
Advanced Software Engineering
Course

Increasing Productivity

Sadegh Sulaimany

info@Bioinfotmation.ir

Initial assessment

1. What are this tools in software engineering used for:
1. Cucumber

2. Pivotal Tracker

3. JIRA

4. Makefile

ADVANCED SOFTWARE ENGINEERING 2 FROM 20

Agenda

– Four productivity mechanisms in Software Engineering
› Clarity via Conciseness

› Synthesis

› Reuse

› Automation

– SaaS & SOA & Agile
› Microservice

ADVANCED SOFTWARE ENGINEERING 3 FROM 20

Productivity dependency of hardware progress

› Moore’s Law
– hardware resources have doubled every 18 months for nearly 50
years

– faster computers with much larger memories could run much
larger programs

› software engineers needed to improve their productivity

ADVANCED SOFTWARE ENGINEERING 4 FROM 20

Fundamental mechanisms to improve productivity

1. Clarity via conciseness

2. Synthesis

3. Reuse

4. Automation via Tools

ADVANCED SOFTWARE ENGINEERING 5 FROM 20

Mechanisms to improve productivity

› Clarity via conciseness
– if programs are easier to understand,

› they will have fewer bugs and will be easier to maintain

– if the program is smaller
› it’s generally easier to understand

1. Offering syntax with fewer characters

2. Raise the level of abstraction

ADVANCED SOFTWARE ENGINEERING 6 FROM 20

1. Clarity via conciseness

› Offering syntax with fewer characters

– Example

› First Command

– Confusion about the order of arguments in the first version

– Higher cognitive load of reading twice as many characters

› Second Command (Ruby)

– shorter and easier to read and understand,

– will likely be easier to maintain

ADVANCED SOFTWARE ENGINEERING 7 FROM 20

1. Clarity via conciseness

2. Raise the level of abstraction

› First languages

– Assembly

› Higher-level programming languages

– Fortran and COBOL

› Scripting languages like Python and Ruby

– raised the level of abstraction even higher

ADVANCED SOFTWARE ENGINEERING 8 FROM 20

1. Clarity via conciseness

2. Raise the level of abstraction

– Example
› reflection

– Program can inspect, analyze, and modify itself.

– Ruby allows you to change the functionality of the language itself while running
your own code

› higher order functions
– allows higher-level behaviors to be reused by

– passing functions as arguments to other functions

ADVANCED SOFTWARE ENGINEERING 9 FROM 20

Mechanisms to improve productivity

2. Synthesis
– refers to code that is generated automatically rather than
created manually

– Example
› SWAP(A,B)

› puts the contents of variable A into variable B and vice versa

› Rails framework makes extensive use of the Ruby language’s

› facilities for metaprogramming

 allows Ruby programs to automatically synthesize code at runtime

 offers us to write code that dynamically writes other code for us

ADVANCED SOFTWARE ENGINEERING 10 FROM 20

Mechanisms to improve productivity

3. Reuse
– Using code from past, rather than writing from scratch

– software is even more likely than hardware to reuse

– Examples
› Structured Programming

› Procedures and functions

› Standardized libraries for input/output and for mathematical functions

› OOP

› Inheritance

› Design patterns

ADVANCED SOFTWARE ENGINEERING 11 FROM 20

Mechanisms to improve productivity

3. Reuse

 Dry = Reuse

– Ruby and JavaScript
› typical of modern scripting languages

– automatic memory management

– dynamic typing

– support for higher-order functions

– and various mechanisms for code reuse..

– Ruby

– supporting multiple programming paradigms

– such as object-oriented and functional programming

ADVANCED SOFTWARE ENGINEERING 12 FROM 20

Mechanisms to improve productivity

4. Automation
– replacing tedious manual tasks with tools

› to save time, improve accuracy, or both

– Examples
› Git

› Version control systems

› Cucumber

› helps automate turning user stories into acceptance tests

› Pivotal Tracker

› automatically measures Velocity, which is a measure of the rate of adding
features to an application

› Rspec

› helps automate the unit testing process.

ADVANCED SOFTWARE ENGINEERING 13 FROM 20

SaaS and Service Oriented Architecture

– Idea
› Do not install software on user computer

› run the software centrally on Internet-based servers,

– and allow users to access it via a Web browser

– Salesforce
› the first large company to fully embrace this new model

› which was dubbed Software as a Service (SaaS)

– SaaS is popular in everyday use
› searching, social networking, and watching videos

ADVANCED SOFTWARE ENGINEERING 14 FROM 20

SaaS

› advantages for both users and developers
1. No installation:

– Customer don’t have to worry whether their hardware is the right brand or fast
enough

– Not dependency on OS

2. Data is kept with the service

– No need to backup

3. Group level use

– User interact

4. Centralization

– data is large

– data updated frequently

5. Only a single copy of the server software

– runs in a uniform

– User do not need upgrade

6. Cheaper service ADVANCED SOFTWARE ENGINEERING 15 FROM 20

SaaS

– Rails has embraced the Agile lifecycle
› use the right tool for the job, even if it means learning a new tool or new
language!

ADVANCED SOFTWARE ENGINEERING 16 FROM 20

SaaS and Agile

› Agile fitness with SaaS
– frequent upgrades of SaaS perfectly align with the Agile software
lifecycle
› Hence, Amazon, eBay, Facebook, Google, Microsoft and other SaaS
providers all rely on the Agile lifecycle

› The Agile process is an excellent match to the fast-changing nature of
SaaS applications.

– One pitfall
› developers could not make extensive use of software third-party libraries

› containing code to perform tasks common to many different applications.
Because these libraries were often written by others

› Missing the extensive access to hardware

ADVANCED SOFTWARE ENGINEERING 17 FROM 20

SaaS and SOA

– SaaS needs using services built and maintained by other
developers for common tasks

– service-oriented architecture (SOA)
› in which a SaaS service could call upon other services

– Services that were highly specialized to a narrow range of tasks
› microservices

› Examples

– credit card processing, search, driving directions

›

ADVANCED SOFTWARE ENGINEERING 18 FROM 20

Conclusion

› Higher and new programming languages and
technologies
– Speed up the software development process

› Currently SaaS is the dominant form of software use

ADVANCED SOFTWARE ENGINEERING 19 FROM 20

 Question?

Bioinformation.ir

info@Bioinformation.ir

ADVANCED SOFTWARE ENGINEERING 20

	Slide 1: Advanced Software Engineering Course Increasing Productivity
	Slide 2: Initial assessment
	Slide 3: Agenda
	Slide 4: Productivity dependency of hardware progress
	Slide 5: Fundamental mechanisms to improve productivity
	Slide 6: Mechanisms to improve productivity
	Slide 7: 1. Clarity via conciseness
	Slide 8: 1. Clarity via conciseness
	Slide 9: 1. Clarity via conciseness
	Slide 10: Mechanisms to improve productivity
	Slide 11: Mechanisms to improve productivity
	Slide 12: Mechanisms to improve productivity
	Slide 13: Mechanisms to improve productivity
	Slide 14: SaaS and Service Oriented Architecture
	Slide 15: SaaS
	Slide 16: SaaS
	Slide 17: SaaS and Agile
	Slide 18: SaaS and SOA
	Slide 19: Conclusion
	Slide 20

