- ■Effect of V_{GB} on surface condition investigated more specifically Q'_C:
 - $V_{GB} = V_{FB}$
 - \blacksquare $V_{GB} < V_{FB}$
 - \blacksquare $V_{GB} > V_{FB}$
- ■Flat band Condition:
 - Discussed before
 - If V_{GB}= V_{FB}:

$$Q_C' = 0$$

$$\psi_S = 0$$

Accumulation

- V_{GB}<V_{FB}=-1.043 V
- Negative change in Q_G
- Positive change in Q_C
- Negative change in ψ_S and ψ_{ox}
- In this condition:

$$Q_C' > 0$$

 $\psi_S < 0$

Depletion and Inversion

- V_{GB}>V_{FB}=-1.043 V
- Positive change in Q_G
- Negative change in Q_C
- Positive change in ψ_S and ψ_{ox}
- In this condition:

$$Q_C' < 0$$

 $\psi_S > 0$

Depletion

- If V_{GB} is much higher than V_{FB} Positive potential near the surface build up
- This positive charge push the hole from surface, leaving it <u>depleted</u>.
- With increase of V_{GB} hole density will keep decreasing well below the doping concentration value N_A.
- The charge Q_c is due to the uncovered acceptor atoms, each of which contributes a charge -q.

Inversion

- If VGB increased further more ions are uncovered and finally the electric force gain enough energy to attract electrons to the surface.
- What is the source of electrons? Electron hole generation in depletion region (slow process) caused by thermal vibration.
- For high V_{GB} electron concentration become greater than hole concentration (Inversion)

Band bending

- If Φ_{MS} and Q_0 be zero
 - (b) accumulation
 - (c) Depletion
 - (d) Inversion, who can we know inversion happen?

potential varies in the opposite direction from the energy bands

Carrier Concentration

$$\frac{n_1}{n_2} = \exp\left(\frac{\psi_{12}}{\phi_T}\right) \Rightarrow \frac{n_{surface}}{n_0} = \exp\left(\frac{\psi_s}{\phi_T}\right)$$

■Where n_o is the carrier concentration in p-type material far from the surface!

$$n_0 = n_i e^{(E_f - E_i)/kT}$$
, $\phi_f = \frac{E_i - E_f}{q}$
 $n_{surface} = n_i \exp\left(\frac{\psi_s - \phi_f}{\phi_T}\right)$
 $N_A = p_0 = n_i e^{-(E_f - E_i)/kT} \Rightarrow n_i = p_0 e^{-\phi_f/kT}$
 $n_{surface} = N_A \exp\left(\frac{\psi_s - 2\phi_f}{\phi_T}\right)$

- •At $\psi_S = \Phi_F$, $n_{surface} = n_i = p_{surface}$!
- ■The total band bending in this case is $q \Phi_F$, i.e., E_i bends just enough to touch E_F .
- ■This is defined as the boundary between the depletion and inversion regions.
- •At $\psi_S = 2\Phi_F$, $n_{surface} = N_A = p_o!$

For n-type material

- The hole inversion layer made when V_{GB} is sufficiently negative!
- The immobile charge in the depletion region will consist of positively charged ionized donor atoms.
- Electron pill up for positive V_{GB}

- General consideration
- • ψ_s <0, hole accumulation
- $0 < \psi_S < \Phi_F$, depletion, N_A or N_D contribute in depletion region
- $Φ_S > Φ_F$, Inversion. $Ψ_S > 2Φ_F$ electron concentration is dominant

Body effect coefficient

■Surface potential versus V_{GB}-V_{FB}

By: DR. M. Razaghi

■Total semiconductor charge versus V_{GB}-V_{FB}

Accumulation and Depletion

- Accumulation and Depletion
 - In accumulation and depletion, the contribution of electrons can be neglected. Furthermore we know in this case N_D=0.
 - We can neglect some terms in following regions:
 - \circ Deep accumulation: $\psi_{\scriptscriptstyle S} < \phi_{\scriptscriptstyle T}, \psi_{\scriptscriptstyle S} < 0$
 - \circ Deep depletion: $\psi_{\scriptscriptstyle S} > 3\phi_{\scriptscriptstyle T}$
 - In this case one can neglect the effect of mobile electron and hole in equation.
 - $^{\circ}$ Although this assumption work fine for both deletion and week inversion (ψ_s $< 2\phi_F$) as seen in this <u>figure</u> but it collapse for strong inversion regime. In other region electron concentration plat essential role in calculation and should not be neglected!

