Your Professional Mission in Software Engineering :

—Code
Refactoring

o (=3
MMK ‘ ?a

© What is
Refactoring ?

Improves the internal structure of
the software but preserves the
external behaviour.

Why You Should Refactor?

£] Readability B [Scalability for
HH the Future
Q Maintainability
o# Reduce
Complexity

IiV/i\Vi\/l Teamwork

Reducing
Technical Debt

3 Better
Performance

Workplace Example: At companies like Google, engineers must deliver clean code
because every sloppy line hikes up maintenance costs and frustrates clients!

After Quick-and-Dirty Code

In Team Projects
When Complexity Goes
Wild

Refactoring also fits naturally in the Agile methods philosophy
Is needed to address the principle "Maintain simplicity"

Wherever possible, actively work to eliminate complexity from the
system

By refactoring the code.

When Should You Refactor?

THE LiFE OF A SofFTWARE
ENGINEER .

MUCH LATER...

CLEAN) SLATE. SoLiD
FoUNDATIONS. THIS TiME
T wWill BUILD THiINGD THE
RIGHT wAY.

OH MY, I7VE
DONE iT AGAIN,
HAVEN'T T 7

Workplace Example: In a startup, if
you don’t refactor before launching a
product, clients will face bugs, and
your project could flop!

What is Dirty Code? Happens?—

Tightly Coupled

Hard to Read \ i
Unmaintainable

/ \ Untested or
Redundant Poorly
Tested
Example : At InnoTech, Sara’s team struggled with a data analytics
platform where dirty code caused slow data processing, buggy
dashboard filters, and low morale, costing the company time and)

customer trust.

/

§9

Inexperience
Hard Deadlines
Mismanagement
Shortcuts
Unknowns

What Are Code Smells?

Code smells are specific patterns or symptoms in code that indicate
potential design or quality issues. They’re not bugs (the code may still
work), but they suggest underlying problems that could lead to dirty
code, making the codebase harder to maintain, extend, or test. Code
smells are like warning signs—red flags that prompt developers to
investigate and refactor before issues escalate.

What Should You Do to Avoid Code Smells? Refactor Your Code!

== Duplicated -1 Larg 2 Long |
& Code & classes & Parameter Ew!
List Your

Code

Smells!

Long Ti
= ight -+ T Dead
Methcfds/ & Coupling & Code
Functions

&iﬂ

How to get rid of Code Smells Q

SLRTRLTY
willgb 1is
$HlyS5 as
cuss 5138 6L
Sy IS
oz Slab b
8dye IS5

b Sl Siawlg

JSe
Clgiue jl) iags T
lnss Jlais! e 5)lagSs
pgd B ps o S8
st Sl S o Sulgians jl
Rilio J19))2 g nEglis

“. ..3 - - L‘;IJJ -

J=2l)
iS58 oAb i @) psas
Syiie b @ zlyziuwl
b ise Sl auwl jl o5laiwl
FSazeS sl jullS 4 pauss
> aie @ zlyiwl g $jlwosluw
Jal=i slayll b ois

oSiuuly G2)5

Refactoring Techniques

{_JSmall

o ReRoRe o e

Refactoring

Extract Method and Extract Class

Rename Method/Variable
Red-Green-Refactor
Introduce Parameter Object

Remove Dead code Inline Method

User Face Refactoring

{) Big

Refactoring

Large-Scale Refactoring
involves major changes to a
project's code structure or
system architecture,
spanning multiple modules
or the entire software. It
addresses deep structural
issues, enhances scalability,
or prepares for new
requirements.

Small-Scale vs Large-Scale Refactoring

s, 15l
Si)%eliy 4 jli

Sy S

Small-Scale Refactoring
Sz29S Jsilo L pullS @l Sy @ 25220
Sxelu 2z b 4818 2iz
Olyasis (391 39320 Jal @1 a5
UDse LSz G wulilss dsug
sk, Il IDE (Rename. Extract Method)
dgisne plail i jai Dyguoas el S

d.SLu.lsJ L..IPJJ 9 lnsl.l.a

Large-Scale Refactoring
oS yless b Jgjle riz iplunn JS
>olo b ladian (lajg
Olypuss U."ﬁ:._,l..uf Jus @ ML
wid a1 89) b spdypulise «)lase 3914
g Cul o §)lems $la,lul CI/CD
3453 bbb g =i 4 jle ol

uul_Fr.! |._l lf_uJ LﬁLﬁ.ﬁjSJJ___JJ ilsa.‘la :._].'il.i

Practical Example:

python
calculate price(price, quantity):
guantity > 10:
discount = price * quantity * 8.1

final price = price *¥ gquantity - discount

final price = price ¥ guantity
— F

final price

python

calculate price(unit_price, quantity):

unit _price * quantity - get discount(unit price, quantity)

get discount(unit price, quantity):

unit price * quantity * 8.1 quantity > 10

U S AS 4l) JSdidy (538 WIS (i B
o)) grana S AT duulaa (o)

) A (o) W purdia Ui s : Rename
=g
dulaa ghia 03 S 1 ¢ Extract Method

Lda e S A aa8AS

Small Refactoring

S oﬁﬂﬁb&ds

S Adl)aa &) guady adds glaia

Cowl ddaa daldliay) g Cund

@JAS%JJMM‘US%‘QSJ:\:&J
JJ\JUASMJJM.&?@\

Practical Example: O [oooms s

i () g 45)

% oS g ol printf
#include (L%MS‘QSJA S A4S ayla
int main() { =S Mba\) bl CAS oo Al
printf("Employee: Ali - Active\n"); u-\s u-'«'uéjﬁ 1& L’jﬁ ue.u\ Jadd
printf("Em ployee: Reza - Active\n"); DJ‘J

return 0:

e Sl Sis;
Remove Duplication

1
T

ALK Jan Al Ay (568 9 (51 ST Sy can S oaldi)

#include

void log_employee(char *name) {

printf("Employee: %s - Active\n", name);

& o g aly a8 (o) sy 45)

int main() { Q&M&J@Ju:‘su‘ aa ¢S @u Lgﬂbﬁé
log employee("Ali"); LY J#ﬁ

log_employee("Reza”); (f‘..ﬁ‘u)“ 4.9411.'5 UL‘J JIS C):“ “SJJé L5u°jJJ$ gY
return O; 4_'\5‘!4

'

Practical Example: Q Introduce Parameter

« Issue in Before Code: The tax rate (20) is hard-
<stdio.h> coded directly in the code. If you want to
main() { change the tax rate, you'd need to modify the

frlze = s code itself, which reduces flexibility.
printf("%d\n", price + 20);

@; « Refactoring Technique: | used Introduce
Parameter, which means | added a parameter
for the tax rate.

« Changesin After Code: | created a new

<stdio.h> function called add_tax that takes two
add_tax(int base price, tax_rate) { parameters: base_price (base price) and tax_rate
base_price + tax_rate; (tax rate). In main, instead of adding the fixed
number 20, | called add tax with the tax rate as a
main() { parameter.
price = 180;
printf("Price with Tax: %d\n", add tax(price, 20)); « Benefit: Now you can Change the tax rate

K without modifying the code. This is very useful

in real projects because client requirements
might change, and flexibility is important.

Practical Example:

<stdio.h>
main() {
a=5,b=10;
printf("%d\n", a + b + a * b);
8;

<stdio.h>
main() {
a=5,b=10;
sum = a + b;
product = a * b;

result = sum + product;

printf("%d\n", result);
8;

Q Extract Variable

Issue in Before Code: A complex expression (a+b+a
*b) is used directly in the printf statement. This
makes the code hard to read, and if you need to
modify or debug this expression, it’s more difficult.

Refactoring Technique: | used Extract Variable,
which means | broke down the expression into
separate variables.

Changes in After Code: | stored a+b in a variable

called sum, a* b in a variable called product, and the
final result (sum + product) in a variable called result,
which | then used in printf.

Benefit: The code is now more readable, and if you
need to modify the calculations or find an error, it’s
easier. In large projects, this makes debugging
faster.

Practical Example: Q Simplify Logic

#include #include

int main() { int main() {
int years = 6, active = 1; . .
int years = 6, active = 1;

if (years >5) {
s = = 1) int gets_bonus = years > 5 && active == 1;

printf("Gets Bonus\n"); if (gets_bonus)
}
}

return O;

} }

printf("Gets Bonus\n");

return O;

yes

Refactoring Tools

Built-in IDE Tools :

Plugins and Extensions

*

g Intellid IDEA (for Java, Kotlin,
etc.)

D Visual Studio (for C#, C++, etc.)

Eclipse (for Java
~ _oipse)

[&’ PyCharm (for Python)

- g

',I i \

@
()
.
Hi ,- I \

{
0“-|]
[l ;
4
1 °

®
&)
,, I'-Oi y
HESTA

2]

Refactoring Tools

Static Analysis and

Code Quality Tools:

*

Capabilities: Detecting duplicated
code, high complexity, and
suggesting structural changes.

Capabilities: Suggesting removal of
unnecessary code and performance
improvements.

Capabilities: Detecting code smells
and recommending optimizations.

r

()
I
|] ||u

(\I\

Common Capabilities Q\(
of Refactoring Tools

: Renamingvariables, methods, classes, or packages across a project.
* Example: Renamingvariable x to userCount in Intelli) IDEA.

: Separating a code block into a new method or function.

* Example: Extracting discount calculation logic into a separate function in PyCharm.
: Replacing a variable or method with its direct value or
functionality.
 Example: Replacing a temporary variable with a constant in Visual Studio.
: Relocating a class, method, or file to another location (e.g., a new package or
module).
 Example: Moving a class to a new package in Eclipse.
: Modifying a method’s parameters, return type, or name.
* Example: Adding a new parameterto a method in IntelliJ IDEA.
: Creating a new class or interface from existing code.
* Example: Extracting validation logic into a new class in Visual Studio.
: Simplifying complex conditional statements.
 Example: Converting nested conditions to a simpler form in PyCharm.
: Eliminating unused or unnecessary code.
* Example: Removing undefined variables in SonarLint.
: Sorting and removing unnecessary imports.
 Example: Removing unused imports in Eclipse.

)L

-la g

[

" -Qa

(o)
-
| '-

21

()

I ! l
)

A

1 °

(Y

Examples with Refactoring

Tools Q‘(

A Python function contains complex tax calculation logic
python

Action:
calculate_total_price(items): e Select the tax calculation
total = @ block

item items:

(if total > 1000: total *= 1.1) .

Choose Extract Method from
the Refactor menu.

total += item.price

total > 1008:
total *= 1.1

total
e Name the new method ap1y tax.
python e PyCharm creates a new
calculate total price(items): 'FunCtion .
total = 8
item items:
total += item.price .
total = apply tax(total) = . .
N Result: Tax logic is
. separated, making the code
apply_tax(total):
total > 1000: more modular.

total *= 1.1
total

Real life Scenario

The Story Begins...

a spirited software engineer

* Terrible Slowness: \When order volume spikes, the system
practically goes into a coma.

* Messy Code: Long methods, weird variable names (like x and
tmp), and logic that looks like it was written in a rush.

* Adding New Features? A Nightmare! The product team
wants to add PayPal payment support, but touching the code
feels like walking through a minefield.

Stage 1: Sleuthing and Mapping
(Analysis and Planning)

The engineer needs to figure out why this system is such
a pain. Like a detective, she digs into the code and talks
to the team.

Tools:

e PyCharm: Like a treasure map

Diving into the Code showing the entire codebase.

Talking to the Team
e SonarlLint/SonarQube: Like a

Setting Goals tracker that pinpoints code
issues.

Checking Tests

e Jira: For logging problems and
planning

QO

Stage 2: Arming Up with Shields
(Tests and Environment)

Tools:

e pytest: Like a guard
Strengthening Tests ensuring the code
doesn’t break.

Running Tests

e Git: So you always

Backup Version have an escape route! {

Setting Up CI/CD

e GitHub Actions: For
automating tests.

e Docker: To make the
test environment
match production.

Stage 3: Small-Scale Refactoring

Code Review

Stage 4: Large-Scale Refactoring

Designing a New Tools:
Blueprint

« FastAPI: For building
Building the New fast, cool APIs.
Service

« SQLAIchemy: For
Separating the managing the
Database database like a pro.

P =

S

Cool APIs * Docker/Kubernetes:

To make the service “ I III
Connecting to launch-ready like a ll I N
Others spaceship.
Testing and * Locust: To test if the
Launching service can handle

pressure without
crumbling!

Stage 5: Celebrating and Documenting {{}}

Code Review
Cool Documentation

Gathering Feedback

Celebrating Success

The new service goes live in production, and the
system’s speed triples. The product team loves it
because adding PayPal is now a breeze!

Q0 - | Best Refactoring Practices

Always Start with Tests: Without tests, refactoring is like diving
without checking the water’s depth.

Take Small Steps: Break big changes into tiny, manageable pieces. work hard now. itl pay off later.

Use Tools: IDEs like PyCharm and analyzers like SonarQube are your
best friends.

Keep the Team in the Loop: Code reviews and team alignment

prevent tons of issues. o I\‘ 3&;&} 33

Monitor Performance: Post-refactoring, use tools like Prometheus
to confirm the system’s better.

Don’t Forget Docs: Clean code without docs is like a book without a
table of contents.

The Art of Programming

Readable

Cost per change

The mining of your code

: LE‘ ‘N Maintainable
CO D E Easy to modify or extend CLEAN
System that are not
testable are not verifiable

fast and dirty code

Testable clean code
no!

——

Mindset of Clean Code

Extensible

Think about the future

time

If it works don't touch it x
Not just work, Should be EASY to work with

Clean Code Practices

» Meaningful Naming

Small and Focused Functions

Avoid Duplication

Useful Comments

Error Handling

Consistent Formatting

Testability

IVIINWY

Clean Code Architecture

Clean Architecture

Separatlon of Concerns Enterprise Business Rules

- Devices - :
Application Business Rules

Controllers Interface Adapters

Dependency Inversion ,
Frameworks & Drivers

Use Cases

Layered Architecture [A

Entities

] Use Case

Presenter Output Port

Design Patterns

Use Case
Interactor

Framework Independence

Use Case

‘External Interfaces S Input Port

Dependency Management

Architecture Documentation

Slw)ib (b)l yedwo dgug)

Paopw Jrg=d 9 oy Jlubl-
b Olae 9 Hlyidie-
olsud au)-

ladiyid yd (Ne>d9 o=

	Slide 1: Code Refactoring
	Slide 2: What is Refactoring ?
	Slide 3: Why You Should Refactor?
	Slide 4: When Should You Refactor?
	Slide 5: What is Dirty Code?
	Slide 6: What Are Code Smells?
	Slide 7: How to get rid of Code Smells
	Slide 8: Refactoring Techniques
	Slide 9: Small-Scale vs Large-Scale Refactoring
	Slide 10: Practical Example:
	Slide 11
	Slide 12: Introduce Parameter
	Slide 13: Extract Variable
	Slide 14: Simplify Logic
	Slide 15: Refactoring Tools
	Slide 16: Refactoring Tools
	Slide 17: Common Capabilities of Refactoring Tools
	Slide 18: Examples with Refactoring Tools
	Slide 19: Real life Scenario
	Slide 20: Stage 1: Sleuthing and Mapping (Analysis and Planning)
	Slide 21: Stage 2: Arming Up with Shields (Tests and Environment)
	Slide 22: Stage 3: Small-Scale Refactoring
	Slide 23: Stage 4: Large-Scale Refactoring
	Slide 24: Stage 5: Celebrating and Documenting
	Slide 25: Best Refactoring Practices
	Slide 26: What is Clean Code?
	Slide 27: Clean Code Practices
	Slide 28
	Slide 29

