- ■Effect of V_{GB} on surface condition investigated more specifically Q'_C: - $V_{GB} = V_{FB}$ - \blacksquare $V_{GB} < V_{FB}$ - \blacksquare $V_{GB} > V_{FB}$ - ■Flat band Condition: - Discussed before - If V_{GB}= V_{FB}: $$Q_C' = 0$$ $$\psi_S = 0$$ ### Accumulation - V_{GB}<V_{FB}=-1.043 V - Negative change in Q_G - Positive change in Q_C - Negative change in ψ_S and ψ_{ox} - In this condition: $$Q_C' > 0$$ $\psi_S < 0$ ### Depletion and Inversion - V_{GB}>V_{FB}=-1.043 V - Positive change in Q_G - Negative change in Q_C - Positive change in ψ_S and ψ_{ox} - In this condition: $$Q_C' < 0$$ $\psi_S > 0$ ### Depletion - If V_{GB} is much higher than V_{FB} Positive potential near the surface build up - This positive charge push the hole from surface, leaving it <u>depleted</u>. - With increase of V_{GB} hole density will keep decreasing well below the doping concentration value N_A. - The charge Q_c is due to the uncovered acceptor atoms, each of which contributes a charge -q. ### Inversion - If VGB increased further more ions are uncovered and finally the electric force gain enough energy to attract electrons to the surface. - What is the source of electrons? Electron hole generation in depletion region (slow process) caused by thermal vibration. - For high V_{GB} electron concentration become greater than hole concentration (Inversion) ### Band bending - If Φ_{MS} and Q_0 be zero - (b) accumulation - (c) Depletion - (d) Inversion, who can we know inversion happen? potential varies in the opposite direction from the energy bands Carrier Concentration $$\frac{n_1}{n_2} = \exp\left(\frac{\psi_{12}}{\phi_T}\right) \Rightarrow \frac{n_{surface}}{n_0} = \exp\left(\frac{\psi_s}{\phi_T}\right)$$ ■Where n_o is the carrier concentration in p-type material far from the surface! $$n_0 = n_i e^{(E_f - E_i)/kT}$$, $\phi_f = \frac{E_i - E_f}{q}$ $n_{surface} = n_i \exp\left(\frac{\psi_s - \phi_f}{\phi_T}\right)$ $N_A = p_0 = n_i e^{-(E_f - E_i)/kT} \Rightarrow n_i = p_0 e^{-\phi_f/kT}$ $n_{surface} = N_A \exp\left(\frac{\psi_s - 2\phi_f}{\phi_T}\right)$ - •At $\psi_S = \Phi_F$, $n_{surface} = n_i = p_{surface}$! - ■The total band bending in this case is $q \Phi_F$, i.e., E_i bends just enough to touch E_F . - ■This is defined as the boundary between the depletion and inversion regions. - •At $\psi_S = 2\Phi_F$, $n_{surface} = N_A = p_o!$ ### For n-type material - The hole inversion layer made when V_{GB} is sufficiently negative! - The immobile charge in the depletion region will consist of positively charged ionized donor atoms. - Electron pill up for positive V_{GB} - General consideration - • ψ_s <0, hole accumulation - $0 < \psi_S < \Phi_F$, depletion, N_A or N_D contribute in depletion region - $Φ_S > Φ_F$, Inversion. $Ψ_S > 2Φ_F$ electron concentration is dominant Body effect coefficient ■Surface potential versus V_{GB}-V_{FB} By: DR. M. Razaghi ■Total semiconductor charge versus V_{GB}-V_{FB} ### Accumulation and Depletion - Accumulation and Depletion - In accumulation and depletion, the contribution of electrons can be neglected. Furthermore we know in this case N_D=0. - We can neglect some terms in following regions: - \circ Deep accumulation: $\psi_{\scriptscriptstyle S} < \phi_{\scriptscriptstyle T}, \psi_{\scriptscriptstyle S} < 0$ - \circ Deep depletion: $\psi_{\scriptscriptstyle S} > 3\phi_{\scriptscriptstyle T}$ - In this case one can neglect the effect of mobile electron and hole in equation. - $^{\circ}$ Although this assumption work fine for both deletion and week inversion (ψ_s $< 2\phi_F$) as seen in this <u>figure</u> but it collapse for strong inversion regime. In other region electron concentration plat essential role in calculation and should not be neglected!