
Review of UML Diagrams

Sadegh Sulaimany

info@Bioinfotmation.ir

Software Architecture Course



Initial assessment

1. What is new in UML 2.5?

2. What UML activity diagram is about?

SOFTWARE ARCHITECTURE 2 FROM 34



Agenda

› UML history

› UML diagrams

› UML vs. ERD

› UML Tools

› UML Research?

SOFTWARE ARCHITECTURE 3 FROM 34



UML

› Unified Modeling Language

– a general-purpose, developmental modeling language 

› in the field of software engineering

– is intended to provide a standard way to visualize the design of a 
system

– Developed at Rational Software in 1994–1995

› In 1997 was adopted as a standard by the

Object Management Group (OMG)

› In 2005, UML was also published 

› by the International Organization for Standardization

(ISO) as an approved ISO standard

SOFTWARE ARCHITECTURE 4 FROM 34

https://en.wikipedia.org/wiki/Rational_Software
https://en.wikipedia.org/wiki/Object_Management_Group
https://en.wikipedia.org/wiki/International_Organization_for_Standardization


OMG

› Object Management Group® (OMG®) 
– is an international, open membership, not-for-profit technology 

standards consortium.

– OMG standards are driven by vendors, end-users, academic institutions 
and government agencies.

SOFTWARE ARCHITECTURE 5 FROM 34



UML versions

SOFTWARE ARCHITECTURE 6 FROM 34



Main purposes of UML

• Provide users with a ready-made, expressive visual modeling 
language 
• so they can develop and communicate meaningful models in a collaborative 

team effort.

• Provides extensibility and specialization mechanisms for core 
concepts.

• Independent of a specific programming language and development 
process.

• Provides a formal foundation for understanding modeling languages.

• Encourage the development of the market for object-oriented tools.

• Support for higher level development concepts 
• such as collaboration, frameworks, patterns and components.

• Integrate Best Practices.

SOFTWARE ARCHITECTURE 7 FROM 34



14 Types of UML Diagrams

SOFTWARE ARCHITECTURE 8 FROM 34



1. Use Case Diagrams

– consists of use cases, roles, and the relationships between them. 
› It shows how users interact with the system and defines the specifications of the 

use cases

SOFTWARE ARCHITECTURE 9 FROM 34



2. Class Diagram

› a static diagram that describes the structure of a system by showing its classes and 
their properties and operations, as well as the relationships between objects.

SOFTWARE ARCHITECTURE 10 FROM 34



3. Sequence Diagram

› is a model for communication between objects in a sequential 
manner 
– It shows the exact order of objects, classes and roles and information 

involved in a scenario. It consists of vertical lines belonging to lifelines 
and horizontal lines of messages.

SOFTWARE ARCHITECTURE 11 FROM 34



3. Sequence Diagram

SOFTWARE ARCHITECTURE 12 FROM 34



4. Communication (Collaboration) Diagram

› shows the interaction between objects and parts in the form of 
messages, which are represented by lifelines. 
– A communication diagram is a modified form of a UML sequence 

diagram, but differs from it in that its elements do not need to be 
horizontally ordered and can have any position in the diagram.

SOFTWARE ARCHITECTURE 13 FROM 34



6. State Machine Diagram

› describes the state of an entity (device, process, program, 
software, module, etc.) and the transitions between states. 
– The conditions specify when a transition from one state to another can 

be used.

SOFTWARE ARCHITECTURE 14 FROM 34



6. State Machine Diagram

SOFTWARE ARCHITECTURE 15 FROM 34



5. Activity Diagram

› shows a scenario in terms of the flow of actions 
– graphical representations of workflows of stepwise activities and actions 

with support for choice, iteration and concurrency

– used by developers to understand the flow of programs on a high level.

SOFTWARE ARCHITECTURE 16 FROM 34



5. Activity Diagram

SOFTWARE ARCHITECTURE 17 FROM 34



7. Object Diagram

› is a structured UML diagram 
– It describes a system or its parts at a particular time. It models instances, 

their values and relationships. It can be used to show examples of data 
structures.

SOFTWARE ARCHITECTURE 18 FROM 34



8. Package Diagram

› shows the dependencies between packages in a model. 
– It describes the structure and organization of large-scale projects

SOFTWARE ARCHITECTURE 19 FROM 34



9. Component Diagram

› provides a view of a complex system
– It describes the interfaces provided and/or required by the various parts 

of the system and the relationships between the parts. These parts are 
represented by components and other artifacts.

SOFTWARE ARCHITECTURE 20 FROM 34



9. Component Diagram

SOFTWARE ARCHITECTURE 21 FROM 34



10. Deployment Diagram

› describes the deployment of artifacts on a network node 
– It is used to show the location of artifacts (software, systems, modules, 

etc.) on physical nodes (hardware, servers, databases, etc.) and the 
relationships between specific parts of the solution.

SOFTWARE ARCHITECTURE 22 FROM 34



10. Deployment Diagram

SOFTWARE ARCHITECTURE 23 FROM 34



11. Composite Structure Diagram

– contains classes, interfaces, packages, and their relationships 

– provides a logical view of all, or part of a software system. 

– It shows the internal structure (including parts and connectors) of a 
structured classifier or collaboration.

– performs a similar role to a class diagram, but allows you to go into 
further detail in describing the internal structure of multiple classes and 
showing the interactions between them. 

– You can graphically represent inner classes and parts and show 
associations both between and within classes.

SOFTWARE ARCHITECTURE 24 FROM 34



12. Interaction Overview Diagram

› provides a high level view of the interactions in a system or 
subsystem. 
– It describes processes in a similar way to activity diagrams, but it uses 

other interaction diagrams and interaction references rather than action 
nodes.

SOFTWARE ARCHITECTURE 25 FROM 34



12. Interaction Overview Diagram

SOFTWARE ARCHITECTURE 26 FROM 34



13. Timing Diagrams

› focuses primarily on time
– are somewhat similar to sequence diagrams, as they represent the 

object’s behavior in the given time.

– The timelines are stacked vertically, with time increasing from left to 
right.

SOFTWARE ARCHITECTURE 27 FROM 34



13. Timing Diagrams

SOFTWARE ARCHITECTURE 28 FROM 34



14. Profile Diagram

› describes and defines extensions to the UML language. 
– The extension mechanism allows you to adapt the language to a specific 

domain or platform. 

– Extensions are defined by stereotyping.

SOFTWARE ARCHITECTURE 29 FROM 34



Diagram frequency use

SOFTWARE ARCHITECTURE 30 FROM 34



UML Vs. ER Diagram

SOFTWARE ARCHITECTURE 31 FROM 34



UML tools

– Everybody test a tool, all the class provide a comparative report

SOFTWARE ARCHITECTURE 32 FROM 34



UML research?

– Everybody report a desired related paper

SOFTWARE ARCHITECTURE 33 FROM 34



Question?

Bioinformation.ir

info@Bioinformation.ir

SOFTWARE ARCHITECTURE 34


	Slide 1: Review of UML Diagrams
	Slide 2: Initial assessment
	Slide 3: Agenda
	Slide 4: UML
	Slide 5: OMG
	Slide 6: UML versions
	Slide 7: Main purposes of UML
	Slide 8: 14 Types of UML Diagrams
	Slide 9: 1. Use Case Diagrams
	Slide 10: 2. Class Diagram
	Slide 11: 3. Sequence Diagram
	Slide 12: 3. Sequence Diagram
	Slide 13: 4. Communication (Collaboration) Diagram
	Slide 14: 6. State Machine Diagram
	Slide 15: 6. State Machine Diagram
	Slide 16: 5. Activity Diagram
	Slide 17: 5. Activity Diagram
	Slide 18: 7. Object Diagram
	Slide 19: 8. Package Diagram
	Slide 20: 9. Component Diagram
	Slide 21: 9. Component Diagram
	Slide 22: 10. Deployment Diagram
	Slide 23: 10. Deployment Diagram
	Slide 24: 11. Composite Structure Diagram
	Slide 25: 12. Interaction Overview Diagram
	Slide 26: 12. Interaction Overview Diagram
	Slide 27: 13. Timing Diagrams
	Slide 28: 13. Timing Diagrams
	Slide 29: 14. Profile Diagram 
	Slide 30: Diagram frequency use
	Slide 31: UML Vs. ER Diagram
	Slide 32: UML tools
	Slide 33: UML research?
	Slide 34

