Advanced Software Engineering
Course e e

Wl apgS $§Slj

SaaS Application Architecture:
Microservices, APIs, and REST

Sadegh Sulaimany

info(@Bioinfotmation.ir

Initial assessment

1. What is RESTful URL?

2. What are the problems of SOA (Microservice Based) software
development?

ADVANCED SOFTWARE ENGINEERING

Agenda

— Software Archtectures
> Client-Server Architecture

— SaaS communication Uses HT TP Routes

— Service-Oreinted Architecture
— RESTful APlIs

T

ADVANCED SOFTWARE ENGINEERING

. B,
Software architecture = %
<[>

» Definition

- Software architecture is the high-level structural organization of
a software system that defines:
> The system's components
> Their external properties
> The relationships and interactions between these components

- Key Characteristics of Software Architecture:

Provides a blueprint for the entire system

Focuses on the overall structure and system-level properties
Addresses quality attributes like performance, scalability, and reliability

>
>
>
» Establishes constraints and patterns for system development

ADVANCED SOFTWARE ENGINEERING

Software Architecture vs. Software Design

SOFTWARE ARCHITECTURE

Strategic, big-picture view

v

v

Defines system-wide structural
patterns

v

Focuses on high-level components
and their interactions

Concerned with non-functional
requirements

v

v

Makes fundamental design choices
about the system

v

Typically created early in the
development process

SOFTWARE DESIGN

Tactical, detailed implementation view

Specifies how individual components
work internally

Focuses on module-level design and
algorithms

Addresses specific implementation
details

Translates architectural decisions into
concrete solutions

Occurs after architecture is
established

ADVANCED SOFTWARE ENGINEERING

Software Architecture vs. Software Design

- Analogy:
> Software Architecture = City Planning (layout, infrastructure, zones)

> Software Design = Building Design (interior details, room layouts, specific
construction methods)

- Example:
> Architecture Decision: Choosing a microservices architecture

> Design Decision: Implementing a specific microservice's authentication
mechanism

- Relationship:

» Software design is essentially the implementation-level realization of the
architectural blueprint.

> Architecture provides the framework, while design fills in the specific
details within that framework.

ADVANCED SOFTWARE ENGINEERING

Popular software architectures

1. Monolithic Architecture

2. Client-Server Architecture

3. Peer-to-Peer (P2P) Architecture
4. Microservices Architecture

5. Event-Driven Architecture

6. Serverless Architecture

ADVANCED SOFTWARE ENGINEERING

Monolithic Architecture

- Traditional approach where entire application is built as a single,

unified unit
- All components are interconnected and interdependent
- Pros:
> Simple to develop, easier initial deployment i i
- Cons: .
» Less flexible, harder to scale, more challenging to maintain —
Da,tf:ﬁ:ass

ADVANCED SOFTWARE ENGINEERING

Client-Server Architecture

- One of the most common architectures where clients (user
devices) request services or resources from centralized servers

- Examples:
> Web applications, email systems, database management systems

— Pros:
> Centralized data management, easier security control

- Cons:
» Potential performance bottlenecks, single point of failure

ADVANCED SOFTWARE ENGINEERING

Client-Server Architecture

- Example e

| InterviewBit
(X % "
2> InterviewBit Server

Peer-to-Peer (P2P) Architecture

- Decentralized model where each node (peer) can act as both
client and server

- Peers directly share resources without a central coordination
point

- Examples:
» BitTorrent, blockchain networks, cryptocurrency systems
— Pros: BitTOi‘rent”

> Scalability, resilience, reduced infrastructure costs

- Cons:
> Harder to manage, potential security challenges

ADVANCED SOFTWARE ENGINEERING

Peer-to-Peer vs. Client-Server Architecture

A -
e / X
=
\ Internet | — S -
‘k t"/ .
Clients \/\—”‘*/ \
- - i
Client-Server Peer-to-Peer

ADVANCED SOFTWARE ENGINEERING

Microservices Architecture

— Application built as a collection of small, independent services

- Each service runs a unique process and can be deployed
independently

- Examples:
> Netflix, Amazon, Uber

— Pros:
» Flexibility, easier scaling, technology diversity

- Cons:
> Complex inter-service communication, increased operational overhead

ADVANCED SOFTWARE ENGINEERING

Monolithic vs. Microservices Architecture

o s

Review
Subsystem

User Profile
Service

Buying
Subsystem

e e

user
reviews

editor
reviews

NS

Review
Service

User Profile
Service

? A

credit card
processing

orders

Buying
Service

11

5|

Bookstore Service

e\ e

Bookstore Service

Favorite Books
Service

Social
Network
Service

Event-Driven Architecture

- System components communicate through events
- Producers generate events, consumers react to them

- Examples:
> Real-time analytics, loT systems

- Pros:
» Loose coupling, scalability, reactive design

- Cons:
> Complexity in event tracking, potential performance overhead

ADVANCED SOFTWARE ENGINEERING

Event-Driven Architecture

-0
- N

A

S

(94)
q
o
- X
m
ﬁ
O \
im]
1

Producers

Consumers

ADVANCED SOFTWARE ENGINEERING

Serverless Architecture

— Cloud-based model where cloud provider manages server
infrastructure

— Developers focus on writing code that runs in response to
events

- Examples:
> AWS Lambda, Azure Functions

- Pros:
» Cost-effective, automatic scaling, reduced operational complexity

- Cons:
» Potential cold start latency, vendor lock-in

ADVANCED SOFTWARE ENGINEERING

Serverless vs. Microservice Architecture

Trigger API calls to serverless
environment and perform
backend logic

Access Static Web
Access Content

g Serverless Environment

Serverless Microservices

-- ADVANCED SOFTWARE ENGINEERING

Web’s Client-Server Architecture

— History

Year | System Client Server Protocol(s)

1960 | Sabre. airline reserva- | Custom electrome- | Two IBM 7090 main- | Custom FM-based
tions system for Amer- | chanical terminals | frames protocol over leased
ican Airlines installed at travel telephone lines

agencies

1971 | FTP (File Trans- | Originally, command- | Various server software | ASCII-based FTP pro-
fer Protocol), which | line client ftp: today, | packages, including | tocol over TCP/IP
allowed clients to | command-line clients | Unix ftpd, FileZilla,
download files from | (cURL, NcFTP, Win- | Vsftpd
servers SCP), GUI apps

(Cyberduck, Fetch),
and all Web browsers

1983 | Novell NetWare, which | Custom client software | Custom Novell file | Custom protocols over
allowed PCs running | compatible with MS- | server appliance based | custom PC-compatible
the CP/M or MS- | DOS on Motorola 68000 | network interface
DOS operating sys- MiCroprocessor
tems to share files on a
server

1984 | POP (Post Office Pro- | Various PC apps, | Various server software | ASCII-based POP
tocol), which allowed | including Eudora, | packages, including | protocol over TCP/IP;
separation of email | Thunderbird, Ap- | Apache James, Nginx, | largely superseded by
clients from servers ple Mail, Microsoft | Eudora, Qpopper IMAP

Outlook., Elm, Pine,
Eureka
1990 | World Wide Web Various PC apps, in- | Various server soft- | ASCII-based Hyper-

cluding NCS5A Mosaic,
Netscape Navigator,
Microsoft Internet Ex-

plorer, Mozilla Firefox,
Google Chrome

ware packages, In-
cluding Apache Httpd,
Microsoft Internet
Information Server,
MNginx

Text Transfer Protocol
(HTTP) over TCP/TP

Web’s Client-Server Architecture

» Basic concepts

Cookie settings

— |P address

— Port Number ooros of oo - melsiing analytes and torgeting
cookies

— DNS -
Privacy policy.

- HTTP protocol

> Stateless protocol S00KE SETTINGS

— Cookies!

- URL

GET http://srch.com:80/main/search?q=cloud&lang=en#top

2 S X P

HTTP (query terms: “key=value”
method scheme hostname (port) resource path separatad by & or ;) (fragment)

5 & d % %

POST http://localhost:3000/movies/3

ADVANCED SOFTWARE ENGINEERING

Self-Checks

Self-Check 3.2.1. Is DNS a client—server protocol? Why or why not?

Self-Check 3.2.2. Can you make a TCP connection without specifving a port number, and if
so, what happens?

Self-Check 3.2.3. True or false: HTTP as a protocol has no concept of a “session” consist-
ing of a sequence of related HTTP requests to the same site.

Self-Check 3.2.4. Many HTTP servers rely on using HTTP cookies to identify a client on
repeated requests to the same site, for example, to track information such as whether that
user has logged in. What happens if vou complete disable cookies in vour browser and try to
visit such a site?

From Websites to Microservices

Microservices Microservices

. Data
Business Access

Logic Layer

Microservices Microservices

=

Monolithic Architecture Microservices Architecture

ADVANCED SOFTWARE ENGINEERING

Web history
1. 1990

» Just display static content

2. 1995
> Creating HTML pages “on the fly”

3. 2005

> Making web apps similar to Desktop apps
> making HTTP requests to the server without causing a page reload
> AJAX

— Asynchronous JavaScript And XML

— Data Format: XML and JSON

4. Moving from Monolithic App to a set of independent services that could be
composed to produce larger sites

> Service Oriented Architecture (SOA)

ADVANCED SOFTWARE ENGINEERING

SOA

» Start form Amazon

Yegge claims that Jeff Bezos broadcast an email to all ;:mployees along the fnllbwing lines
(we are paraphrasing the main points of Yegge’s description for conciseness):

All teams responsible for different subsystems of Amazon.com will hence-
forth expose their subsystem’s data and functionality through service interfaces
only. No subsystem is to be allowed direct access to the data “owned” by an-
other subsystem; the only access will be through an interface that exposes spe-
cific operations on the data. Furthermore, every such interface must be designed

so that someday it can be exposed to outside developers, not just used within
Amazon.com itself.

ADVANCED SOFTWARE ENGINEERING

Microservice

- an architectural style for developing software applications where
a large application is decomposed into smaller, independently
deployable services.

> Each microservice is:

— Focused on doing one specific business capability or function
extremely well

— Loosely coupled, meaning it can be developed, deployed, and scaled
independently of other services

— Typically communicating with other services through lightweight
protocols like HTTP/REST or message queues

— Capable of being developed, deployed, and maintained by small,
autonomous teams

— Often containerized (using technologies like Docker) and orchestrated
using platforms like Kubernetes

ADVANCED SOFTWARE ENGINEERING

Microservice

- Key characteristics include:
> Small, modular design
> Technology agnostic (can be written in different programming languages)
> Own its data storage and can have its own database
> Supports horizontal scaling and rapid iteration
>

Resilient, with the ability to handle service failures without bringing down
the entire system

ADVANCED SOFTWARE ENGINEERING

Example of SOA

credit card
processing

:
l
!
: user editor
| reviews || reviews arders
i
I
!
I
I
: Review User Prafile Buying
! Senice Service Semnvice
!
I
' Y
I

User Profile Buying :

Subsyrstem Service Subsystem : L L

I
| Bookstore Service
I
I

Bookstore Service
- Favorite Books
-y - Senvice
USers
Y

Saclal

Metwork

Service

SOA Pros and Cons

Con

Reusability: Others can recombine existing services
with others to create new apps, as in Figure |3.3| and
each microservice can be implemented using the most
appropriate language or framework, since its imple-
mentation is completely hidden behind its API.

Easier testing: a microservice does only one thing, so
testing each microservice is easier.

More Agile-friendly: Chapter m reveals that Agile
works best with small-to-medium projects and teams.
SOA allows large services to be created by composing
smaller ones, each of which can be built and operated
by a small Agile team.

“You build it, you run it” (as Amazon Web Services
CTO Werner Vogels has said): the same tightly-knit
team is responsible for developing, testing, and oper-
ating the microservice, allowing the microservice to
be improved more quickly in response to customer re-

Self Check

Self-Check 3.4.1. Another take on SOA is that it is just a common sense approach to im-
proving programmer productivity. Which productivity mechanism does SOA best exemplify:
Clarity via conciseness, Synthesis, Reuse, or Automation and Tools?

ADVANCED SOFTWARE ENGINEERING

RESTful APIs: Everything is a Resource

> each service provides a well-defined set of operations on one or a few
related types of resources

» clients need a way to name the server function to be called, pass
arguments to it, consume return values, detect and handle server
exceptions, ...

— All subject to the constraints of using HTTP for communication

> API (Application Programming Interface)
— “contract” between a caller and callee,
> whether these are a program calling a library function
- or
> a SaaS client invoking a service on a SaaS server,

ADVANCED SOFTWARE ENGINEERING

APl in applications vs. SaaS

Python program (caller) calls a method
in a Python package or library (callee)

SaaS client (caller) invokes SaaS service
(callee)

1. How does the
caller identify the

Same computer and same process as
caller; import makes a particular named

callee? library available to the caller, as in
import numpy
2. Which operation | Method named in code, e.g.

18 called?

numpy.array(...)

3. How does the
caller pass required
and optional param-
eters to the callee?

Passed as arguments to method call, e.g.
numpy.array([1,2,3])

4. How does the
caller receive a re-
turn value?

and
e.g.

Returned from function call
usually assigned to a variable,
n=numpy.array([1,2,3])

5. How does the
callee signal an er-
ror?

Callee may return a “sentinel” error value
(such as None in Python), or raise an ex-
ception (try/except)

API for SaaS

» Challenge

> HTTP does not prescribe a way to “name a remote function” or “pass
parameters” since those tasks were never part of its original design.

> HTTP and URI specifications offer no conventions regarding the semantics
(implied meaning)
— of how URIs are constructed or how these tasks should occur.

> Conventions are articulated by REST
— REpresentational State Transfer
— In 2000
— Roy Fielding

> Proposed REST in his Ph.D. dissertation as a way of mapping requests to
actions that is particularly well suited to a service-oriented architecture.

> REST is not a standard, but a design stance

ADVANCED SOFTWARE ENGINEERING

REST

> It's a set of constraints and principles

— that define how resources are identified, represented, and transferred between
clients and servers over HTTP

— Key Principles of REST:

Everything in REST is considered a resource

Each resource is uniquely identifiable via a URL (Uniform Resource Locator)
Resources can represent objects, data, or services

Resources can have multiple representations (JSON, XML, HTML)

v

v

v

v

— REST uses standard HTTP methods with specific semantic meanings:
— GET: Retrieve a resource
— POST: Create a new resource
- PUT: Update an existing resource (full update)
— PATCH: Partially update a resource
— DELETE: Remove a resource

ADVANCED SOFTWARE ENGINEERING

RESTful API

— For any RESTful API operation,
It should be straightforward to answer the following questions:

. What is the primary resource affected by the operation?

. What 1s the operation to be done on that resource? What are the possible results? What
are the possible side effects, if any?

. What other data 1s necessary to complete the operation, if any, and how is it specified?

ADVANCED SOFTWARE ENGINEERING

RESTful API

- Uniform Interface
» Standardized way of communicating between components
> Uses a consistent set of well-defined interaction rules
> Simplifies and decouples the architecture

Example REST API Endpoint:

DELETE /users/123

Typical REST Response (JSON):

json

ADVANCED SOFTWARE ENGINEERI

RESTful API

» Practical Considerations:
— Supports caching to improve performance
— Uses standard HTTP status codes (200 OK, 404 Not Found, etc.)
— Typically uses JSON as the primary data exchange format
— Facilitates microservices and distributed system design

> Advantages:
— Simple and lightweight
— Scalable
— Platform and language independent
— Easy to understand and implement
— Works well with HTTP infrastructure
> Limitations:
— Can be chatty with complex data requirements
— Overhead in transferring full resource representations
— Requires careful design for complex interactions

ADVANCED SOFTWARE ENGINEERING

Compare RESTful with Non-RESTful

Non-RESTful site URI RESTful site URI
Login to site POST /login/dave POST /login/dave
Welcome page GET /welcome GET /user/301/welcome
Add item ID 427 to cart POST /add/427 POST /user/301/add/427
View cart GET / cart GET /user/301/cart
Checkout POST /checkout POST /user/301/checkout

Self-Check 3.5.1. Which of these routes for updating the information of movie ID 35 follow
good HTTP and REST practices: (a) POST /movie/35, (b) POST /movies/35, (c) PUT /
movies/35, (d) PUT /movies/35, (e) GET /movies/35, (f) GET /movies/35,

ADVANCED SOFTWARE ENGINEERING

API calls and JSON

> There are three ways to pass parameters from an HTTP client to a
service:

1. in the URI,

2. in the request body (for POST or PUT requests),

3. and rarely, as the value of an HTTP header

v

v

When the number of parameters is small,

and when the parameters are simple types such as strings or numbers,
they can often be passed as parameters embedded in the URI

v

GET /search/movies?query=Batman+Returns

v

When the data to be passed is more complex, or when the APl operation
involves a state changing HTTP method such as POST or PUT,

— the data is sent as part of the request body, as browsers do when submitting
the values entered on a fill-in form

ADVANCED SOFTWARE ENGINEERING

API calls and JSON

- How is this data presented to the server?

> JSON

— JavaScript Object Notation
— common interchange format
— its syntax is similar to JavaScript

— a set of unordered key/value pairs

Request
GET /fapi/vl/rescurce HTTE/l.1
Host: example.com

. . Zuthorization: Bearer YOUR API EREY
> Passing parameters in HTTP

3. Via HTTP Header
> pass very specialized types of parameters
— Such as Passing an APl Key in the Header

- When making a request to an API, you often need to include an APl key
for authentication.

- This is typically done using the Authorization header.

ADVANCED SOFTWARE ENGINEERING

Question?

Bioinformation.ir
info@Bioinformation.ir

ADVANCED SOFTWARE ENGINEERING

Social & Biological Network Analysis Laboratory

	Slide 1: Advanced Software Engineering Course SaaS Application Architecture: Microservices, APIs, and REST
	Slide 2: Initial assessment
	Slide 3: Agenda
	Slide 4: Software architecture
	Slide 5: Software Architecture vs. Software Design
	Slide 6: Software Architecture vs. Software Design
	Slide 7: Popular software architectures
	Slide 8: Monolithic Architecture
	Slide 9: Client-Server Architecture
	Slide 10: Client-Server Architecture
	Slide 11: Peer-to-Peer (P2P) Architecture
	Slide 12: Peer-to-Peer vs. Client-Server Architecture
	Slide 13: Microservices Architecture
	Slide 14: Monolithic vs. Microservices Architecture
	Slide 15: Event-Driven Architecture
	Slide 16: Event-Driven Architecture
	Slide 17: Serverless Architecture
	Slide 18: Serverless vs. Microservice Architecture
	Slide 19: Web’s Client-Server Architecture
	Slide 20: Web’s Client-Server Architecture
	Slide 21: Self-Checks
	Slide 22: From Websites to Microservices
	Slide 23: Web history
	Slide 25: SOA
	Slide 26: Microservice
	Slide 27: Microservice
	Slide 28: Example of SOA
	Slide 29: SOA Pros and Cons
	Slide 30: Self Check
	Slide 31: RESTful APIs: Everything is a Resource
	Slide 32: API in applications vs. SaaS
	Slide 33: API for SaaS
	Slide 34: REST
	Slide 35: RESTful API
	Slide 36: RESTful API
	Slide 37: RESTful API
	Slide 38: Compare RESTful with Non-RESTful
	Slide 39: API calls and JSON
	Slide 40: API calls and JSON
	Slide 41

