
Code
Refactoring

By Sheyma Naghshbandi

Your Professional Mission in Software Engineering :

What is
Refactoring ?

Improves the internal structure of
the software but preserves the
external behaviour.

Why You Should Refactor?

Readability

Maintainability

Teamwork

Reducing
Technical Debt

Scalability for
the Future

Reduce
Complexity

Better
Performance

Workplace Example: At companies like Google, engineers must deliver clean code
because every sloppy line hikes up maintenance costs and frustrates clients!

When Should You Refactor?
After Quick-and-Dirty Code

Before Adding Features

When Bugs Take Over

In Team Projects

When Complexity Goes
Wild

Refactoring also fits naturally in the Agile methods philosophy
Is needed to address the principle "Maintain simplicity"
Wherever possible, actively work to eliminate complexity from the
system
By refactoring the code.

Workplace Example: In a startup, if
you don’t refactor before launching a
product, clients will face bugs, and
your project could flop!

What is Dirty Code?

Hard to Read

Overly Complex

Redundant

Tightly Coupled

Unmaintainable

Untested or
Poorly
Tested

Example : At InnoTech, Sara’s team struggled with a data analytics

platform where dirty code caused slow data processing, buggy

dashboard filters, and low morale, costing the company time and

customer trust.

Why it

Happens?

What Are Code Smells?

Ew!
Your
Code
Smells!

Code smells are specific patterns or symptoms in code that indicate
potential design or quality issues. They’re not bugs (the code may still
work), but they suggest underlying problems that could lead to dirty
code, making the codebase harder to maintain, extend, or test. Code
smells are like warning signs—red flags that prompt developers to
investigate and refactor before issues escalate.

Duplicated
Code

Long
Methods/
Functions

Larg
classes

Tight
Coupling

Long
Parameter
List

Dead
Code

What Should You Do to Avoid Code Smells? Refactor Your Code !

How to get rid of Code Smells

Refactoring Techniques

Small
Refactoring

Big
Refactoring

Extract Method and Extract Class

Red-Green-Refactor

Rename Method/Variable

Introduce Parameter Object

Remove Dead code Inline Method

User Face Refactoring

Large-Scale Refactoring
involves major changes to a
project's code structure or
system architecture,
spanning multiple modules
or the entire software. It
addresses deep structural
issues, enhances scalability,
or prepares for new
requirements.

Small-Scale vs Large-Scale Refactoring

Practical Example: عتاب یک که دارید زیر شکل به کدی کنید فرض
است محصول یک تخفیف محاسبه برای

: Renameخوانایی برای متغیرها نام تغییر
ربهت

: Extract Methodمحاسبه منطق کردن جدا
جدید متد یک به تخفیف

Small Refactoring

 است شده خواناتر کد

 قابل جداگانه بهصورت تخفیف منطق
است مجدد استفاده و تست

 دقیقه چند در که است کوچکی تغییر
دارد کمی ریسک و شده انجام

Practical Example: :مشکل
خط دو

printf
 کار که داریم
 میکنن یکسانی

 فرق اسمها فقط
داره

• داریم تکراری کد

• فرمت بخوای اگه
 بدی تغییر رو پیام

(بهش کلمه یه مثلا
کنی اضافه) دو باید ،

کنی عوضش جا

بازسازی تکنیک :
Remove Duplication

گذاشتم جدا تابع یه توی رو تکراری کد یعنی ،کردم استفاده

بدی تغییر رو پیام فرمت بخوای اگه

 جا چند نیست نیازی و میکنی عوضش تابع توی فقط
بدی تغییر

 صرفهجویی زیادی زمان کار این ،بزرگ پروژههای تو
میکنه

Introduce ParameterPractical Example:

• Issue in Before Code: The tax rate (20) is hard-
coded directly in the code. If you want to
change the tax rate, you’d need to modify the
code itself, which reduces flexibility.

• Refactoring Technique: I used Introduce
Parameter, which means I added a parameter
for the tax rate.

• Changes in After Code: I created a new
function called add_tax that takes two
parameters: base_price (base price) and tax_rate
(tax rate). In main, instead of adding the fixed
number 20, I called add_tax with the tax rate as a
parameter.

• Benefit: Now you can change the tax rate
without modifying the code. This is very useful
in real projects because client requirements
might change, and flexibility is important.

Extract VariablePractical Example:

Issue in Before Code: A complex expression (a + b + a

* b) is used directly in the printf statement. This
makes the code hard to read, and if you need to
modify or debug this expression, it’s more difficult.

Refactoring Technique: I used Extract Variable,
which means I broke down the expression into
separate variables.

Changes in After Code: I stored a + b in a variable
called sum, a * b in a variable called product, and the
final result (sum + product) in a variable called result,
which I then used in printf.

Benefit: The code is now more readable, and if you
need to modify the calculations or find an error, it’s
easier. In large projects, this makes debugging
faster.

Simplify LogicPractical Example:

Refactoring Tools

Built-in IDE Tools :
IntelliJ IDEA (for Java, Kotlin,
etc.)

Visual Studio (for C#, C++, etc.)

PyCharm (for Python)

Eclipse (for Java)

Plugins and Extensions

Refactoring Tools

Static Analysis and

Code Quality Tools:
• SonarQube:

• Capabilities: Detecting duplicated
code, high complexity, and
suggesting structural changes.

• Coverity:

• Capabilities: Suggesting removal of
unnecessary code and performance
improvements.

• PMD (for Java):

• Capabilities: Detecting code smells
and recommending optimizations.

Common Capabilities
of Refactoring Tools
• Rename: Renaming variables, methods, classes, or packages across a project.
• Example: Renaming variable x to userCount in IntelliJ IDEA.
• Extract Method/Function: Separating a code block into a new method or function.
• Example: Extracting discount calculation logic into a separate function in PyCharm.
• Inline Variable/Method: Replacing a variable or method with its direct value or

functionality.
• Example: Replacing a temporary variable with a constant in Visual Studio.
• Move: Relocating a class, method, or file to another location (e.g., a new package or

module).
• Example: Moving a class to a new package in Eclipse.
• Change Signature: Modifying a method’s parameters, return type, or name.
• Example: Adding a new parameter to a method in IntelliJ IDEA.
• Extract Class/Interface: Creating a new class or interface from existing code.
• Example: Extracting validation logic into a new class in Visual Studio.
• Simplify Conditionals: Simplifying complex conditional statements.
• Example: Converting nested conditions to a simpler form in PyCharm.
• Remove Dead Code: Eliminating unused or unnecessary code.
• Example: Removing undefined variables in SonarLint.
• Organize Imports: Sorting and removing unnecessary imports.
• Example: Removing unused imports in Eclipse.

Examples with Refactoring
Tools

Using PyCharm for
Extract Method

A Python function contains complex tax calculation logic

Action:
• Select the tax calculation
block

• (if total > 1000: total *= 1.1).
• Choose Extract Method from
the Refactor menu.

• Name the new method apply_tax.
• PyCharm creates a new
function:

Result: Tax logic is
separated, making the code
more modular.

Real life Scenario

The Story Begins...

 a spirited software engineer

• Terrible Slowness: When order volume spikes, the system
practically goes into a coma.

• Messy Code: Long methods, weird variable names (like x and
tmp), and logic that looks like it was written in a rush.

• Adding New Features? A Nightmare! The product team
wants to add PayPal payment support, but touching the code
feels like walking through a minefield.

Stage 1: Sleuthing and Mapping
(Analysis and Planning)

The engineer needs to figure out why this system is such
a pain. Like a detective, she digs into the code and talks
to the team.

 Diving into the Code

 Talking to the Team

 Setting Goals

 Checking Tests

Tools:

• PyCharm: Like a treasure map
showing the entire codebase.

• SonarLint/SonarQube: Like a
tracker that pinpoints code
issues.

• Jira: For logging problems and
planning

Stage 2: Arming Up with Shields
(Tests and Environment)

Strengthening Tests

 Running Tests

 Backup Version

 Setting Up CI/CD

Tools:
• pytest: Like a guard

ensuring the code
doesn’t break.

• Git: So you always
have an escape route!

• GitHub Actions: For
automating tests.

• Docker: To make the
test environment
match production.

Stage 3: Small-Scale Refactoring

Make the code clean

Code Review

Stage 4: Large-Scale Refactoring

• Designing a New

Blueprint

• Building the New

Service

• Separating the

Database

• Cool APIs

• Connecting to
Others

• Testing and
Launching

Tools:

• FastAPI: For building

fast, cool APIs.

• SQLAlchemy: For

managing the

database like a pro.

• Docker/Kubernetes:
To make the service

launch-ready like a

spaceship.

• Locust: To test if the
service can handle

pressure without

crumbling!

Stage 5: Celebrating and Documenting

• Code Review

• Cool Documentation

• Gathering Feedback

• Celebrating Success

The new service goes live in production, and the
system’s speed triples. The product team loves it
because adding PayPal is now a breeze!

Best Refactoring Practices

• Always Start with Tests: Without tests, refactoring is like diving

without checking the water’s depth.

• Take Small Steps: Break big changes into tiny, manageable pieces.

• Use Tools: IDEs like PyCharm and analyzers like SonarQube are your

best friends.

• Keep the Team in the Loop: Code reviews and team alignment

prevent tons of issues.

• Monitor Performance: Post-refactoring, use tools like Prometheus

to confirm the system’s better.

• Don’t Forget Docs: Clean code without docs is like a book without a

table of contents.

What is Clean Code?

The Art of Programming

If it works don't touch it

Not just work, Should be EASY to work with

Clean Code Practices

Meaningful Naming

Small and Focused Functions

Avoid Duplication

Useful Comments

Error Handling

Consistent Formatting

Testability

Clean Code Architecture

Separation of Concerns

Dependency Inversion

Layered Architecture

Design Patterns

Framework Independence

Dependency Management

Architecture Documentation

	Slide 1: Code Refactoring
	Slide 2: What is Refactoring ?
	Slide 3: Why You Should Refactor?
	Slide 4: When Should You Refactor?
	Slide 5: What is Dirty Code?
	Slide 6: What Are Code Smells?
	Slide 7: How to get rid of Code Smells
	Slide 8: Refactoring Techniques
	Slide 9: Small-Scale vs Large-Scale Refactoring
	Slide 10: Practical Example:
	Slide 11
	Slide 12: Introduce Parameter
	Slide 13: Extract Variable
	Slide 14: Simplify Logic
	Slide 15: Refactoring Tools
	Slide 16: Refactoring Tools
	Slide 17: Common Capabilities of Refactoring Tools
	Slide 18: Examples with Refactoring Tools
	Slide 19: Real life Scenario
	Slide 20: Stage 1: Sleuthing and Mapping (Analysis and Planning)
	Slide 21: Stage 2: Arming Up with Shields (Tests and Environment)
	Slide 22: Stage 3: Small-Scale Refactoring
	Slide 23: Stage 4: Large-Scale Refactoring
	Slide 24: Stage 5: Celebrating and Documenting
	Slide 25: Best Refactoring Practices
	Slide 26: What is Clean Code?
	Slide 27: Clean Code Practices
	Slide 28
	Slide 29

