, it can be fully tested using the original Formal
Description as (at least) a basis for the test description.

Forward and Reverse Engineering is possible in many Case tools; make sure
your project carefully evaluates them before use however.

210 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Appendix A
Example Code

As most attendees to the course are not interested in programming, we have
decided to put full code examples at the back of the book, well away from the
UML.

All we are trying to do with this example is to show that it is possible to
transfer designs from UML to source code, and that the model/view/controller
design pattern does work. We are not displaying best programming practice,
so please don’t take any of the examples too seriously. Running versions of
this code (and a fuller implementation of the complete first iteration) will be
provided on the course.

We’ve taken an extract from a Use Case that you will have designed during
the course. This is the “Enter SKU” Use Case. You may have designed a
fancier implementation, but we’re just going for the simple case where the
user enters a product name, a supplier name and unit price. Inside the Stock
component, a new SKU is created with an auto generated ID, and the user is
told that the SKU has been created, and they are told what the new SKU ID
is.

:EnterSKUFrame

:EnterSKUController

:StockFacade

:Catalogue

:SKU

1 newID:= createSKU(productName,supplierName,unitPrice)

1.1 newID:= createSKU(unitPrice,supplierName,productName)

1.2 newID:= createSKU(productName,supplierName,unitPrice)

1.3 newID:= generateNewSKUID()

1.4 create(SKUID,productName,supplierName,unitPrice)

211 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Figure 167 - The Use Case Collaboration

212 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Java Code
We are going to start from the top and work downwards (just our personal
preference). The user has entered a product name, a supplier name and a
price in the user interface (we call this the “EnterSKUFrame”). A message is
sent on to the EnterSKUController called “createSKU”, which returns the new
ID for the SKU (this is because the customer has asked for the automatic
generation of SKU’s).

:EnterSKUFrame

:EnterSKUControl ler

1 newID:= createSKU(productName,suppl ierName,uni tPrice)

Here’s our code for this. We have removed any GUI code as that is irrelevant
to this discussion. We have “hardcoded” in some example data that the user
might have entered…

File : EnterSKUFrame.java
package pharmacare.ui;

import pharmacare.control.*;

public class EnterSKUFrame
{
 /*
 * The constructor method simulates GUI Activity
 */
 public EnterSKUFrame()
 {
 EnterSKUController control = new EnterSKUController();

 // assume the user has entered some data
 // details of GUI etc omitted

 String newID = control.createSKU("Atenolol","SKB Limited”,4.99);
 System.out.println("New SKU ID " + newID + " created.");

 newID = control.createSKU("Paracetemol","KCS Ltd",0.72);
 System.out.println("New SKU ID " + newID + " created.");
 }

 public static void main(String[] args)
 {
 EnterSKUFrame window = new EnterSKUFrame();

213 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

 }
}

File : EnterSKUController.java
The implementation of the createSKU() Method in the EnterSKUController
simply passes on the request to the StockFacade...

EnterSKUControl ler

:StockFacade

1.1 newID:= createSKU(unitPrice,suppl ierName,productName)

package pharmacare.control;

import pharmacare.domain.stock.StockFacade;

public class EnterSKUController
{
 private StockFacade stockComponent;

 public EnterSKUController()
 {
 // get visibility of the stock component
 stockComponent = StockFacade.getReference();
 }

 public String createSKU(String productName, String supplierName,
 double unitPrice)
 {
 return stockComponent.createSKU
 (productName, supplierName, unitPrice);
 }
}

To get access to the StockFacade, we haven’t called new as usual; instead
we have called the static method getReference(), because the StockFacade
has been coded as a Singleton. See the chapter on Design Patterns for full
details.

214 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

File : StockFacade.java

:StockFacade

:Catalogue

1.2 newID:= createSKU(productName,suppl ierName,uni tPrice)

1.3 newID:= generateNewSKUID()

The implementation of the createSKU method in StockFacade simply
forwards the request to the Catalgoue. The Catalogue class is our “collection”
class that holds all of the SKU Records.

The complication in the Facade class is the mechanics of the Singleton. Once
again, see the chapter on Design Patterns for details...
package pharmacare.domain.stock;

public class StockFacade{

 private static StockFacade reference = null;
 private Catalogue theCatalogue;

 // this is a singleton class, so the constructor is private
 private StockFacade()
 {
 theCatalogue = new Catalogue();
 }

 public static StockFacade getReference()
 {
 if (reference == null)
 reference = new StockFacade();
 return reference;
 }

 public String createSKU(String productName, String supplierName,
 double unitPrice)
 {
 return theCatalogue.createSKU
 (productName, supplierName, unitPrice);
 }
}

Notice that we construct the Catalogue in the constructor for the Facade.
Remember that this will only ever happen once, regardless of how many
times the facade is accessed.

215 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

File : Catalgoue.java
The createSKU method in Catalgoue needs to:

• Generate a new SKU ID (method 1.3 on the Collaboration diagram)
• Create the SKU Object (method 1.4)
• Store the new SKU in a Collection (this could have been an array,

we’ve opted for a Map with the SKUID forming the key)

:Catalogue

:SKU

1.3 newID:= generateNewSKUID()

1.4 create(SKUID,productName,suppl ierName,uni tPrice)

package pharmacare.domain.stock;

import java.util.*;

public class Catalogue
{

 private Map skuList;
 private static int nextSKUNumber = 1;

 public Catalogue()
 {
 skuList = new HashMap();
 }

 private String generateNewSKUID()
 {
 String returnValue = "SKU" + nextSKUNumber;
 nextSKUNumber++;
 return returnValue;
 }

 public String createSKU(String productName, String supplierName,
 double unitPrice)
 {
 String SKUID = this.getNextSKUID();
 SKU newSKU = new SKU(SKUID, productName,supplierName,unitPrice);
 skuList.put(SKUID,newSKU);
 return SKUID;
 }
}

Notice that we have made the generateNewSKUID method private, as it
should not be called from outside of the class. We’ve also provided a very
bland and boring implementation of the method, just for illustration!

216 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

File : SKU.java
All that remains is the creation of the SKU Class. There is very little behaviour
in here at present; only data is stored in the SKU. We would expect this to
change as future iterations add more behaviour to the class diagram.

Notice that the class is package protected, as recommended by the Facade
design pattern.
package pharmacare.domain.stock;

import java.util.*;

/**
 * Definition of a Stock Keeping Unit
 */
class SKU
{
 private String SKUID;
 private String productName;
 private String supplierName;
 private String size;
 private String distributor;
 private double unitPrice;
 private String pickFaceID;

 public SKU(String SKUID, String proudctName, String supplierName,
 double unitPrice)
 {
 this.SKUID = SKUID;
 this.productName = productName;
 this.supplierName = supplierName;
 this.unitPrice = unitPrice;
 }
}

217 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

C Sharp Code

The code for C# is almost identical to the Java implementation, except:

• Use namespaces instead of packages

• Use a .NET collection class instead of the Java HashMap (for
example, hashtable)

218 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

C++ Code
It is impossible to write compiler independent C++, so the following should be
used as a guide only. For the record, we used Borland C++ Builder 6 on
Windows XP.

We are going to start from the top and work downwards (just our personal
preference). The user has entered a product name, a supplier name and a
price in the user interface (we call this the “EnterSKUFrame”). A message is
sent on to the EnterSKUController called “createSKU”, which returns the new
ID for the SKU (this is because the customer has asked for the automatic
generation of SKU’s).

:EnterSKUFrame

:EnterSKUControl ler

1 newID:= createSKU(productName,suppl ierName,uni tPrice)

Here’s our code for this. We have removed any GUI code as that is irrelevant
to this discussion. We have “hardcoded” in some example data that the user
might have entered…

File : EnterSKUFrame.cpp
//--
#include <iostream.h>
#include <conio.h>
#include "EnterSKUControl.h"

//--

int main()
{
 EnterSKUController control;
 string newSKU = control.createSKU("Atenolol","SKN Ltd",3.24);
 cout << "New SKU Reference " << newSKU << " created." << endl;

219 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

 newSKU = control.createSKU("Paracetomol","SKN Ltd",0.23);
 cout << "New SKU Reference " << newSKU << " created." << endl;
}
//--

File : EnterSKUControl.h / .cpp
The implementation of the createSKU() Method in the EnterSKUController
simply passes on the request to the StockFacade...

EnterSKUControl ler

:StockFacade

1.1 newID:= createSKU(unitPrice,suppl ierName,productName)

// EnterSKUController.h

#include "StockFacade.h"

class EnterSKUController
{
public:
EnterSKUController();
 string createSKU(string,string,double);

private:
 StockFacade* stockFacade;
};

// EnterSKUController.cpp

#include <iostream.h>
#include "StockFacade.h"
#include "EnterSKUControl.h"

EnterSKUController::EnterSKUController()
{
 // get a reference to the StockFacade
 stockFacade = StockFacade::getReference();
}

string EnterSKUController::createSKU(string product,
 string supplier,double price)
{
 return stockFacade->createSKU(product, supplier, price);
}

220 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

To get access to the StockFacade, we haven’t called new as usual; instead
we have called the static method getReference(), because the StockFacade
has been coded as a Singleton. See the chapter on Design Patterns for full
details.

File : StockFacade.h / .cpp

:StockFacade

:Catalogue

1.2 newID:= createSKU(productName,suppl ierName,uni tPrice)

1.3 newID:= generateNewSKUID()

The implementation of the createSKU method in StockFacade simply
forwards the request to the Catalgoue. The Catalogue class is our “collection”
class that holds all of the SKU Records.

The complication in the Facade class is the mechanics of the Singleton. Once
again, see the chapter on Design Patterns for details...

class StockFacade
{

private: // singleton
 StockFacade();
 Catalogue* theCatalogue;

public:
 static StockFacade* getReference();
 string createSKU(string,string,double);
};

.cpp file follows on the next page...

221 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

StockFacade.cpp
#include <iostream.h>
#include "Catalogue.h"
#include "StockFacade.h"

StockFacade::StockFacade()
{
 //private constructor
 theCatalogue = new Catalogue();
}

StockFacade* StockFacade::getReference()
{
 static StockFacade reference;
 return &reference;
}

string StockFacade::createSKU(string product,
 string supplier,double price)
{
 return theCatalogue->createSKU(product, supplier, price);
}

Notice that we construct the Catalogue in the constructor for the Facade.
Remember that this will only ever happen once, regardless of how many
times the facade is accessed.

File : Catalgoue.h / .cpp
The createSKU method in Catalgoue needs to:

• Generate a new SKU ID (method 1.3 on the Collaboration diagram)
• Create the SKU Object (method 1.4)
• Store the new SKU in a Collection (this could have been an array,

we’ve opted for a vector)

:Catalogue

:SKU

1.3 newID:= generateNewSKUID()

1.4 create(SKUID,productName,suppl ierName,uni tPrice)

#include <iostream.h>
#include <vector>
#include "SKU.h"

class Catalogue

222 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

{
private: // singleton
 static int nextSKUNumber;
 vector<SKU> skuList;

public:
 Catalogue();
 string generateNewSKUID();
 string createSKU(string,string,double);
};

.cpp file follows on next page...

223 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Catalogue.cpp:
#include <iostream.h>
#include <sstream.h>
#include "Catalogue.h"
#include "SKU.h"

int Catalogue::nextSKUNumber = 1;

string Catalogue::generateNewSKUID()
{
 string retStr("SKU");
 std::ostringstream o;
 o << nextSKUNumber++;
 retStr += o.str();
 return retStr;
}

string Catalogue::createSKU(string product,string supplier,
 double unitPrice)
{
 string SKUID = this->generateNewSKUID();
 SKU newSKU (SKUID, product, supplier, unitPrice);
 skuList.push_back(newSKU);
 return SKUID;
}

Notice that we have made the generateNewSKUID method private, as it
should not be called from outside of the class. We’ve also provided a very
bland and boring implementation of the method, just for illustration!

File : SKU.h / .cpp
All that remains is the creation of the SKU Class. There is very little behaviour
in here at present; only data is stored in the SKU. We would expect this to
change as future iterations add more behaviour to the class diagram.

Unfortunately there is no way to prevent other classes in the system from
accessing this class, even though our design placed this class behind a
facade.
#include <iostream.h>

class SKU
{

private:
 string SKUID;
 string productName;
 string supplierName;
 double unitPrice;

public:

224 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

 SKU(string, string, string, double);
};

#include "SKU.h"

SKU::SKU(string SKUID, string productName, string supplierName,
 double unitPrice)
{
 this->SKUID = SKUID;
 this->productName = productName;
 this->supplierName = supplierName;
 this->unitPrice = unitPrice;
}

225 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Ada Code
In Ada we can dispense with Facades and Singletons, as we think that Ada’s
package construct provides a very effective mechanism for achieving the
same thing.

We built this system using two packages, control and stock.

File : main.ada

with control;
with stock;
with Text_IO;

procedure main is
 newSKU : stock.SKUID_Type;
 ProductName : stock.Product_Name_Type;
 Supplier : stock.Supplier_Name_Type;
begin
 ProductName(1..8) := ("Atenolol");
 ProductName(9..stock.product_Name_Type'length) := (others => ' ');

 supplier(1..7) := "SKN Ltd";
 supplier(8..stock.supplier_name_type'length) := (others => ' ');
 newSKU := control.create_SKU(productName,supplier,3.24);

 ProductName(1..11) := ("paracetemol");
 ProductName(9..stock.product_Name_Type'length) := (others => ' ');
 NewSKU := Control.create_SKU(productName,supplier,0.32);
end main;

Control Package
The control package exposes the following method:

with stock;

package control is

226 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

 function create_SKU (product_Name : stock.product_name_type;
 Product_Supplier : stock.supplier_name_type;
unit_Price : float)
 return stock.skuID_Type;

end Control;

The package body implements the create_SKU method as follows:
with stock;

package body control is

 function create_SKU (product_Name : stock.product_name_type;
 Product_Supplier : stock.supplier_name_type;
unit_Price : float)
 return stock.skuID_Type is

 begin
return stock.create_SKU(product_Name,
 product_Supplier,
 unit_Price);
 end create_SKU;

end control;

Stock Package

:StockFacade

:Catalogue

1.2 newID:= createSKU(productName,suppl ierName,uni tPrice)

1.3 newID:= generateNewSKUID()

The Stock Package has the following specification:
package Stock is

 type SKU is private;
 type catalgoue is private;

 subtype SKUID_Type is String(1..10);
 type Product_Name_Type is new String(1..50);
 type supplier_Name_Type is new String(1..50);

227 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

 function create_SKU(Product_Name : product_Name_Type;
 Product_Supplier : Supplier_Name_Type;
 unit_Price : float)
 return SKUID_Type;

 private

 type SKU is record
 SKUID : SKUID_Type;
 Product_name : product_Name_Type;
 supplier_Name : supplier_Name_type;
 unit_Price : float;
 end record;

 type catalgoue is array(1..50) of SKU;

end Stock;

Notice that the “generateNewSKUID” is not present in the package
specification – this means it will be private to the package.

The package body follows on the next page...

228 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Stock Package Body...
with Text_IO;

package body Stock is

 nextSKUID : Integer := 1;
 catalogue : array(1..50) of SKU;

 procedure Initialise (this : out SKU;
 SKUID : SKUID_Type;
 name : product_Name_type;
 supplier : supplier_name_type;
 price : float) is
 begin
 This.SKUID := SKUID;
 This.Product_Name := Name;
This.Supplier_Name := Supplier;
This.Unit_Price := price;
 end initialise;

 function generate_new_SKU return SKUID_type is
 newSKU : SKUID_Type;
 begin
 -- add your own implementation here
-- quick and dirty for illustration only
newSKU(1..3) := "SKU";
newSKU(4..SKUID_Type'length) := (others => ' ');
return newSKU;
 end generate_New_SKU;

 function create_SKU (product_Name : stock.product_name_type;
 Product_Supplier : stock.supplier_name_type;
 unit_Price : float) return skuID_Type
 is
 new_SKU : SKU;
 NewSKU_ID : SKUID_Type;
 begin

 NewSKU_ID := generate_New_SKU;

 Initialise(This => New_SKU,
 SKUID => NewSKU_ID,
 Name => product_Name,
 Supplier => product_Supplier,
 Price => Unit_Price);

 Catalogue(nextSKUID) := new_SKU;
 nextSKUID := NextSKUID + 1;

return newSKU_ID;

 end create_SKU;

end stock;

229 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

Visual Basic.NET Code
We are going to start from the top and work downwards (just our personal
preference). The user has entered a product name, a supplier name and a
price in the user interface (we call this the “EnterSKUFrame”). A message is
sent on to the EnterSKUController called “createSKU”, which returns the new
ID for the SKU (this is because the customer has asked for the automatic
generation of SKU’s).

:EnterSKUFrame

:EnterSKUControl ler

1 newID:= createSKU(productName,suppl ierName,uni tPrice)

Here’s our code for this. We have removed any GUI code as that is irrelevant
to this discussion. We have “hardcoded” in some example data that the user
might have entered.

Note that all line breaks that appear in the middle of lines of code have been
added by our Word Processor and weren’t present in the original source files.

File : EnterSKUFrame.vb
Module MainForm

 Private control As control.EnterSKUController

 Sub Main()
 control = New control.EnterSKUController()
 Console.WriteLine
 ("Created: " + control.createSKU("Atenolol", 7.42))
 Console.WriteLine
 ("Created: " + control.createSKU("Paracetemol", 0.23))
 End Sub

End Module

File : EnterSKUController.vb
The implementation of the createSKU() Method in the EnterSKUController
simply passes on the request to the StockFacade...

230 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

EnterSKUControl ler

:StockFacade

1.1 newID:= createSKU(unitPrice,suppl ierName,productName)

Namespace control

 Public Class EnterSKUController

 Public Function createSKU
 (ByVal name As String, ByVal price As Double)
 Dim StockComponent As Stock.StockFacade
 StockComponent = StockComponent.getReference()
 Return StockComponent.createSKU(name, price)
 End Function

 End Class
End Namespace

To get access to the StockFacade, we haven’t called new as usual; instead
we have called the shared (static) method getReference(), because the
StockFacade has been coded as a Singleton. See the chapter on Design
Patterns for full details.

File : StockFacade.vb

:StockFacade

:Catalogue

1.2 newID:= createSKU(productName,suppl ierName,uni tPrice)

1.3 newID:= generateNewSKUID()

The implementation of the createSKU method in StockFacade simply
forwards the request to the Catalgoue. The Catalogue class is our “collection”
class that holds all of the SKU Records.

The complication in the Facade class is the mechanics of the Singleton. Once
again, see the chapter on Design Patterns for details...
Namespace Stock

 Public Class StockFacade
 Private Shared reference As StockFacade

231 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

 Private Shared created As Boolean
 Private StockCatalogue As Catalogue

 Shared Function getReference() As StockFacade
 If created = False Then
 reference = New StockFacade()
 created = True
 Return reference
 Else
 Return reference
 End If
 End Function

 Private Sub New()
 '' singleton class => private constructor
 StockCatalogue = New Catalogue()
 End Sub

 Public Function createSKU
 (ByVal name As String, ByVal price As Double)
 Return StockCatalogue.createNewSKU(name, price)
 End Function

 End Class

End Namespace

Notice that we construct the Catalogue in the constructor for the Facade.
Remember that this will only ever happen once, regardless of how many
times the facade is accessed.

File : Catalgoue.vb
The createSKU method in Catalgoue needs to:

• Generate a new SKU ID (method 1.3 on the Collaboration diagram)
• Create the SKU Object (method 1.4)
• Store the new SKU in a Collection (this could have been an array,

we’ve opted for a Hashtable with the SKUID forming the key)

:Catalogue

:SKU

1.3 newID:= generateNewSKUID()

1.4 create(SKUID,productName,suppl ierName,uni tPrice)

Namespace Stock

 Public Class Catalogue

232 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

 Private SkuList As Collections.Hashtable
 Private Shared nextSKUNumber As Integer = 1

 Public Sub New()
 SkuList = New Collections.Hashtable()
 End Sub

 Private Function generateNewSKUID() As String
 Dim ReturnString As String
 ReturnString = "SKU"
 ReturnString = ReturnString + Str(nextSKUNumber)
 nextSKUNumber = nextSKUNumber + 1
 Return ReturnString
 End Function

 Public Function createNewSKU
 (ByVal name As String, ByVal price As Double) As String
 Dim newSKUID As String
 newSKUID = generateNewSKUID()
 Dim newSKU As New SKU(newSKUID, name, price)
 SkuList.Add(newSKUID, newSKU)
 Return newSKUID
 End Function

 End Class

End Namespace

Notice that we have made the generateNewSKUID method private, as it
should not be called from outside of the class. We’ve also provided a very
bland and boring implementation of the method, just for illustration!

File : SKU.vb
All that remains is the creation of the SKU Class. There is very little behaviour
in here at present; only data is stored in the SKU. We would expect this to
change as future iterations add more behaviour to the class diagram.
Namespace Stock

 Class SKU

 Private SKUID As String
 Private productName As String
 Private unitprice As Double

 Public Sub New(ByVal m_SKUID As String,
 ByVal m_productName As String,
 ByVal m_unitprice As Double)
 Me.SKUID = m_SKUID
 Me.productName = m_productName
 Me.unitprice = m_unitprice
 End Sub

233 UML Applied

2005 Ariadne Training Limited
www.ariadnetraining.co.uk

 End Class

End Namespace

234 UML Applied

Recommended Books
These are our favourite books related to the subject of this course. Not all of
them are referenced directly by the course – many of them are completely
independent of the UML and OO, but they all have some bearing on the topics
we have covered.

[1] : Scott, Kendall 2002 The Unified Process Explained Addison-Wesley
ISBN: 0201742047
A full overview of the UP.

[2] : Larman, Craig. 2001 Applying UML and Patterns An Introduction to
Object Oriented Analysis and Design Prentice Hall ISBN: 0130925691
Larman applies the UML rather than getting lost in the mass of detail that is often associated
with the UML. An excellent approach. The second edition uses the Unified Process rather
than the homebrew process used in the first edition. Strongly recommended.

[3] Shalloway/Trott 2001 Design Patterns Explained: A New Perspective
on Object-Oriented Design Addison Wesley ISBN: 0201715945

A much more readable guide to design patterns than the “Gang of Four” book. It lacks the
rigour or the detail of GoF, but this book is definitely more approachable.

[4] : Collins, Tony Crash – Learning from the World’s Worst Computer
Disasters Simon & Schuster ISBN: 0684868350

If you don’t believe that the Software Engineering industry is in a crisis, and that as an
industry we need to sharpen up our game, read this entertaining book about some of the most
widely publicised computer disasters of the last few years.

[5] : Gamma, E., Helm, R., Johnson, R., Vlissides, J. 1995 Design Patterns :
Elements of Reusable Object Oriented Software Addison-Wesley ISBN:
0201633612
The classic “Gang of Four” catalogue of several design patterns. Hard work for sure, but
useful if you wish to go further with your OO and give your brain some serious exercise.

[6] : Riel, Arthur 1996 Object Oriented Design Heuristics Addison-Wesley
ISBN: 020163385X
A Heuristic is a “rule of thumb”; this book is a good guide to how to apply OO properly. The
book is feeling its age a little now, but it certainly has some excellent points to make and
whilst it lacks the depth or breadth of the Gang of Four book, it is certainly more readable.

[7] : Glass, Robert L Facts and Fallacies of Software Engineering Addison-
Wesley ISBN: 0321117425

A superb book that covers 55 facts (at least, the what the author believes to be facts) about
Software Engineering. We’ve included the book here because of the excellent coverage on
components and reuse, but the rest of the book too is a must-read for all software engineers.

235 UML Applied

[8] : Fowler, Martin 2002 Patterns of Enterprise Application Architecture
Addison-Wesley ISBN: 0321127420
Aimed at developers working on platforms such as .NET or J2EE, this book features some
interesting thoughts on modern development issues – such as the mapping between objects
and databases.

[9] : Cockburn, Alistair 2000 Writing Effective Use Cases Addison-Wesley
ISBN: 0201702258
Alistair Cockburn’s book is one of the few books that cover how to write Use Case
Descriptions.

[10] : Elisabeth Freeman, Eric Freeman, Bert Bates 2004 Head First Design
Patterns O'Reilly ISBN: 0596007124

At last! A book on design patterns that is readable, understandable and entertaining. And it is
deep – it covers full OO design principles in FAR more detail than we can on a one week
course.

