

Semiconductor Devices: Operation and Modeling

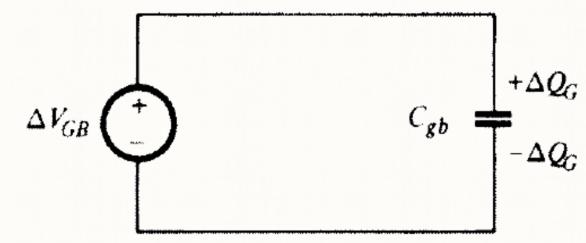
- If V_{GB} is increased by a small amount ΔV_{GB} , a positive charge $\Delta Q'_{G}$ will flow into the gate terminal.
- For overall charge neutrality, a charge of equal value must flow out of the body terminal or, equivalently, a charge of value $-\Delta Q'_G$ must flow into the body terminal.
- An incremental (small-signal) capacitance per unit area, C'_{gb} can thus be defined to relate charge changes to voltage changes.

$$C_{gb}' = \frac{dQ_G'}{dV_{GB}}$$

Charge neutrality:

$$\Delta Q_C' = -\Delta Q_G'$$

•On the other hand as discussed <u>before</u>: $\Delta V_{GB} = \Delta \psi_{ox} + \Delta \psi_{s}$



Therefore using past equations:

$$\frac{1}{C'_{gb}} = \frac{d\psi_{ox}}{dQ'_{G}} + \frac{d\psi_{s}}{dQ'_{G}} = \frac{1}{dQ'_{G}/d\psi_{ox}} + \frac{1}{-dQ'_{C}/d\psi_{s}}$$

• As discussed before: $Q'_G = C'_{ox}\psi_{ox}$, Therefore: $C'_{ox} = dQ'_G/d\psi_{ox}$

• C'_c can be defined as small signal charge capacitance: $C'_c = -dQ'_c/d\psi_s$

Based on past equations:

$$\begin{aligned} Q_{C}' &= -sgn(\psi_{s})\sqrt{2q\epsilon_{s}N_{A}}\sqrt{\phi_{T}e^{-\psi_{s}/\phi_{T}} + \psi_{s} + e^{-2\phi_{F}/\phi_{T}}(\phi_{T}e^{\psi_{s}/\phi_{T}} - \psi_{s} - \phi_{T})} \\ C_{C}' &= sgn(\psi_{s})\sqrt{2q\epsilon_{s}N_{A}}\frac{1 - \phi_{T}e^{-\frac{\psi_{s}}{\phi_{T}}} + e^{-\frac{2\phi_{F}}{\phi_{T}}}(\phi_{T}e^{\frac{\psi_{s}}{\phi_{T}}} - 1)}{2\sqrt{\phi_{T}e^{-\frac{\psi_{s}}{\phi_{T}}} + \psi_{s}} + e^{-\frac{2\phi_{F}}{\phi_{T}}}(\phi_{T}e^{\frac{\psi_{s}}{\phi_{T}}} - \psi_{s} - \phi_{T})}, \psi_{s} \neq 0 \end{aligned}$$

Semiconductor Devices: Operation and Modeling

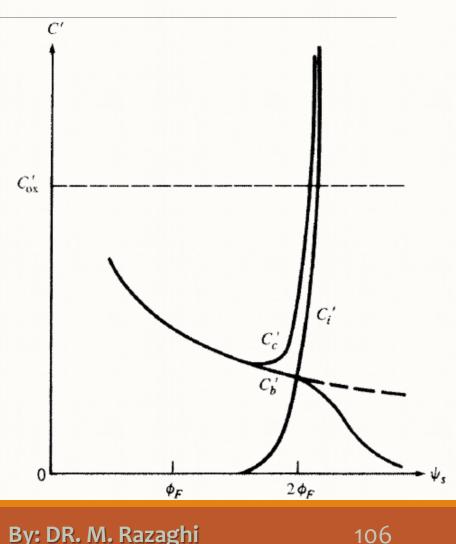
If $\psi_s \neq 0$, both numerator and denominator become zero therefore from Hopital rule:

$$C_C' = \sqrt{2q\epsilon_s N_A} \left(1 + e^{-\frac{2\phi_F}{\phi_T}}\right) / \phi_T$$

Deep in accumulation: (ψ_s below zero by several ϕ_T) $C_C' = \sqrt{2q\epsilon_s N_A/2\phi_T} e^{-\frac{\psi_s}{2\phi_T}}$

Deep in depletion and inversion :(ψ_s below zero by several ϕ_T)

$$C_C' = \sqrt{2q\epsilon_s N_A} \frac{1 + \phi_T e^{\frac{\psi_s - 2\phi_F}{\phi_T}}}{2\sqrt{\psi_s + \phi_T e^{\frac{\psi_s - 2\phi_F}{\phi_T}}}}$$



Semiconductor Devices: Operation and Modeling

Consideration of the individual contributions of the depletion region and inversion layer charges to C_C:

$$\Delta Q'_C = \Delta Q'_B + \Delta Q'_I$$
$$C'_C = -\frac{dQ'_B}{d\psi_S} + \frac{-dQ'_I}{d\psi_S}$$

• Depletion region incremental capacitance per unit area: $C_b' = -dQ_B'/d\psi_S$

This capacitance relates changes of the potential across the depletion region to the associated changes of the depletion charge.

Capacitance per unit area associated with the inversion layer:

$$C_i' = -dQ_I'/d\psi_s$$

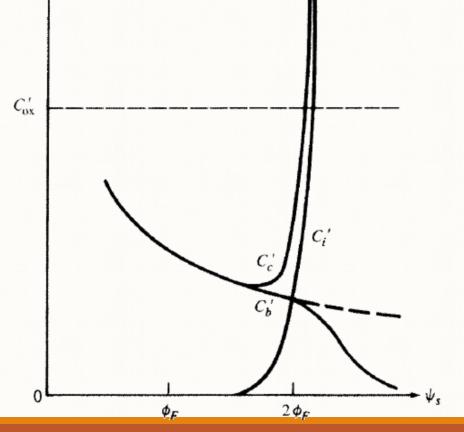
•As <u>discussed before</u> we can find these two small signal capacitances: $\int_{1}^{C'}$

$$C'_{b} = \sqrt{2q\epsilon_{s}N_{A}} \frac{\psi_{s}-2\phi_{F}}{2\sqrt{\psi_{s}+\phi_{T}e^{\frac{\psi_{s}-2\phi_{F}}{\phi_{T}}}}}$$
$$C'_{i} = \sqrt{2q\epsilon_{s}N_{A}} \frac{\phi_{T}e^{\frac{\psi_{s}-2\phi_{F}}{\phi_{T}}}}{2\sqrt{\psi_{s}+\phi_{T}e^{\frac{\psi_{s}-2\phi_{F}}{\phi_{T}}}}}$$

$$C'_C = C'_b + C'_i$$

Finally:

$$\frac{1}{C'_{gb}} = \frac{1}{C'_{ox}} + \frac{1}{C'_i + C'_b}$$



108

Semiconductor Devices: Operation and Modeling

 Small-signal equivalent circuit, relating small changes of potentials and charges around a bias point. It does not relate total values of potentials and charges.

- •Our ultimate goal in this development is to plot the total capacitance seen externally (C'_{gb}) vs. the total externally applied bias (V_{GB}) .
 - First we should find ψ_s from V_{GB} .
 - Then C'_c can be calculated from corresponding ψ_s .



•Static changes \rightarrow after V_{GB} is changed by a small amount ΔV_{GB} , it remains fixed at its new value. We then wait long enough for a new equilibrium to be reached.

- •Deep in accumulation: $C'_{gb} \rightarrow C'_{ox}$
 - When ψ_s become more negative $\rightarrow C'_C$ increases

$$C_C' = \sqrt{2q\epsilon_s N_A/2\phi_T} e^{-\frac{\psi_s}{2\phi_T}}$$

• As the C'_{C} and C'_{ox} are series capacitance, therefore:

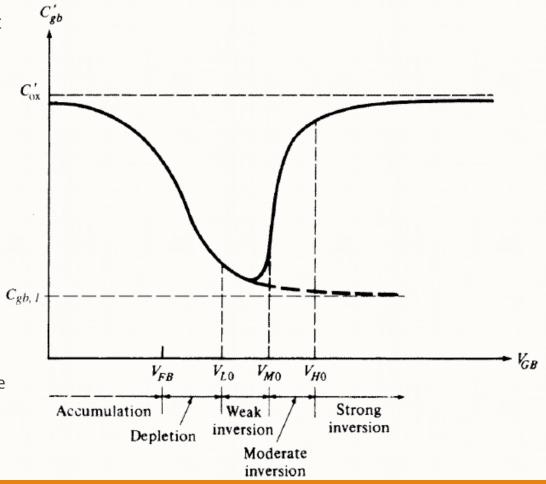
$$\frac{1}{C_{gb}'} = \frac{1}{C_{ox}'} + \frac{1}{C_C'} \approx \frac{1}{C_{ox}'}$$

•From accumulation to neighboring region C'_{gb} change a lot!

Therefore it can be used a varactor (a bias-controlled small-signal capacitor) device for RF applications.

In the weak inversion region, C'_{qb} is seen to reach a minimum.

• In weak inversion (except for points close to the upper limit of the region), the inversion layer capacitance is negligible (figure). Therefore $C'_{gb} \rightarrow C'_{c}$ in this region. (it should be also noted that in this regime $C'_{B} > C'_{i}$)



110

•Moderate and deep inversion: $C'_{gb} \rightarrow C'_{ox}$

- It is because C'_i drastically increases and although C'_b decreases as theses capacitors are parallel, C'_c increases and consequently $C'_{gb} \rightarrow C'_{ox}$ (same as deep accumulation which we have high level hole concentration)
- •High frequency changes of $V_{GB}(f > 100 \text{ KHz})$ the behavior of small signal capacitance will be changed!
 - If ΔV_{GB} is a small-signal sinusoidal voltage, the steady-state charge changes will also be sinusoidal.
 - For high frequency regime, electron density in inversion layer cannot change with ΔV_{GB} frequency. Why?
 - This is because electron generation in depletion region is slow mechanism (thermal generation and recombination) and therefore, due to this slow generation electron density in inversion layer approximately remain constant!
 - If there is communication with outside (Source and Drain), electron density change can be enhanced.

High frequency regime...

- Based on this discussion, C'_i should be remain constant and therefore C'_b will changed. This means that ΔV_{GB} only cover and uncover the ionic charges! From the past equation one can see small C'_b play an essential rule in calculation of C'_{gb} .
- In deep inversion regime: $\psi_s = \phi_0 = 2\phi_F + \phi_{Z0}$

minimum
$$C'_{gb} \rightarrow C'_{gb,l} = \frac{C_{ox}}{1 + \frac{2}{\gamma}\sqrt{\phi_0}} why?$$

- Back to small signal capacitance for low freq. regime
- From the <u>figure (problem)</u>:

$$\frac{d\psi_s}{dV_{GB}} = \frac{C'_{ox}}{C'_{ox} + C'_i + C'_b}$$

• Each slope in <u>figure</u> corresponds to incremental small capacitance discussed here.

1

•For strong inversion regime this slope corresponds to C'_i (becomes very large and the slope diminishes).

$$\frac{d|Q_I'|}{dV_{GB}} = \frac{d|Q_I'|}{d\psi_S} \frac{d\psi_S}{dV_{GB}} = \frac{C_{ox}'C_i'}{C_{ox}' + C_i' + C_b'} \approx \underline{C_{ox}'}$$

•Generally:

$$\frac{d\ln|Q'_{I}|}{dV_{GB}} = \frac{C'_{ox}}{C'_{ox} + C'_{i} + C'_{b}} \frac{C'_{i}}{|Q'_{I}|}$$

In week inversion, C'_i , can be neglected and the slope becomes:

$$n = 1 + \frac{C'_b}{C'_{ox}} = \frac{dV_{GB}}{d\psi_S}$$

Semiconductor Devices: Operation and Modeling

	Weak inversion	Moderate inversion	Strong inversion
Definition in terms of surface potential ψ_s	$\phi_F \leq \psi_s < 2\phi_F$	$2\phi_F \leq \psi_s < 2\phi_F + \phi_{Z0}$	$2\phi_F + \phi_{Z0} \leq \psi_s$
Definition in terms of gate-body voltage V_{GB}	$V_{L0} \le V_{GB} < V_{M0}$	$V_{M0} \le V_{GB} < V_{H0}$	$V_{H0} \le V_{GB}$
$\frac{ Q_I' }{ Q_B' }$	≪1	Varies	≫1 deep in strong inversion; not necessarily so near the bottom of the region
$\frac{C_i'}{C_b'}$	≪1 deep in weak inversion; not necessarily so near the top of the region	Varies	»I
$\frac{d\psi_s}{dV_{GB}}$	Approximately constant; attains its maximum value in this region	Varies	Small
Dependence of Q'_{I} on V_{GB}	Approximately exponential		Approximately first-degree polynomial
$\frac{d\ln Q_l' }{d\psi_s}$	$\frac{1}{\phi_i}$	Varies	$\frac{1}{2\phi_i}$

TABLE 2.1Regions of inversion and properties

Semiconductor Devices: Operation and Modeling