Potential Balance and Charge Balance

Potential Balance and Charge Balance

- ■What happened if $V_{GB} \neq V_{FB}$
- ■Four type of voltage drop:
 - The voltage of the external source
 V_{GB}
 - $\label{eq:potential} \begin{tabular}{l} \blacksquare \begin{tabular}{l} The potential drop across the oxide \\ \psi_{ox} \end{tabular}$
 - lacktriangle The surface potential ψ_{S}
 - Several contact potentials. Their sum, when going *clockwise*, is Φ_{MS}

$$V_{GB} = \psi_{ox} + \psi_{s} + \phi_{MS}$$

Potential Balance and Charge Balance...

If there is a change in V_{GB}

$$\Delta V_{GB} = \Delta \psi_{ox} + \Delta \psi_{s}$$

- Charge in the system
 - The charge on the gate, Q_G
 - The effective interface charge, Q_o
 - The charge in the semiconductor under the oxide, Q_C
 - Charge neutrality \rightarrow Q_G+Q_o+Q_C =0
 - If there is charge variation due to V_{GB} variation as Q_o is constant we have:

$$\Delta Q_G' + \Delta Q_C' = 0$$