Regions of Inversion

Semiconductor Devices: Operation and Modeling

Regions of Inversion

Approximate Limits

For two terminal MOS onset of weak, moderate, and strong inversion by the surface potential values
 TABLE 3.1
 Approximate bounds between regions[†]

	Bound between depletion and weak inversion	Bound between weak and moderate inversion	Bound between moderate and strong inversion
In terms of surface potential ψ_s	$\phi_F + V_{CB}$	$2\phi_F + V_{CB}$	$2\phi_F + V_{CB} + \phi_Z^{\ddagger}$
In terms of V_{GB} , for a given V_{CB}	$V_{LB} = V_L + V_{CB}$	$V_{MB} = V_M + V_{CB}$	$V_{HB} = V_H + V_{CB}$
In terms of V_{GC} , for a given V_{CB}	$V_L = V_{FB} + \phi_F + \gamma \sqrt{\phi_F + V_{CB}}$	$V_M = V_{FB} + 2\phi_F + \gamma \sqrt{2\phi_F + V_{CB}}$	$V_H = V_M + V_Z^{\$}$
In terms of V_{CB} , for a given V_{GB} (see Sec. 3.5)	$V_U = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} + V_{GB} - V_{FB}}\right)^2 - \phi_F$	$V_W = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} + V_{GB} - V_{FB}}\right)^2 - 2\phi_F$	$V_Q = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} + V_{GB} - V_{FB} - V_Z}\right)^2 - 2\phi_F$

Semiconductor Devices: Operation and Modeling

 Voltages corresponding to region of inversion is with some changes can be find as before, for example for moderate inversion voltage (<u>neglecting</u> <u>exp term</u>):

$$V_{MB} = V_{FB} + (2\phi_F + \mathbf{V_{CB}}) + \gamma \sqrt{(2\phi_F + \mathbf{V_{CB}})}$$

The corresponding values in terms of V_{GC} can be found by subtracting V_{CB} , as suggested <u>before</u>. Thus, for example:

$$V_M = V_{MB} - V_{CB} = V_{FB} + (2\phi_F) + \gamma \sqrt{(2\phi_F + V_{CB})}$$

The fact that the quantities in Fig. increase with increasing V_{CB} is a consequence of the body effect discussed before.

As is apparent from the expressions in Table 3.1, how much V_L , V_M , and V_H will increase for a given increase in V_{CB} is determined by the value of the coefficient γ ; hence, the name body effect coefficient for this quantity.

$$\gamma = \frac{\sqrt{2q\epsilon_s N_A}}{C'_{ox}}$$

The <u>body effect</u> is <u>stronger</u> for heavier substrate dopings and/or thicker oxides.

143

	Weak inversion	Moderate inversion	Strong inversion
Definition in terms of surface potential ψ_s (see Fig. 3.6 <i>a</i>)	$ \phi_F + V_{CB} \le \psi_s < 2\phi_F + V_{CB} $	$2\phi_F + V_{CB} \le \psi_s < 2\phi_F + V_{CB} + \phi_Z$	$2\phi_F + V_{CB} + \phi_Z \leq \psi_s$
Definition in terms of V_{GB} for a given V_{CB} (see Figs. 3.8 <i>b</i> and 3.6)	$V_{LB} \leq V_{GB} < V_{MB}$	$V_{MB} \leq V_{GB} < V_{HB}$	$V_{HB} \leq V_{GB}$
Definition in terms of V_{GC} for a given V_{CB} (see Figs. 3.8 <i>b</i> and 3.6)	$V_L \leq V_{GC} < V_M$	$V_M \le V_{GC} < V_H$	$V_H \le V_{GC}$
Definition in terms of V_{CB} for a given V_{GB} (see Fig. 3.1 <i>c</i> and Sec. 3.5) [†]	$V_U \ge V_{CB} > V_W$	$V_W \ge V_{CB} > V_Q$	$V_Q \ge V_{CB}$
$\frac{ Q_I' }{ Q_B' }$	≪ 1	Varies	>> 1 deep in strong inversion; not necessarily so near the bottom of the region
$\frac{C'_i}{C'_b}$	« I deep in weak inversion; not necessarily so near the top of the region	Varies	» I
$\frac{d\psi_s}{dV_{GB}}$	Approximately constant; attains its maximum value in this region	Varies	Small
$\frac{d\psi_s}{dV_{CB}}$	Very small	Varies	Close to 1
Dependence of Q'_I on V_{GB} or V_{GC} for V_{CB} constant	Approximately exponential		Approximately first- degree polynomial
$\frac{d\ln Q_I' }{d\psi_s}$	$\frac{1}{\phi_i}$	Varies	$\frac{1}{2\phi_i}$

 TABLE 3.2

 Regions of inversion and properties (three-terminal MOS structure)

Semiconductor Devices: Operation and Modeling

By: DR. M. Razaghi

144

Strong Inversion

- •In deep inversion : $|Q'_I| \gg |Q'_B| \rightarrow C'_i \gg C'_b$
- As seen in Fig., ψ_s changes only slightly with V_{GB} in strong inversion and can be assumed "pinned" to a fixed value.
- •This value for three terminal MOS increases by **V**_{CB} in compare to two terminal MOS

$$\psi_{s} \approx \phi_{0} + \mathbf{V}_{CB}$$

$$\phi_{0} \approx 2\phi_{F} + \Delta\phi$$

$$\Delta\phi \text{ is several } \phi_{T}$$

•The depletion region width can then also be assumed pinned at a value d_{Bm}

$$d_{Bm} = \sqrt{\frac{2\epsilon_s}{qN_A}}\sqrt{\phi_0 + V_{CB}}$$

Similarly, the depletion region charge is assumed to have reached a maximum value:

$$Q'_B = -\sqrt{2q\epsilon_s N_A}\sqrt{\phi_0 + V_{CB}} = -\gamma C'_{ox}\sqrt{\phi_0 + V_{CB}}$$

•For the case of strong inversion only, V_{CB} can be interpreted as the effective reverse bias of the field-induced junction formed by the inversion layer and substrate. $(d\psi_s/dV_{CB} \approx 1)$

•The inversion layer charge can be obtained by:

$$Q'_{I} = -C'_{ox}(V_{GB} - V_{FB} - \psi_{s}) - Q'_{B}$$

$$Q'_{I} = -C'_{ox}(V_{GB} - V_{TB}) \text{ where } V_{TB} = V_{T} + V_{CB}$$

$$V_{T} = \phi_{MS} - \frac{Q'_{0}}{C'_{ox}} + \phi_{0} - \frac{Q'_{B}}{C'_{ox}} = V_{FB} + \phi_{0} + \gamma \sqrt{\phi_{0} + V_{CB}}$$

The quantity V_{TB} is the G-B (gate-body) extrapolated threshold voltage. Its meaning is illustrated in Fig (d). It is not the border voltage for strong inversion mechanism!

•Another way to express the equations using V_{GC} :

$$Q_I' = -C_{ox}'(V_{GC} - V_T)$$

The quantity V_T is the G-C extrapolated threshold voltage.

$$V_T = V_{FB} + \phi_0 + \gamma \sqrt{\phi_0 + V_{CB}} = V_{T0} + (\gamma \sqrt{\phi_0 + V_{CB}} - \gamma \sqrt{\phi_0})$$

• The plot of V_T vs. **V**_{CB} has been included in Fig.

Strong Inversion...

•The threshold increase $V_T - V_{T0}$ due to the body effect is shown vs. V_{CB} for various values of γ in Fig.

Note that, although we have assumed $V_{CB} \ge 0$, results are approximately valid even if V_{CB} is somewhat below zero (thus forward-biasing the source-body junction), as long as the V_{CB} value is not enough to cause appreciable junction current. This has been confirmed experimentally.

Semiconductor Devices: Operation and Modeling

By: DR. M. Razaghi

147

Weak Inversion

In weak inversion : $|Q'_I| \ll |Q'_B| \rightarrow C'_i \ll C'_b$

•In this case as the $\psi_s < 2\phi_F + V_{CB}$, like <u>before</u> we can find: $Q'_I = \frac{-\sqrt{2q\epsilon_s N_A}}{2\sqrt{\psi_s}} \phi_T e^{(\psi_s - (2\phi_F + V_{CB}))/\phi_T}$

In weak inversion, *V_{CB}* cannot be interpreted as an effective reverse bias, as explained before.

In weak inversion, the surface potential is practically independent of V_{CB} and is practically equal to ψ_{sa}

$$\psi_s \approx \psi_{sa}(V_{GB}) = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} + V_{GB} - V_{FB}}\right)$$

Therefore, in mentioned Eq. the only term dependent on V_{CB} is $e^{-(V_{CB})/\phi_T}$

$$Q_I' = \frac{-\sqrt{2q\epsilon_s N_A}}{2\sqrt{\psi_{sa}(V_{GB})}} \phi_T e^{(\psi_{sa}(V_{GB}) - 2\phi_F)/\phi_T} e^{-(V_{CB})/\phi_T}$$

Semiconductor Devices: Operation and Modeling

Weak Inversion...

For a fixed V_{CB}, Q'_I turns out to be nearly exponentially dependent on V_{GB}.

Let V'_{CB} denote the constant value of V_{CB} for which this curve is obtained.

As seen, the width of the region in terms of ψ_{sa} is only $_{2\phi_F + V_{CB}} \phi_F \cdot$

-As V_{GB} changes over the region, the corresponding variation of the term $\sqrt{\psi_{sa}(V_{GB})}$, is very small compared with the large variation of the exponential in that equation. Therefore:

$$\sqrt{\psi_{sa}(V_{GB})} \approx \sqrt{2\phi_F + V_{CB}'}$$

149

Semiconductor Devices: Operation and Modeling

Weak Inversion...

Thus:

$$Q_I' = \frac{-\sqrt{2q\epsilon_s N_A}}{2\sqrt{2\phi_F + V_{CB}'}} \phi_T e^{(\psi_{sa} - 2\phi_F)/\phi_T} e^{-(V_{CB}')/\phi_T}$$

In analogy with the corresponding development for the two-terminal structure, a simplified, approximate expression can be developed based on the observation that the slope of $\psi_{sa}(V_{GB})$ is nearly constant in weak inversion.

hat the inverse of this slope was denoted by n

$$n = \left(\frac{d\psi_{sa}}{dV_{GB}}\right)^{-1} = 1 + \frac{\gamma}{2\sqrt{\psi_{sa}(V_{GB})}}$$
$$n = n\Big|_{\psi_{sa}=2\phi_F} + \frac{\gamma}{V_{CB}} = 1 + \frac{\gamma}{2\sqrt{2\phi_F} + \frac{V_{CB}}{V_{CB}}}$$

Then:

 $\psi_{sa} - (2\phi_F + V_{CB}') \approx \frac{1}{n}(V_{GB} - V_{MB}) = \frac{1}{n}(V_{GC} - V_M)$

150

Semiconductor Devices: Operation and Modeling

Weak Inversion...

Substituting to previous equations:

 $Q_I' \approx Q_M' e^{(V_{GB} - V_{MB})/n\phi_T}$

or

$$Q_I' \approx Q_M' e^{(V_{GC} - V_M)/n\phi_T}$$

Where

$$Q'_M = \frac{-\sqrt{2q\epsilon_s N_A}}{2\sqrt{2\phi_F + V'_{CB}}}\phi_T$$

•This result represents the value of Q'_I at the top of weak inversion ($V_{GB} = V_{MB}$).

•These equations predicts exponential behavior for Q'_I in weak inversion.

As was the case with the two-terminal structure, this is only approximately true.

- If V_{CB} is fixed and V_{CB} is varied instead above equations can be misleading. The reason is that the dependence of Q'_{I} on V_{CB} is hidden in Q'_{M} , V_{MB} and n, each of which depends on V_{CB} in a complicated manner.
- In this case previous Eq. is ideal for such cases, since it makes explicit the exponential dependence of Q'_I on V_{CB} in a simple manner.

Moderate Inversion

•For a given V_{GB} value in moderate inversion, one can numerically solve the <u>implicit equation</u> for ψ_s and substitute ψ_s into <u>equation</u> to find Q'_I .

Semiconductor Devices: Operation and Modeling

