The two terminal MOS structure

Introduction

- ■The two terminal MOS MOS capacitor
- Historical background studied for many years

- •Case 1: both gate and body material is same (p-type with same doping concentration)
 - What happen?
 - As the wire is also the same martial as body and gate martial there is no charge pile up anywhere! – martial in neutral everywhere.
 - There will be no electrical field
- Case 2 (more realistic): Gate material is not the same with body material
 - Gate and body have metal contact material and connected to each other with a metallic wire (short circuit)
 - Although there are several contact potential between gate and body but we have:

Contact potential from gate to bulk = $\phi_S - \phi_M = \phi_{SM}$

•One can cancel the contact potential by applying the same negative voltage as Φ_{SM} :

$$\phi_{MS} = \phi_M - \phi_S$$

- In this condition net flow cancelled and device become neutral.
- Ex: For different gate materials such as Aluminum, n-type polysilicon and p-type polysilicon calculate the Φ_{MS} If the body material is a given p-type material
 - Aluminum gate: $\phi_{MS} = 4.1 (4.05 + 0.56 + \phi_F) = -0.51 \phi_F$
 - n-type polysilicon: $\phi_{MS} = 4.05 (4.05 + 0.56 + \phi_F) = -0.56 \phi_F$
 - \circ p-type polysilicon: $\phi_{MS} = (4.05 + 1.12) (4.05 + 0.56 + \phi_F) = 0.56 \phi_F$

■Parasitic charge in oxide

- Fixed oxide charge
 - Independent of oxide thickness and body doping concentration
 - Due to uncompleted bound between Si-Si and Si-O
 - ∘ 1-3nm above the surface
 - Dependent to crystal orientation
- Oxide trapped charge
 - Made by irradiation, photoluminescence or high voltage
- Mobile ionic charge
 - Due to environmental contamination
 – fabricating through the hand
 - These charges can move in oxide due to electric field
- Interface trapped charge
 - Defects at surface SiO₂/Si
 - Act like donor or acceptor
 - Crystal orientation dependent
- It is too hard to control them undesirable effects

- ■Effective interface charge : Q_o
 - In todays devices Q_o is almost always positive
 - It is between 1.6×10⁻⁹ to 1.6×10⁻⁸ C/cm² which is corresponds to 10¹⁰ to 10¹¹ ions/cm² effective interface ion density
 - lacktriangle Potential drop across the oxide : ψ_{ox}

$$\psi_{ox} = -\frac{Q_0}{C_{ox}} = -\frac{Q_0'}{C_{ox}'}$$

$$C_{ox}' = \frac{\varepsilon_{ox}}{t_{ox}}$$

$$\varepsilon_{ox} = k_{ox}\varepsilon_0, k_{ox} = 3.9 \text{ for SiO}_2$$

■ In new modern devices other oxide can be used

■Flat band voltage: V_{FB} – Flat energy band between gate and body

$$V_{FB} = \phi_{MS} - \frac{Q_0'}{C_{ox}'}$$

- ■In modern devices second term can be negligible!
- •Ex: Calculate the flatband voltage for a p-type body semiconductor with $N_A=10^{18}/cm^3$, n-type polysilicon with $N_D=10^{18}/cm^3$ and a Sio2 insulator with 2nm thickness and $Q_o=10^{-8}C/cm^2$

$$\phi_F \approx KT \ln\left(\frac{N_A}{n_i}\right) = 0.476 V$$

$$\phi_{MS} = -0.56 - 0.476 = -1.036 V$$

$$C'_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} = 1.73 \times 10^{-7} \, F/cm^2 \Rightarrow \frac{Q'_0}{C'_{ox}} = 0.006 \, V$$

$$V_{FB} = \phi_{MS} - \frac{Q'_0}{C'_{ox}} = -1.036 - .006 = 1.0412 \, V$$

- Illustration
- $\bullet \phi_M > \phi_S$
- ■Fermi level in metal and semiconductor should line up in equilibrium state potential drop across the device! Led to carrier movement.
- •To prevent from this movement external voltage source should apply to cancel out built in potential

$$V_{GB} = V_{FB} = \phi_{MS} - \frac{Q_0'}{C_{ox}'}$$

