Potential Balance and Charge Balance ## Potential Balance and Charge Balance - ■What happened if $V_{GB} \neq V_{FB}$ - ■Four type of voltage drop: - The voltage of the external source V_{GB} - $\label{eq:potential} \begin{tabular}{l} \blacksquare \begin{tabular}{l} The potential drop across the oxide \\ \psi_{ox} \end{tabular}$ - lacktriangle The surface potential ψ_{S} - Several contact potentials. Their sum, when going *clockwise*, is Φ_{MS} $$V_{GB} = \psi_{ox} + \psi_{s} + \phi_{MS}$$ ## Potential Balance and Charge Balance... If there is a change in V_{GB} $$\Delta V_{GB} = \Delta \psi_{ox} + \Delta \psi_{s}$$ - Charge in the system - The charge on the gate, Q_G - The effective interface charge, Q_o - The charge in the semiconductor under the oxide, Q_C - Charge neutrality \rightarrow Q_G+Q_o+Q_C =0 - If there is charge variation due to V_{GB} variation as Q_o is constant we have: $$\Delta Q_G' + \Delta Q_C' = 0$$