
Overview of Software Architecture

Sadegh Sulaimany

info@Bioinfotmation.ir

Software Architecture Course



Initial assessment

1. What is software architectural patterns? 

List at least 3 of them that are familiar for you. 

Just write them and do not explain

2. What is asynchronous message in sequence diagram and what 
about its difference with normal message communication in case 
of drawing?

SOFTWARE ARCHITECTURE 2 FROM 39



General Definition

› Software architecture 
– separates the overall structure of the system, 

in terms of subsystems and their interfaces, 

from the internal details of the individual subsystems 

› A software architecture 
– is structured into subsystems, 

in which each subsystem should be relatively independent of 
other subsystems

– is high level design

SOFTWARE ARCHITECTURE 3 FROM 39



Definition

› Thus
– A software architecture is considered primarily from a structural 
perspective

– However
› In order to fully understand the software architecture, 

› it is also necessary to study it from several perspectives, 

– including both static and dynamic perspectives

SOFTWARE ARCHITECTURE 4 FROM 39



Structural perspective of SA

– Component-Based Software Architecture 
› consists of multiple components in which each component is 

self-contained and encapsulates certain information 

› A component is either a composite object composed of other objects or a 
simple object. 

› A component provides an interface through which it communicates with 
other components. 

– All information that is needed by one component to communicate with another 
component is contained in the interface, which is separate from the 
implementation. 

– Thus, 
› a component can be considered a black box, 

– because its implementation is hidden from other components. Components 
communicate with each other in different ways using predefined 
communication patterns. 

SOFTWARE ARCHITECTURE 5 FROM 39



Software Architecture views

› Structural View (Module view)

› Dynamic View (Component & Connector view)

› Deployment View (Allocation view)

SOFTWARE ARCHITECTURE 6 FROM 39



Software Architecture views

› Structural View 
› A static view, which does not change with time 

› At the highest level, subsystems are depicted on a class diagram 

– Example
– Structural view of client/server software architecture: high-level class diagram 

for Banking System 

SOFTWARE ARCHITECTURE 7 FROM 39



Structural View 

SOFTWARE ARCHITECTURE 8 FROM 39



Dynamic view

– Is a behavioral view, which is depicted on a communication 
diagram 

– A subsystem communication diagram 
› shows the subsystems (depicted as aggregate or composite objects) and 
the message communication between them. 

– Example
› Dynamic view of client/server software architecture: high-level
communication diagram for Banking System 

SOFTWARE ARCHITECTURE 9 FROM 39



Dynamic view

SOFTWARE ARCHITECTURE 10 FROM 39



Deployment view

› depicts the physical configuration of the software architecture, 

› in particular how the subsystems of the architecture are allocated to 
physical nodes 

› can depict a specific deployment with a fixed number of nodes 

– Example
› Deployment view of client/server software architecture 

SOFTWARE ARCHITECTURE 11 FROM 39



Deployment view

SOFTWARE ARCHITECTURE 12 FROM 39



Software architectural patterns

› provide the skeleton or template for the overall software 
architecture or high-level design of an application
– referred to architectural styles or patterns of software 
architecture, 
› which are recurring architectures used in a variety of software applications 

– can be grouped into two main categories: 
1. architectural structure patterns, which address the static structure of the 

architecture

2. architectural communication patterns, which address the dynamic 
communication among distributed components of t

SOFTWARE ARCHITECTURE 13 FROM 39



Software architectural patterns

1. Architectural structure pattern

– Centralized Control Pattern

– Distributed Control Pattern

– Hierarchical Control Pattern

– Layers of Abstraction Pattern

– Multiple Client/Multiple Service Pattern

– Multiple Client/Single Service Pattern

– Multi-tier Client/Service Pattern

SOFTWARE ARCHITECTURE 14 FROM 39



Software architectural patterns

2. Architectural communication patterns
– Asynchronous Message Communication Pattern

– Asynchronous Message Communication with Callback Pattern

– Bidirectional Asynchronous Message Communication

– Broadcast Pattern

– Broker Forwarding Pattern

– Broker Handle Pattern

– Call/Return

– Subscription/Notification Pattern

– Synchronous Message Communication with Reply Pattern

– Synchronous Message Communication without Reply Pattern

SOFTWARE ARCHITECTURE

- Negotiation Pattern
- Service Discovery Pattern
- Service Registration

15 FROM 39



Software architectural patterns

1. Architectural structure pattern
A common one:

– Layers of Abstraction pattern
› also known as the Hierarchical Layers or Levels of Abstraction pattern

› a common architectural pattern that is applied in many different 
software domains

› Examples

– Operating systems, database management systems, and network 
communication software

› it can be extended by the addition of upper layers that use services 
provided by lower layers 

and contracted by the removal of upper layers

› each layer uses services in the layer immediately below it

– Or layer not immediately below it

SOFTWARE ARCHITECTURE 16 FROM 39



Software architectural patterns

1. Architectural structure pattern
– Layers of Abstraction pattern

– Example
› TCP/IP software layers of abstraction

SOFTWARE ARCHITECTURE 17 FROM 39



Software architectural patterns

1. Architectural structure pattern
– Layers of Abstraction pattern

– Characteristics
› it is straightforward to replace the upper layers of the architecture 
with different layers that use the unchanged services provided by the 
lower layers

› some nodes uses the lower three layers of the TCP/IP protocol, 
whereas the application nodes use all five layers

SOFTWARE ARCHITECTURE 18 FROM 39



Software architectural patterns

1. Architectural structure pattern
– Layers of Abstraction pattern

– Example 2
› Online shopping system

– At the lowest layer is the Service Layer, which provides services that are used 
by higher layers. 

– The top layer is a User Layer consisting of user interaction objects. 

– The middle layer is a Coordination Layer that coordinates user requests to the 
services

SOFTWARE ARCHITECTURE 19 FROM 39



Software architectural patterns

2. Architectural communication patterns
– Call/Return

› simplest form of communication between objects uses the Call/Return 
pattern

› In this pattern, a calling operation in the calling object invokes a 
called operation in the called object,

› Change control form calling to callee

› Parameters passed to callee

› When called method finished 

control returns to calling object

› synchronous communication 

– arrow with black arrowhead

SOFTWARE ARCHITECTURE 20 FROM 39



Software architectural patterns

2. Architectural communication patterns
– Call/Return

› simplest form of communication between objects uses the Call/Return 
pattern

› In this pattern, a calling operation in the calling object invokes a called 
operation in the called object,

› Change control form calling to callee

› Parameters passed to callee

› When called method finished 

control returns to calling object

› synchronous communication 

– arrow with black arrowhead

SOFTWARE ARCHITECTURE 21 FROM 39



Software architectural patterns

2. Architectural communication patterns
– Call/Return

› Example

– a sequential design with instance of the checking account and savings 
account classes

– Each object provides credit and debit operations

– can be invoked by the Withdrawal Transaction Manager or Transfer 
Transaction Manager objects

SOFTWARE ARCHITECTURE 22 FROM 39



Software architectural patterns

2. Architectural communication patterns
– Call/Return

› Example

– a sequential design with instance of the checking account and savings account 
classes

– Each object provides credit and debit operations

– can be invoked by the Withdrawal Transaction Manager or Transfer Transaction 
Manager objects

SOFTWARE ARCHITECTURE 23 FROM 39



Software architectural patterns

2. Architectural communication patterns
– Asynchronous Message Communication Pattern 

› For concurrent and distributed systems 

› Another name: Loosely Coupled Message Communication pattern 

› Main property

– producer component sends a message to the consumer component 
and does not wait for a reply 

– The producer continues because it either does not need a response 
or has other functions to perform before receiving a response

– The consumer receives the message; if the consumer is busy when 
the message arrives, the message is queued

SOFTWARE ARCHITECTURE 24 FROM 39



Software architectural patterns

2. Architectural communication patterns
– Asynchronous Message Communication Pattern 

› the producer and consumer components proceed asynchronously 

(i.e., at different speeds), 

a first-in, first out (FIFO) message queue can build up between producer 
and consumer 

› If no message is available when the consumer requests one, the consumer 
is suspended until next message arrival

› Asynchronous Message Communication pattern is used wherever 
possible for greater flexibility. 

› This approach can be used if the sender does not need a
response from the receiver 

› arrow with stick arrowhead = Asynchronous Message Communication

SOFTWARE ARCHITECTURE 25 FROM 39



Software architectural patterns

2. Architectural communication patterns
– Asynchronous Message Communication Pattern 

› Example

– Automated Guided Vehicle System 

– in a distributed environment 

SOFTWARE ARCHITECTURE 26 FROM 39



Software architectural patterns

2. Architectural communication patterns
– Asynchronous Message Communication Pattern 

› In peer-to-peer communication

– Two component may send asynchronous messages to each other 

– bidirectional asynchronous communication

–

SOFTWARE ARCHITECTURE 27 FROM 39



Software architectural patterns

2. Architectural communication patterns
– Asynchronous Message Communication Pattern

– Asynchronous Message Communication with Callback Pattern

– Bidirectional Asynchronous Message Communication

– Broadcast Pattern

– Broker Forwarding Pattern

– Broker Handle Pattern

– Call/Return

– Subscription/Notification Pattern

– Synchronous Message Communication with Reply Pattern

– Synchronous Message Communication without Reply Pattern

SOFTWARE ARCHITECTURE

- Negotiation Pattern
- Service Discovery Pattern
- Service Registration

28 FROM 39



Software architectural patterns

2. Architectural communication patterns
– Synchronous Message Communication Pattern with Reply 
Pattern
› also referred to as Tightly Coupled Message Communication with Reply 
pattern 

› the client component sends a message to the service component and then 
waits for a reply from the service 

› When the message arrives, the service accepts it, processes it, generates a 
reply, and then sends the reply 

SOFTWARE ARCHITECTURE 29 FROM 39



Software architectural patterns

2. Architectural communication patterns
– Synchronous Message Communication Pattern with Reply 
Pattern
› it is more likely that synchronous message communication involves 
multiple clients and one service

– the is fundamental to client/server architectures 

› Bidirectional Asynchronous Message Communication pattern 

SOFTWARE ARCHITECTURE 30 FROM 39



Documenting Software Architectural Patterns

– it is very useful to have a standard way of describing and 
documenting a pattern 
› so that it can be easily referenced, compared with other patterns, and 
reused 

– Three important aspects of a pattern that need to be captured 
are 
› Context

– the situation that gives rise to a problem 

› Problem

– refers to a recurring problem that arises in this context 

› Solution

– a proven resolution to the problem 

SOFTWARE ARCHITECTURE 31 FROM 39



Documenting Software Architectural 
Patterns

– A template for describing a pattern usually also addresses its 
strengths, weaknesses, and related patterns.

› A typical template looks like this: 

SOFTWARE ARCHITECTURE 32 FROM 39



Documenting Software Architectural Patterns

– An example 
– of documenting a pattern is given next for the Layered Pattern 

SOFTWARE ARCHITECTURE 33 FROM 39



Interface design

– An important goal of 
› both object-oriented design and component-based software
architecture 

– is the separation of the interface from the implementation 

› An interface
specifies the externally visible operations of a class, service, or component 
without revealing the internal structure (implementation) of the operations 

› The interface
can be considered a contract between the designer of the external view of 
the class and the implementer of the class internals. 

› It is also a contract between a class that requires (uses) the interface (i.e., 
invokes the operations provided by the interface) and the class that 
provides the interface. 

SOFTWARE ARCHITECTURE 34 FROM 39



Interface design

– Following the concept of information hiding 
› class attributes are private and the public operations provided by a class
constitute the interface 

› In static modeling using class diagram notation, 

– the interface (class operations) is depicted in the third compartment of the 
class (+ vs - sign)

›

SOFTWARE ARCHITECTURE 35 FROM 39



Interface design

› it is useful to depict the design of the interface separately from the 
component that realizes (i.e., implements) the interface. 

› Furthermore, interfaces can be realized in wider contexts than classes.

– Thus, interfaces for subsystems, distributed components, and passive classes 
can all be depicted using the same interface notation. 

› An interface can be depicted with a different name from the class or 
component that realizes the interface. 

– By convention, the name starts with the letter “I” 

› In UML, 

– an interface can be modeled separately from a component that realizes the
interface. 

– An interface can be depicted in two ways: simple and expanded. 

SOFTWARE ARCHITECTURE 36 FROM 39



Interface design

1. In the simple case
› the interface is depicted as a little circle with the interface name next
to it. 

› The class or component that provides the interface is connected to the 
small circle, 

SOFTWARE ARCHITECTURE 37 FROM 39



Interface design

– In the expanded case
› the interface is depicted in a rectangular box with the static modeling 
notation, with the stereotype «interface» and the interface name in the 
first compartment 

› The operations of the interface are depicted in the third compartment. The 
second compartment is left blank

SOFTWARE ARCHITECTURE 38 FROM 39



Question?

Bioinformation.ir

info@Bioinformation.ir

SOFTWARE ARCHITECTURE 39


	Slide 1: Overview of Software Architecture
	Slide 2: Initial assessment
	Slide 3: General Definition
	Slide 4: Definition
	Slide 5: Structural perspective of SA
	Slide 6: Software Architecture views
	Slide 7: Software Architecture views
	Slide 8: Structural View 
	Slide 9: Dynamic view
	Slide 10: Dynamic view
	Slide 11: Deployment view
	Slide 12: Deployment view
	Slide 13: Software architectural patterns
	Slide 14: Software architectural patterns
	Slide 15: Software architectural patterns
	Slide 16: Software architectural patterns
	Slide 17: Software architectural patterns
	Slide 18: Software architectural patterns
	Slide 19: Software architectural patterns
	Slide 20: Software architectural patterns
	Slide 21: Software architectural patterns
	Slide 22: Software architectural patterns
	Slide 23: Software architectural patterns
	Slide 24: Software architectural patterns
	Slide 25: Software architectural patterns
	Slide 26: Software architectural patterns
	Slide 27: Software architectural patterns
	Slide 28: Software architectural patterns
	Slide 29: Software architectural patterns
	Slide 30: Software architectural patterns
	Slide 31: Documenting Software Architectural Patterns
	Slide 32: Documenting Software Architectural Patterns
	Slide 33: Documenting Software Architectural Patterns
	Slide 34: Interface design
	Slide 35: Interface design
	Slide 36: Interface design
	Slide 37: Interface design
	Slide 38: Interface design
	Slide 39

