
Advanced Software Engineering
Course

SaaS Application Architecture:
Microservices, APIs, and REST

Sadegh Sulaimany

info@Bioinfotmation.ir

Initial assessment

1. What is RESTful URL?

2. What are the problems of SOA (Microservice Based) software
development?

ADVANCED SOFTWARE ENGINEERING

Agenda

– Software Archtectures
› Client-Server Architecture

– SaaS communication Uses HTTP Routes

– Service-Oreinted Architecture

– RESTful APIs

ADVANCED SOFTWARE ENGINEERING

Software architecture

› Definition

– Software architecture is the high-level structural organization of
a software system that defines:
› The system's components

› Their external properties

› The relationships and interactions between these components

– Key Characteristics of Software Architecture:
› Provides a blueprint for the entire system

› Focuses on the overall structure and system-level properties

› Addresses quality attributes like performance, scalability, and reliability

› Establishes constraints and patterns for system development

ADVANCED SOFTWARE ENGINEERING

Software Architecture vs. Software Design

SOFTWARE ARCHITECTURE

› Strategic, big-picture view

› Defines system-wide structural
patterns

› Focuses on high-level components
and their interactions

› Concerned with non-functional
requirements

› Makes fundamental design choices
about the system

› Typically created early in the
development process

› Tactical, detailed implementation view

› Specifies how individual components
work internally

› Focuses on module-level design and
algorithms

› Addresses specific implementation
details

› Translates architectural decisions into
concrete solutions

› Occurs after architecture is
established

ADVANCED SOFTWARE ENGINEERING

SOFTWARE DESIGN

Software Architecture vs. Software Design

– Analogy:
› Software Architecture = City Planning (layout, infrastructure, zones)

› Software Design = Building Design (interior details, room layouts, specific
construction methods)

– Example:
› Architecture Decision: Choosing a microservices architecture

› Design Decision: Implementing a specific microservice's authentication
mechanism

– Relationship:
› Software design is essentially the implementation-level realization of the
architectural blueprint.

› Architecture provides the framework, while design fills in the specific
details within that framework.

ADVANCED SOFTWARE ENGINEERING

Popular software architectures
1. Monolithic Architecture

2. Client-Server Architecture

3. Peer-to-Peer (P2P) Architecture

4. Microservices Architecture

5. Event-Driven Architecture

6. Serverless Architecture

ADVANCED SOFTWARE ENGINEERING

Monolithic Architecture

– Traditional approach where entire application is built as a single,
unified unit

– All components are interconnected and interdependent

– Pros:
› Simple to develop, easier initial deployment

– Cons:
› Less flexible, harder to scale, more challenging to maintain

ADVANCED SOFTWARE ENGINEERING

Client-Server Architecture
– One of the most common architectures where clients (user
devices) request services or resources from centralized servers

– Examples:
› Web applications, email systems, database management systems

– Pros:
› Centralized data management, easier security control

– Cons:
› Potential performance bottlenecks, single point of failure

ADVANCED SOFTWARE ENGINEERING

Client-Server Architecture
– Example

ADVANCED SOFTWARE ENGINEERING

Peer-to-Peer (P2P) Architecture
– Decentralized model where each node (peer) can act as both
client and server

– Peers directly share resources without a central coordination
point

– Examples:
› BitTorrent, blockchain networks, cryptocurrency systems

– Pros:
› Scalability, resilience, reduced infrastructure costs

– Cons:
› Harder to manage, potential security challenges

ADVANCED SOFTWARE ENGINEERING

Peer-to-Peer vs. Client-Server Architecture

ADVANCED SOFTWARE ENGINEERING

Microservices Architecture
– Application built as a collection of small, independent services

– Each service runs a unique process and can be deployed
independently

– Examples:
› Netflix, Amazon, Uber

– Pros:
› Flexibility, easier scaling, technology diversity

– Cons:
› Complex inter-service communication, increased operational overhead

ADVANCED SOFTWARE ENGINEERING

Monolithic vs. Microservices Architecture

ADVANCED SOFTWARE ENGINEERING

Event-Driven Architecture
– System components communicate through events

– Producers generate events, consumers react to them

– Examples:
› Real-time analytics, IoT systems

– Pros:
› Loose coupling, scalability, reactive design

– Cons:
› Complexity in event tracking, potential performance overhead

ADVANCED SOFTWARE ENGINEERING

Event-Driven Architecture

ADVANCED SOFTWARE ENGINEERING

Serverless Architecture
– Cloud-based model where cloud provider manages server
infrastructure

– Developers focus on writing code that runs in response to
events

– Examples:
› AWS Lambda, Azure Functions

– Pros:
› Cost-effective, automatic scaling, reduced operational complexity

– Cons:
› Potential cold start latency, vendor lock-in

ADVANCED SOFTWARE ENGINEERING

Serverless vs. Microservice Architecture

ADVANCED SOFTWARE ENGINEERING

Web’s Client-Server Architecture
– History

ADVANCED SOFTWARE ENGINEERING

Web’s Client-Server Architecture

› Basic concepts
– IP address

– Port Number

– DNS

– HTTP protocol
› Stateless protocol

– Cookies!

– URL

ADVANCED SOFTWARE ENGINEERING

Self-Checks

ADVANCED SOFTWARE ENGINEERING

From Websites to Microservices

ADVANCED SOFTWARE ENGINEERING

Web history
1. 1990

› Just display static content

2. 1995
› Creating HTML pages “on the fly”

3. 2005
› Making web apps similar to Desktop apps

› making HTTP requests to the server without causing a page reload

› AJAX

– Asynchronous JavaScript And XML

– Data Format: XML and JSON

4. Moving from Monolithic App to a set of independent services that could be
composed to produce larger sites

› Service Oriented Architecture (SOA)

ADVANCED SOFTWARE ENGINEERING

SOA

› Start form Amazon

ADVANCED SOFTWARE ENGINEERING

Microservice
– an architectural style for developing software applications where
a large application is decomposed into smaller, independently
deployable services.
› Each microservice is:

– Focused on doing one specific business capability or function
extremely well

– Loosely coupled, meaning it can be developed, deployed, and scaled
independently of other services

– Typically communicating with other services through lightweight
protocols like HTTP/REST or message queues

– Capable of being developed, deployed, and maintained by small,
autonomous teams

– Often containerized (using technologies like Docker) and orchestrated
using platforms like Kubernetes

ADVANCED SOFTWARE ENGINEERING

Microservice
– Key characteristics include:

› Small, modular design

› Technology agnostic (can be written in different programming languages)

› Own its data storage and can have its own database

› Supports horizontal scaling and rapid iteration

› Resilient, with the ability to handle service failures without bringing down
the entire system

ADVANCED SOFTWARE ENGINEERING

Example of SOA

ADVANCED SOFTWARE ENGINEERING

SOA Pros and Cons

ADVANCED SOFTWARE ENGINEERING

Self Check

ADVANCED SOFTWARE ENGINEERING

RESTful APIs: Everything is a Resource
› each service provides a well-defined set of operations on one or a few
related types of resources

› clients need a way to name the server function to be called, pass
arguments to it, consume return values, detect and handle server
exceptions, …

– All subject to the constraints of using HTTP for communication

› API (Application Programming Interface)

– “contract” between a caller and callee,

› whether these are a program calling a library function

– or

› a SaaS client invoking a service on a SaaS server,

ADVANCED SOFTWARE ENGINEERING

API in applications vs. SaaS

ADVANCED SOFTWARE ENGINEERING

API for SaaS

› Challenge
› HTTP does not prescribe a way to “name a remote function” or “pass
parameters” since those tasks were never part of its original design.

› HTTP and URI specifications offer no conventions regarding the semantics
(implied meaning)

– of how URIs are constructed or how these tasks should occur.

› Conventions are articulated by REST

– REpresentational State Transfer

– In 2000

– Roy Fielding

› Proposed REST in his Ph.D. dissertation as a way of mapping requests to
actions that is particularly well suited to a service-oriented architecture.

› REST is not a standard, but a design stance

ADVANCED SOFTWARE ENGINEERING

REST
› It's a set of constraints and principles

– that define how resources are identified, represented, and transferred between
clients and servers over HTTP

– Key Principles of REST:

› Everything in REST is considered a resource

› Each resource is uniquely identifiable via a URL (Uniform Resource Locator)

› Resources can represent objects, data, or services

› Resources can have multiple representations (JSON, XML, HTML)

– REST uses standard HTTP methods with specific semantic meanings:

– GET: Retrieve a resource

– POST: Create a new resource

– PUT: Update an existing resource (full update)

– PATCH: Partially update a resource

– DELETE: Remove a resource

ADVANCED SOFTWARE ENGINEERING

RESTful API
– For any RESTful API operation,

 it should be straightforward to answer the following questions:

ADVANCED SOFTWARE ENGINEERING

RESTful API
– Uniform Interface

› Standardized way of communicating between components

› Uses a consistent set of well-defined interaction rules

› Simplifies and decouples the architecture

ADVANCED SOFTWARE ENGINEERING

RESTful API
› Practical Considerations:

– Supports caching to improve performance

– Uses standard HTTP status codes (200 OK, 404 Not Found, etc.)

– Typically uses JSON as the primary data exchange format

– Facilitates microservices and distributed system design

› Advantages:

– Simple and lightweight

– Scalable

– Platform and language independent

– Easy to understand and implement

– Works well with HTTP infrastructure

› Limitations:

– Can be chatty with complex data requirements

– Overhead in transferring full resource representations

– Requires careful design for complex interactions

ADVANCED SOFTWARE ENGINEERING

Compare RESTful with Non-RESTful

ADVANCED SOFTWARE ENGINEERING

????

API calls and JSON
› There are three ways to pass parameters from an HTTP client to a

› service:

1. in the URI,

2. in the request body (for POST or PUT requests),

3. and rarely, as the value of an HTTP header

› When the number of parameters is small,

› and when the parameters are simple types such as strings or numbers,
they can often be passed as parameters embedded in the URI

› When the data to be passed is more complex, or when the API operation
involves a state changing HTTP method such as POST or PUT,

– the data is sent as part of the request body, as browsers do when submitting
the values entered on a fill-in form

ADVANCED SOFTWARE ENGINEERING

API calls and JSON
– How is this data presented to the server?

› JSON
– JavaScript Object Notation

– common interchange format

– its syntax is similar to JavaScript

– a set of unordered key/value pairs

› Passing parameters in HTTP

3. Via HTTP Header

› pass very specialized types of parameters

– Such as Passing an API Key in the Header

– When making a request to an API, you often need to include an API key
for authentication.

– This is typically done using the Authorization header.

ADVANCED SOFTWARE ENGINEERING

 Question?

Bioinformation.ir

info@Bioinformation.ir

ADVANCED SOFTWARE ENGINEERING

	Slide 1: Advanced Software Engineering Course SaaS Application Architecture: Microservices, APIs, and REST
	Slide 2: Initial assessment
	Slide 3: Agenda
	Slide 4: Software architecture
	Slide 5: Software Architecture vs. Software Design
	Slide 6: Software Architecture vs. Software Design
	Slide 7: Popular software architectures
	Slide 8: Monolithic Architecture
	Slide 9: Client-Server Architecture
	Slide 10: Client-Server Architecture
	Slide 11: Peer-to-Peer (P2P) Architecture
	Slide 12: Peer-to-Peer vs. Client-Server Architecture
	Slide 13: Microservices Architecture
	Slide 14: Monolithic vs. Microservices Architecture
	Slide 15: Event-Driven Architecture
	Slide 16: Event-Driven Architecture
	Slide 17: Serverless Architecture
	Slide 18: Serverless vs. Microservice Architecture
	Slide 19: Web’s Client-Server Architecture
	Slide 20: Web’s Client-Server Architecture
	Slide 21: Self-Checks
	Slide 22: From Websites to Microservices
	Slide 23: Web history
	Slide 25: SOA
	Slide 26: Microservice
	Slide 27: Microservice
	Slide 28: Example of SOA
	Slide 29: SOA Pros and Cons
	Slide 30: Self Check
	Slide 31: RESTful APIs: Everything is a Resource
	Slide 32: API in applications vs. SaaS
	Slide 33: API for SaaS
	Slide 34: REST
	Slide 35: RESTful API
	Slide 36: RESTful API
	Slide 37: RESTful API
	Slide 38: Compare RESTful with Non-RESTful
	Slide 39: API calls and JSON
	Slide 40: API calls and JSON
	Slide 41

