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Initial assessment

1. What is RESTful URL?

2. What are the problems of SOA (Microservice Based) software 
development?
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Agenda

– Software Archtectures
› Client-Server Architecture

– SaaS communication Uses HTTP Routes

– Service-Oreinted Architecture

– RESTful APIs
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Software architecture

› Definition

– Software architecture is the high-level structural organization of 
a software system that defines:
› The system's components

› Their external properties

› The relationships and interactions between these components

– Key Characteristics of Software Architecture:
› Provides a blueprint for the entire system 

› Focuses on the overall structure and system-level properties 

› Addresses quality attributes like performance, scalability, and reliability

› Establishes constraints and patterns for system development
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Software Architecture vs. Software Design

SOFTWARE ARCHITECTURE

› Strategic, big-picture view

› Defines system-wide structural 
patterns

› Focuses on high-level components 
and their interactions

› Concerned with non-functional 
requirements

› Makes fundamental design choices 
about the system

› Typically created early in the 
development process

› Tactical, detailed implementation view

› Specifies how individual components 
work internally

› Focuses on module-level design and 
algorithms

› Addresses specific implementation 
details

› Translates architectural decisions into 
concrete solutions

› Occurs after architecture is 
established
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Software Architecture vs. Software Design

– Analogy:
› Software Architecture = City Planning (layout, infrastructure, zones)

› Software Design = Building Design (interior details, room layouts, specific 
construction methods)

– Example:
› Architecture Decision: Choosing a microservices architecture

› Design Decision: Implementing a specific microservice's authentication 
mechanism

– Relationship:
› Software design is essentially the implementation-level realization of the 
architectural blueprint. 

› Architecture provides the framework, while design fills in the specific 
details within that framework.
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Popular software architectures
1. Monolithic Architecture

2. Client-Server Architecture

3. Peer-to-Peer (P2P) Architecture 

4. Microservices Architecture 

5. Event-Driven Architecture 

6. Serverless Architecture 
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Monolithic Architecture

– Traditional approach where entire application is built as a single, 
unified unit

– All components are interconnected and interdependent

– Pros: 
› Simple to develop, easier initial deployment

– Cons: 
› Less flexible, harder to scale, more challenging to maintain
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Client-Server Architecture
– One of the most common architectures where clients (user 
devices) request services or resources from centralized servers

– Examples: 
› Web applications, email systems, database management systems

– Pros: 
› Centralized data management, easier security control

– Cons: 
› Potential performance bottlenecks, single point of failure
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Client-Server Architecture
– Example
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Peer-to-Peer (P2P) Architecture
– Decentralized model where each node (peer) can act as both 
client and server

– Peers directly share resources without a central coordination 
point

– Examples: 
› BitTorrent, blockchain networks, cryptocurrency systems

– Pros: 
› Scalability, resilience, reduced infrastructure costs

– Cons: 
› Harder to manage, potential security challenges
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Peer-to-Peer vs. Client-Server Architecture
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Microservices Architecture
– Application built as a collection of small, independent services

– Each service runs a unique process and can be deployed 
independently

– Examples: 
› Netflix, Amazon, Uber

– Pros: 
› Flexibility, easier scaling, technology diversity

– Cons: 
› Complex inter-service communication, increased operational overhead
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Monolithic vs. Microservices Architecture
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Event-Driven Architecture
– System components communicate through events

– Producers generate events, consumers react to them

– Examples: 
› Real-time analytics, IoT systems

– Pros: 
› Loose coupling, scalability, reactive design   

– Cons: 
› Complexity in event tracking, potential performance overhead
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Event-Driven Architecture
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Serverless Architecture
– Cloud-based model where cloud provider manages server 
infrastructure

– Developers focus on writing code that runs in response to 
events

– Examples: 
› AWS Lambda, Azure Functions

– Pros: 
› Cost-effective, automatic scaling, reduced operational complexity

– Cons: 
› Potential cold start latency, vendor lock-in
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Serverless vs. Microservice Architecture
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Web’s Client-Server Architecture
– History
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Web’s Client-Server Architecture

› Basic concepts
– IP address

– Port Number

– DNS

– HTTP protocol
› Stateless protocol

– Cookies!

– URL
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Self-Checks
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From Websites to Microservices
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Web history
1. 1990

› Just display static content

2. 1995
› Creating HTML pages “on the fly” 

3. 2005
› Making web apps similar to Desktop apps

› making HTTP requests to the server without causing a page reload

› AJAX

– Asynchronous JavaScript And XML

– Data Format: XML and JSON

4. Moving from Monolithic App to a set of independent services that could be 
composed to produce larger sites

› Service Oriented Architecture (SOA)
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SOA

› Start form Amazon
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Microservice
– an architectural style for developing software applications where 
a large application is decomposed into smaller, independently 
deployable services. 
› Each microservice is:

– Focused on doing one specific business capability or function 
extremely well 

– Loosely coupled, meaning it can be developed, deployed, and scaled 
independently of other services 

– Typically communicating with other services through lightweight 
protocols like HTTP/REST or message queues 

– Capable of being developed, deployed, and maintained by small, 
autonomous teams 

– Often containerized (using technologies like Docker) and orchestrated 
using platforms like Kubernetes
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Microservice
– Key characteristics include:

› Small, modular design

› Technology agnostic (can be written in different programming languages)

› Own its data storage and can have its own database

› Supports horizontal scaling and rapid iteration

› Resilient, with the ability to handle service failures without bringing down 
the entire system
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Example of SOA
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SOA Pros and Cons
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Self Check
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RESTful APIs: Everything is a Resource
› each service provides a well-defined set of operations on one or a few 
related types of resources

› clients need a way to name the server function to be called, pass 
arguments to it, consume return values, detect and handle server 
exceptions, …

– All subject to the constraints of using HTTP for communication

› API (Application Programming Interface)

– “contract” between a caller and callee, 

› whether these are a program calling a library function 

– or 

› a SaaS client invoking a service on a SaaS server,
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API in applications vs. SaaS
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API for SaaS

› Challenge
› HTTP does not prescribe a way to “name a remote function” or “pass 
parameters” since those tasks were never part of its original design. 

› HTTP and URI specifications offer no conventions regarding the semantics 
(implied meaning) 

– of how URIs are constructed or how these tasks should occur. 

› Conventions are articulated by REST

– REpresentational State Transfer

– In 2000

– Roy Fielding

› Proposed REST in his Ph.D. dissertation as a way of mapping requests to 
actions that is particularly well suited to a service-oriented architecture. 

› REST is not a standard, but a design stance
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REST
› It's a set of constraints and principles 

– that define how resources are identified, represented, and transferred between 
clients and servers over HTTP

– Key Principles of REST:

› Everything in REST is considered a resource

› Each resource is uniquely identifiable via a URL (Uniform Resource Locator)

› Resources can represent objects, data, or services

› Resources can have multiple representations (JSON, XML, HTML)

– REST uses standard HTTP methods with specific semantic meanings:

– GET: Retrieve a resource

– POST: Create a new resource

– PUT: Update an existing resource (full update)

– PATCH: Partially update a resource

– DELETE: Remove a resource
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RESTful API
– For any RESTful API operation, 

  it should be straightforward to answer the following questions:
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RESTful API
– Uniform Interface

› Standardized way of communicating between components

› Uses a consistent set of well-defined interaction rules

› Simplifies and decouples the architecture

ADVANCED SOFTWARE ENGINEERING



RESTful API
› Practical Considerations:

– Supports caching to improve performance

– Uses standard HTTP status codes (200 OK, 404 Not Found, etc.)

– Typically uses JSON as the primary data exchange format

– Facilitates microservices and distributed system design

› Advantages:

– Simple and lightweight

– Scalable

– Platform and language independent

– Easy to understand and implement

– Works well with HTTP infrastructure

› Limitations:

– Can be chatty with complex data requirements

– Overhead in transferring full resource representations

– Requires careful design for complex interactions
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Compare RESTful with Non-RESTful
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API calls and JSON
› There are three ways to pass parameters from an HTTP client to a

› service: 

1. in the URI, 

2. in the request body (for POST or PUT requests), 

3. and rarely, as the value of an HTTP header

› When the number of parameters is small, 

› and when the parameters are simple types such as strings or numbers, 
they can often be passed as parameters embedded in the URI

› When the data to be passed is more complex, or when the API operation 
involves a state changing HTTP method such as POST or PUT, 

– the data is sent as part of the request body, as browsers do when submitting 
the values entered on a fill-in form
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API calls and JSON
– How is this data presented to the server?

› JSON
– JavaScript Object Notation

– common interchange format

– its syntax is similar to JavaScript

– a set of unordered key/value pairs

› Passing parameters in HTTP

3. Via HTTP Header

› pass very specialized types of parameters

– Such as Passing an API Key in the Header

– When making a request to an API, you often need to include an API key 
for authentication. 

– This is typically done using the Authorization header.
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             Question?
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