A "*V_{CB}*Control" Point of View

Semiconductor Devices: Operation and Modeling

By: DR. M. Razaghi

A "**V**_{CB}Control" Point of View

Fundamentals

- Our discussion of the three-terminal MOS structure so far was a natural extension of our discussion of the two-terminal structure. In both cases, we described in detail what happens when we increase the gate potential with respect to the body, V_{GB}. →" V_{GB} control."
- There is another point of view, which we will call "<u>V_{CB} control</u>," in which we fix <u>V_{CB}</u> and observe what happens when we vary V_{CB}.
- Obviously, the two points of view should give <u>equivalent</u> results.
- The **V**_{CB} control viewpoint leads to a different set of models for the MOS transistor.
- Starting with <u>this figure</u>. If V_{GB} = V_{GB5} and changing the V_{CB} from V_{CB1} to V_{CB3} it can be seen one can change the inversion regime from strong to weak inversion!
- Further increases in V_{CB} will leave the surface potential value practically unaffected at the value $\psi_{sa}(V_{GB5})$, as seen for example in going from V_{CB3} to V_{CB4} .

Fundamentals

These observations can clearly be displayed by plotting ψ_s , vs. V_{CB} with $V_{GB} = V_{GB5}$ using following equation:

$$V_{GB5} = V_{FB} + \psi_{s} + \gamma_{\sqrt{\psi_{s} + e^{-(2\phi_{F} + V_{CB})/\phi_{T}}(\phi_{T}e^{\psi_{s}/\phi_{T}})}}$$

Notice to limits, same as previous discussions!

- •For large V_{CB} , the inversion layer disappears and ψ_s , flattens out at the value ψ_{sa} , which is given by Eq. and depends only on V_{GB} .
- Note that as V_{CB} is increased, we go from strong, to moderate, to weak inversion.
- Thus, these regions are encountered in <u>opposite</u> order from the case where V_{GB} is increased.

155

•The effect of decreasing V_{GB} is shown in figure.

The two curves below the top one behave in a similar manner as just discussed, only now V_{GB} is smaller, and thus smaller values of V_{CB} are needed to reduce the level of inversion to a given point.

The value V_{GB2} (< V_{GB3}) is low, so even with V_{CB}
= 0, the surface is only in moderate inversion.
Increasing V_{CB} above zero can then only drive the structure into weak inversion and eventually into depletion.

•Finally, V_{GB1} (< V_{GB2}) is so low that the device is only in weak inversion when $V_{CB} = 0$. Increasing V_{CB} above zero then will eventually drive the device into depletion.

156

By: DR. M. Razaghi

•Finding boundaries: V_Q , V_W and V_U in terms of V_{CB}

• For example V_W

$$\mathbf{V}_{GB} = V_{FB} + V_W + 2\phi_F + \gamma\sqrt{V_W + 2\phi_F} \rightarrow V_W = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} + \mathbf{V}_{GB}} - V_{FB}\right)^2 - 2\phi_F$$

- This quantity is an increasing function of V_{GB}.
- Table.
- V_{CB} is assumed nonnegative, in order for the junction formed by the n⁺ region and the substrate not to become forward-biased.
- In some cases, the expressions in the last row of <u>Table</u> can result in negative or even imaginary values. This indicates that there are no positive (or zero) values of V_{CB}, which will bring the structure to the desired point. (the bottom curve of <u>figure</u>)

•Relation between ψ_s and Q'_B and Q'_I can be find <u>here</u> and <u>here</u> for constant value of V_{GB} .

- •These plots are not shown for values of ψ_s larger than $\psi_s(V_{GB})$ because ψ_s , cannot attain such values.
- •Thus, Q'_B is expected to tend to a constant, maximum value and Q'_I is expected to tend to zero, as V_{CB} is raised.

Semiconductor Devices: Operation and Modeling

Semiconductor Devices: Operation and Modeling

By: DR. M. Razaghi

159

As discussed before in strong inversion regime we have:

 $Q'_{I} = -C'_{ox} (V_{GB} - V_{TB} (V_{CB})) \text{ where } V_{TB} = V_{T} + V_{CB}$

 $V_T = V_{FB} + \phi_0 + \gamma \sqrt{\phi_0 + V_{CB}} \rightarrow V_{TB}(V_{CB}) = V_{FB} + V_{CB} + \phi_0 + \gamma \sqrt{\phi_0 + V_{CB}}$

•As seen, as V_{CB} is increased, $V_{TB}(V_{CB})$ rises and $|Q'_I|$ is reduced (figure broken line).

It is close to a straight line, although it is not exactly a straight line.

•The "Pinchoff Voltage": where $Q'_I = 0$ (where the stright line cross the horizental axis)

•The Pinchoff voltage, V_P, is the value of V_{CB} that makes V_{TB} equal to the externally applied gate-body voltage, and thus causes the strong inversion approximation to predict zero inversion layer charge.

The pinchoff voltage finds some use in simplified modeling.

$$V_P = \mathbf{V}_{CB} \Big|_{V_{TB}} = \mathbf{V}_{GB}$$
$$V_p = \mathbf{V}_{CB} = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} + \mathbf{V}_{GB}} - V_{FB}\right)^2 - \phi_F = \psi_{sa}(V_{GB}) - \phi_F$$

Semiconductor Devices: Operation and Modeling

Uses for Three-Terminal MOS Structures

Semiconductor Devices: Operation and Modeling

By: DR. M. Razaghi

Uses for Three-Terminal MOS Structures

Our main reason for covering the three-terminal MOS structure here is that it leads smoothly to the four-terminal MOS transistor.

- However, three-terminal MOS structures have interesting properties of their own, which can lead to applications:
 - The body terminal has been used as a control terminal for a MOS varactor in very low voltage circuits.

Instead of an actual three-terminal structure, one can use advantageously a transistor with its source and drain shorted together, their common connection serving as terminal C.

