A "V_{CB}Control" Point of View

Semiconductor Devices: Operation and Modeling Theory: By: DR. M. Razaghi 153

A "V_{CR}Control" Point of View

Fundamentals

- **Our discussion of the three-terminal MOS structure so far was a natural extension of our discussion** of the two-terminal structure. In both cases, we described in detail what happens when we increase the gate potential with respect to the body, V_{GB} . \rightarrow " V_{GB} control."
- There is another point of view, which we will call "*L_{CB}* **control**," in which we fix *L_{CB}* and observe what happens when we vary V_{CB} .
- Obviously, the two points of view should give equivalent results.
- The $\bm{V_{CB}}$ control viewpoint leads to a different set of models for the MOS transistor.
- Starting with this figure. If $V_{GB} = V_{GB5}$ and changing the V_{CB} from V_{CB1} to V_{CB3} it can be seen one can change the inversion regime from strong to weak inversion!
- **Further increases in** V_{CB} will leave the surface potential value practically unaffected at the value $\psi_{sa}(V_{GB5})$, as seen for example in going from $\bm{V_{CB3}}$ to $\bm{V_{CB4}}$.

These observations can clearly be displayed by plotting ψ_s , vs. $\bm{V_{CB}}$ with $\bm{V_{GB}} = \bm{V_{GB5}}$ using following equation:

$$
V_{GB5} = V_{FB} + \psi_s + \gamma \sqrt{\psi_s + e^{-(2\phi_F + V_{CB})/\phi_T} (\phi_T e^{\psi_s/\phi_T})}
$$

Notice to limits, same as previous discussions!

- For large V_{CB} , the inversion layer disappears and ψ_s , flattens out at the value ψ_{sa} , which is given by Eq. and *depends only on* V_{GB} .
- Note that as V_{CB} is increased, we go from strong, to moderate, to weak inversion.
- Thus, these regions are encountered in *opposite* order from the case where V_{GB} is increased.

Semiconductor Devices: Operation and Modeling Theory: By: DR. M. Razaghi 1555

The effect of decreasing V_{GB} is shown in figure.

The two curves below the top one behave in a similar manner as just discussed, only now V_{GB} is smaller, and thus smaller values of V_{CB} are needed to reduce the level of inversion to a given point.

The value V_{GB2} (< V_{GB3}) is low, so even with V_{CB} $= 0$, the surface is only in moderate inversion. Increasing V_{CB} above zero can then only drive the structure into weak inversion and eventually into depletion.

Finally, V_{GB1} (< V_{GB2}) is so low that the device is only in weak inversion when $V_{CB} = 0$. Increasing V_{CB} above zero then will eventually drive the device into depletion.

Semiconductor Devices: Operation and Modeling Theory: By: DR. M. Razaghi 156

Finding boundaries: V_O , V_W and V_U in terms of V_{CB}

For example V_W

$$
V_{GB} = V_{FB} + V_W + 2\phi_F + \gamma \sqrt{V_W + 2\phi_F} \rightarrow V_W = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} + V_{GB} - V_{FB}}\right)^2 - 2\phi_F
$$

- This quantity is an increasing function of V_{GB} .
- **Table.**
- \bullet $\bm{V_{CB}}$ is assumed nonnegative, in order for the junction formed by the n⁺ region and the substrate not to become forward-biased.
- In some cases, the expressions in the last row of **Table** can result in negative or even imaginary values. This indicates that there are no positive (or zero) values of V_{CB} , which will bring the structure to the desired point. (the bottom curve of [figure\)](#page-3-0)

• Relation between ψ_s **and** Q'_B **and** Q'_I **can be find here and here for constant value of** V_{GB} **.**

- These plots are not shown for values of ψ_s larger than $\psi_s(V_{GB})$ because ψ_s , cannot attain such values.
- Thus, Q'_B is expected to tend to a constant, maximum value and Q'_I is expected to tend to zero, as V_{CB} is raised.

Semiconductor Devices: Operation and Modeling Theory: By: DR. M. Razaghi 158

Semiconductor Devices: Operation and Modeling Equilibrity: DR. M. Razaghi 159 159

The "Pinchoff Voltage"

As discussed before in strong inversion regime we have:

 $Q'_I = -C'_{ox}(V_{GB} - V_{TB}(\mathbf{V}_{CB}))$ where $V_{TB} = V_T + \mathbf{V}_{CB}$

 $V_T = V_{FB} + \phi_0 + \gamma \sqrt{\phi_0 + V_{CB}} \rightarrow V_{TB}(V_{CB}) = V_{FB} + V_{CB} + \phi_0 + \gamma \sqrt{\phi_0 + V_{CB}}$

As seen, as V_{CB} is increased, $V_{TB}(V_{CB})$ rises and $|Q'_I|$ is reduced [\(figure](#page-6-0) broken line).

It is close to a straight line, although it is not exactly a straight line.

The "Pinchoff Voltage": where $Q'_l = 0$ (where the stright line cross the horizental axis

The Pinchoff voltage, V_P , is the value of V_{CB} that makes V_{TB} equal to the externally applied gate-body voltage, and thus causes the strong inversion *approximation* to predict zero inversion layer charge.

The pinchoff voltage finds some use in simplified modeling.

$$
V_P = \mathbf{V}_{CB} \Big|_{V_{TB} = V_{CB}}
$$

$$
V_p = \mathbf{V}_{CB} = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} + \mathbf{V}_{CB} - V_{FB}}\right)^2 - \phi_F = \psi_{sa}(V_{GB}) - \phi_F
$$

Semiconductor Devices: Operation and Modeling Theory: By: DR. M. Razaghi 160

Uses for Three-Terminal MOS Structures

Semiconductor Devices: Operation and Modeling Theory: By: DR. M. Razaghi 161

Uses for Three-Terminal MOS Structures

Our main reason for covering the three-terminal MOS structure here is that it leads smoothly to the four-terminal MOS transistor.

- However, three-terminal MOS structures have interesting properties of their own, which can lead to applications:
	- **The body terminal has been used as a control terminal for a MOS varactor in very low voltage** circuits.

Instead of an actual three-terminal structure, one can use advantageously a transistor with its source and drain shorted together, their common connection serving as terminal C.

