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Initial assessment

1. What are this tools in software engineering used for:
1. Cucumber

2. Pivotal Tracker

3. JIRA

4. Makefile
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Agenda

– Four productivity mechanisms in Software Engineering
› Clarity via Conciseness

› Synthesis

› Reuse

› Automation

– SaaS & SOA & Agile
› Microservice
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Productivity dependency of hardware progress

› Moore’s Law 
– hardware resources have doubled every 18 months for nearly 50 
years 

– faster computers with much larger memories could run much 
larger programs 

› software engineers needed to improve their productivity 
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Fundamental mechanisms to improve productivity 

1. Clarity via conciseness

2. Synthesis

3. Reuse

4. Automation via Tools 
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Mechanisms to improve productivity

› Clarity via conciseness
– if programs are easier to understand, 

› they will have fewer bugs and will be easier to maintain 

– if the program is smaller
› it’s generally easier to understand 

1. Offering syntax with fewer characters

2. Raise the level of abstraction 
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1. Clarity via conciseness

› Offering syntax with fewer characters

– Example

› First Command

– Confusion about the order of arguments in the first version 

– Higher cognitive load of reading twice as many characters 

› Second Command (Ruby)

– shorter and easier to read and understand, 

– will likely be easier to maintain
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1. Clarity via conciseness

2. Raise the level of abstraction 

› First languages

– Assembly

› Higher-level programming languages 

– Fortran and COBOL 

› Scripting languages like Python and Ruby 

– raised the level of abstraction even higher 
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1. Clarity via conciseness

2. Raise the level of abstraction 

– Example
› reflection 

– Program can inspect, analyze, and modify itself. 

– Ruby allows you to change the functionality of the language itself while running 
your own code

› higher order functions 
– allows higher-level behaviors to be reused by 

– passing functions as arguments to other functions
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Mechanisms to improve productivity

2. Synthesis 
– refers to code that is generated automatically rather than 
created manually 

– Example
› SWAP(A,B)

› puts the contents of variable A into variable B and vice versa

› Rails framework makes extensive use of the Ruby language’s 

› facilities for metaprogramming

  allows Ruby programs to automatically synthesize code at runtime

 offers us to write code that dynamically writes other code for us
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Mechanisms to improve productivity

3. Reuse 
– Using code from past, rather than writing from scratch

– software is even more likely than hardware to reuse 

– Examples
› Structured Programming

› Procedures and functions

› Standardized libraries for input/output and for mathematical functions 

› OOP

› Inheritance 

› Design patterns 
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Mechanisms to improve productivity

3. Reuse 

  Dry = Reuse

– Ruby and JavaScript 
› typical of modern scripting languages 

– automatic memory management

– dynamic typing

– support for higher-order functions

– and various mechanisms for code reuse..

– Ruby 

– supporting multiple programming paradigms 

– such as object-oriented and functional programming
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Mechanisms to improve productivity

4. Automation 
– replacing tedious manual tasks with tools 

› to save time, improve accuracy, or both

– Examples
› Git

› Version control systems

› Cucumber 

› helps automate turning user stories into acceptance tests

› Pivotal Tracker 

› automatically measures Velocity, which is a measure of the rate of adding 
features to an application

› Rspec

› helps automate the unit testing process. 
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SaaS and Service Oriented Architecture 

– Idea
› Do not install software on user computer

› run the software centrally on Internet-based servers, 

– and allow users to access it via a Web browser 

– Salesforce 
› the first large company to fully embrace this new model

› which was dubbed Software as a Service (SaaS) 

– SaaS is popular in everyday use
› searching, social networking, and watching videos 
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SaaS

› advantages for both users and developers 
1. No installation:

– Customer don’t have to worry whether their hardware is the right brand or fast 
enough 

– Not dependency on OS

2. Data is kept with the service 

– No need to backup

3. Group level use

– User interact

4. Centralization

– data is large 

– data updated frequently 

5. Only a single copy of the server software 

– runs in a uniform 

– User do not need upgrade
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SaaS

– Rails has embraced the Agile lifecycle 
› use the right tool for the job, even if it means learning a new tool or new 
language! 
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SaaS and Agile

› Agile fitness with SaaS
– frequent upgrades of SaaS perfectly align with the Agile software 
lifecycle 
› Hence, Amazon, eBay, Facebook, Google, Microsoft and other SaaS 
providers all rely on the Agile lifecycle 

› The Agile process is an excellent match to the fast-changing nature of 
SaaS applications. 

– One pitfall
› developers could not make extensive use of software third-party libraries 

› containing code to perform tasks common to many different applications. 
Because these libraries were often written by others

› Missing the extensive access to hardware
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SaaS and SOA

– SaaS needs using services built and maintained by other 
developers for common tasks 

– service-oriented architecture (SOA)
› in which a SaaS service could call upon other services 

– Services that were highly specialized to a narrow range of tasks
› microservices 

› Examples

– credit card processing, search, driving directions 

›

ADVANCED SOFTWARE ENGINEERING 18 FROM 20



Conclusion

› Higher and new programming languages and 
technologies 
– Speed up the software development process

› Currently SaaS is the dominant form of software use
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             Question?

            

Bioinformation.ir

info@Bioinformation.ir
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