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Initial assessment

1. What is new in UML 2.5?

2. What UML activity diagram is about?
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Agenda

› UML history

› UML diagrams

› UML vs. ERD

› UML Tools

› UML Research?
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UML

› Unified Modeling Language

– a general-purpose, developmental modeling language 

› in the field of software engineering

– is intended to provide a standard way to visualize the design of a 
system

– Developed at Rational Software in 1994–1995

› In 1997 was adopted as a standard by the

Object Management Group (OMG)

› In 2005, UML was also published 

› by the International Organization for Standardization

(ISO) as an approved ISO standard
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https://en.wikipedia.org/wiki/Rational_Software
https://en.wikipedia.org/wiki/Object_Management_Group
https://en.wikipedia.org/wiki/International_Organization_for_Standardization


OMG

› Object Management Group® (OMG®) 
– is an international, open membership, not-for-profit technology 

standards consortium.

– OMG standards are driven by vendors, end-users, academic institutions 
and government agencies.
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UML versions
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Main purposes of UML

• Provide users with a ready-made, expressive visual modeling 
language 
• so they can develop and communicate meaningful models in a collaborative 

team effort.

• Provides extensibility and specialization mechanisms for core 
concepts.

• Independent of a specific programming language and development 
process.

• Provides a formal foundation for understanding modeling languages.

• Encourage the development of the market for object-oriented tools.

• Support for higher level development concepts 
• such as collaboration, frameworks, patterns and components.

• Integrate Best Practices.
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14 Types of UML Diagrams
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1. Use Case Diagrams

– consists of use cases, roles, and the relationships between them. 
› It shows how users interact with the system and defines the specifications of the 

use cases
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2. Class Diagram

› a static diagram that describes the structure of a system by showing its classes and 
their properties and operations, as well as the relationships between objects.
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3. Sequence Diagram

› is a model for communication between objects in a sequential 
manner 
– It shows the exact order of objects, classes and roles and information 

involved in a scenario. It consists of vertical lines belonging to lifelines 
and horizontal lines of messages.
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3. Sequence Diagram
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4. Communication (Collaboration) Diagram

› shows the interaction between objects and parts in the form of 
messages, which are represented by lifelines. 
– A communication diagram is a modified form of a UML sequence 

diagram, but differs from it in that its elements do not need to be 
horizontally ordered and can have any position in the diagram.
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6. State Machine Diagram

› describes the state of an entity (device, process, program, 
software, module, etc.) and the transitions between states. 
– The conditions specify when a transition from one state to another can 

be used.
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6. State Machine Diagram
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5. Activity Diagram

› shows a scenario in terms of the flow of actions 
– graphical representations of workflows of stepwise activities and actions 

with support for choice, iteration and concurrency

– used by developers to understand the flow of programs on a high level.
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5. Activity Diagram
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7. Object Diagram

› is a structured UML diagram 
– It describes a system or its parts at a particular time. It models instances, 

their values and relationships. It can be used to show examples of data 
structures.

SOFTWARE ARCHITECTURE 18 FROM 34



8. Package Diagram

› shows the dependencies between packages in a model. 
– It describes the structure and organization of large-scale projects
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9. Component Diagram

› provides a view of a complex system
– It describes the interfaces provided and/or required by the various parts 

of the system and the relationships between the parts. These parts are 
represented by components and other artifacts.
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9. Component Diagram
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10. Deployment Diagram

› describes the deployment of artifacts on a network node 
– It is used to show the location of artifacts (software, systems, modules, 

etc.) on physical nodes (hardware, servers, databases, etc.) and the 
relationships between specific parts of the solution.

SOFTWARE ARCHITECTURE 22 FROM 34



10. Deployment Diagram
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11. Composite Structure Diagram

– contains classes, interfaces, packages, and their relationships 

– provides a logical view of all, or part of a software system. 

– It shows the internal structure (including parts and connectors) of a 
structured classifier or collaboration.

– performs a similar role to a class diagram, but allows you to go into 
further detail in describing the internal structure of multiple classes and 
showing the interactions between them. 

– You can graphically represent inner classes and parts and show 
associations both between and within classes.
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12. Interaction Overview Diagram

› provides a high level view of the interactions in a system or 
subsystem. 
– It describes processes in a similar way to activity diagrams, but it uses 

other interaction diagrams and interaction references rather than action 
nodes.
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12. Interaction Overview Diagram
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13. Timing Diagrams

› focuses primarily on time
– are somewhat similar to sequence diagrams, as they represent the 

object’s behavior in the given time.

– The timelines are stacked vertically, with time increasing from left to 
right.
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13. Timing Diagrams
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14. Profile Diagram

› describes and defines extensions to the UML language. 
– The extension mechanism allows you to adapt the language to a specific 

domain or platform. 

– Extensions are defined by stereotyping.
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Diagram frequency use
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UML Vs. ER Diagram
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UML tools

– Everybody test a tool, all the class provide a comparative report
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UML research?

– Everybody report a desired related paper
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Question?
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