Regions of Inversion

Semiconductor Devices: Operation and Modeling Eq. 141 By: DR. M. Razaghi 141

Regions of Inversion

Approximate Limits

For two terminal MOS onset of weak, moderate, and strong inversion by the surface potential values **TABLE 3.1** Approximate bounds between regions[†]

Semiconductor Devices: Operation and Modeling By: DR. M. Razaghi 142

Approximate Limits

Voltages corresponding to region of inversion is with some changes can be find as before, for example for moderate inversion voltage (neglecting exp term):

$$
V_{MB} = V_{FB} + (2\phi_F + \mathbf{V}_{CB}) + \gamma \sqrt{(2\phi_F + \mathbf{V}_{CB})}
$$

The corresponding values in terms of V_{GC} can be found by subtracting $\bm{V_{CB}}$, as suggested <u>before</u>. Thus, for example:

$$
V_M = V_{MB} - V_{CB} = V_{FB} + (2\phi_F) + \gamma \sqrt{(2\phi_F + V_{CB})}
$$

The fact that the quantities in Fig. increase with increasing $\boldsymbol{V_{CB}}$ is a consequence of the body effect discussed before.

As is apparent from the expressions in Table 3.1, how much V_L **,** V_M **, and** V_H will increase for a given increase in $\bm{V_{CB}}$ is determined by the value of the coefficient y; hence, the name body effect coefficient for this quantity.

$$
\gamma = \frac{\sqrt{2q\epsilon_s N_A}}{C'_{ox}}
$$

The *body effect* is **stronger** for heavier substrate dopings and/or thicker oxides.

	Weak inversion	Moderate inversion	Strong inversion
Definition in terms of surface potential ψ_s (see Fig. $3.6a$)	$\phi_F + V_{CB} \leq \psi_s$ $2\phi_F + V_{CB}$	$2\phi_F + V_{CB} \leq \psi_s$ $2\phi_F + V_{CB} + \phi_Z$	$2\phi_F + V_{CR} + \phi_Z \leq \psi_s$
Definition in terms of V_{GB} for a given V_{CB} (see Figs. 3.8b and 3.6)	$V_{LB} \leq V_{GB} < V_{MR}$	$V_{MB} \leq V_{GB} < V_{HB}$	$V_{HB} \leq V_{GB}$
Definition in terms of V_{GC} for a given V_{CB} (see Figs. $3.8b$ and 3.6)	$V_L \leq V_{GC} < V_M$	$V_M \leq V_{GC} < V_H$	$V_H \leq V_{GC}$
Definition in terms of V_{CB} for a given V_{GB} (see Fig. $3.1c$ and Sec. 3.5 [†]	$V_U \geq V_{CB} > V_W$	$V_W \geq V_{CB} > V_O$	$V_O \geq V_{CB}$
$ Q_I' $ $ Q'_{B} $	$\ll 1$	Varies	\gg 1 deep in strong inversion; not necessarily so near the bottom of the region
$\frac{C'_l}{C'_b}$	$\ll 1$ deep in weak inversion; not necessarily so near the top of the region	Varies	$\gg 1$
$d\psi_{s}$ $dV_{\!G\!B}$	Approximately constant; attains its maximum value in this region	Varies	Small
$d\psi_s$ dV_{CB}	Very small	Varies	Close to 1
Dependence of Q'_l on V_{GB} or V_{GC} for V_{CB} constant	Approximately exponential		Approximately first- degree polynomial
$d \ln Q'_I $ $d\psi$	ф,	Varies	2ф.

TABLE 3.2 Regions of inversion and properties (three-terminal MOS structure)

Semiconductor Devices: Operation and Modeling By: DR. M. Razaghi 144

Strong Inversion

- In deep inversion : $|Q'_I| \gg |Q'_B| \to C'_i \gg C'_b$
- As seen in Fig., ψ_s changes only slightly with V_{GB} in strong inversion and can be assumed "pinned" to a fixed value.
- **This value for three terminal MOS increases by** V_{CB} **in compare to two terminal MOS**

$$
\psi_s \approx \phi_0 + V_{CB}
$$

\n
$$
\phi_0 \approx 2\phi_F + \Delta\phi
$$

\n
$$
\Delta\phi
$$
 is several ϕ_T

The depletion region width can then also be assumed pinned at a value d_{Bm}

$$
d_{Bm} = \sqrt{\frac{2\epsilon_s}{qN_A}}\sqrt{\phi_0 + V_{CB}}
$$

Similarly, the depletion region charge is assumed to have reached a maximum value:

$$
Q'_B = -\sqrt{2q\epsilon_s N_A}\sqrt{\phi_0 + \mathbf{V_{CB}}} = -\gamma C'_{ox}\sqrt{\phi_0 + \mathbf{V_{CB}}}
$$

Semiconductor Devices: Operation and Modeling Theory: By: DR. M. Razaghi 145

Strong Inversion…

For the case of strong inversion only, V_{CB} **can be interpreted as the** *effective reverse bias* **of the field-induced junction** formed by the inversion layer and substrate. $(d\psi_s/d{\bm V}_{{\bm C} {\bm B}} \approx 1)$

The inversion layer charge can be obtained by:

$$
Q'_{I} = -C'_{ox}(V_{GB} - V_{FB} - \psi_{S}) - Q'_{B}
$$

\n
$$
Q'_{I} = -C'_{ox}(V_{GB} - V_{TB}) \text{ where } V_{TB} = V_{T} + V_{CB}
$$

\n
$$
V_{T} = \phi_{MS} - \frac{Q'_{0}}{C'_{ox}} + \phi_{0} - \frac{Q'_{B}}{C'_{ox}} = V_{FB} + \phi_{0} + \gamma \sqrt{\phi_{0} + V_{CB}}
$$

•The quantity V_{TB} is the G-B (gate-body) extrapolated threshold voltage. Its meaning is illustrated in Fig (d). It is not the border voltage for strong inversion mechanism!

Another way to express the equations using V_{GC} :

$$
\ddot{Q}'_I = -C'_{ox}(V_{GC} - V_T)
$$

The quantity V_T is the G-C extrapolated threshold voltage.

$$
V_T = V_{FB} + \phi_0 + \gamma \sqrt{\phi_0 + V_{CB}} = V_{T0} + (\gamma \sqrt{\phi_0 + V_{CB}} - \gamma \sqrt{\phi_0})
$$

The plot of V_T vs. V_{CB} has been included in [Fig](#page-2-0).

Strong Inversion…

The threshold increase $V_T - V_{T0}$ due to the body effect is shown vs. V_{CB} for various values of γ in Fig.

Note that, although we have assumed $V_{CB} \geq 0$, results are approximately valid even if V_{CB} is somewhat below zero (thus forward-biasing the source-body junction), as long as the $\boldsymbol{V_{CB}}$ value is not enough to cause appreciable junction current. This has been confirmed experimentally.

Semiconductor Devices: Operation and Modeling Theory: By: DR. M. Razaghi 147

Weak Inversion

In weak inversion : $|Q'_I| \ll |Q'_B| \to C'_i \ll C'_b$

In this case as the $\psi_s < 2\phi_F + V_{CB}$, like before we can find: $Q'_I =$ $-\sqrt{2q\epsilon_s}N_A$ $2\sqrt{\psi_s}$ $\phi_T e^{(\psi_s-(2\phi_F+\bm{V_{CB}}))/\phi_T}$

In weak inversion, V_{CB} cannot be interpreted as an effective reverse bias, as explained before.

In weak inversion, the surface potential is practically independent of V_{CB} and is practically equal to ψ_{sa}

$$
\psi_s \approx \psi_{sa}(V_{GB}) = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} + V_{GB} - V_{FB}}\right)
$$

Therefore, in mentioned Eq. the *only* term dependent on $\bm{V_{CB}}$ is $e^{-(\bm{V_{CB}})/\phi_T}$

$$
Q'_{I} = \frac{-\sqrt{2q\epsilon_{s}N_{A}}}{2\sqrt{\psi_{sa}(V_{GB})}}\phi_{T}e^{(\psi_{sa}(V_{GB})-2\phi_{F})/\phi_{T}}e^{-(V_{CB})/\phi_{T}}
$$

Semiconductor Devices: Operation and Modeling The By: DR. M. Razaghi 148 148

Weak Inversion…

For a fixed V_{CB} , Q'_I turns out to be nearly exponentially dependent on V_{GB} .

Let V_{CB}' **denote the constant value of** V_{CB} **for which** this curve is obtained.

As seen, the width of the region in terms of ψ_{sa} is only $_{2\phi_F+V_{CB}}$ ϕ_F .

As V_{GB} changes over the region, the corresponding variation of the term $\sqrt{\psi_{sa}(V_{GB})}$, is very small compared with the large variation of the exponential in that equation. Therefore:

$$
\sqrt{\psi_{sa}(V_{GB})} \approx \sqrt{2\phi_F + V'_{CB}}
$$

Semiconductor Devices: Operation and Modeling Theory: By: DR. M. Razaghi 149 149

Weak Inversion…

-Thus:

$$
Q'_{I} = \frac{-\sqrt{2q\epsilon_{s}N_{A}}}{2\sqrt{2\phi_{F} + V'_{CB}}} \phi_{T}e^{(\psi_{Sa} - 2\phi_{F})/\phi_{T}}e^{-(V'_{CB})/\phi_{T}}
$$

In analogy with the corresponding development for the two-terminal structure, a simplified, approximate expression can be developed based on the $\,$ observation that the slope of $\psi_{sa}(V_{GB})$ is nearly constant in weak inversion.

hat the *inverse* of this slope was denoted by *n*

$$
n = \left(\frac{d\psi_{sa}}{dV_{GB}}\right)^{-1} = 1 + \frac{\gamma}{2\sqrt{\psi_{sa}(V_{GB})}}
$$

$$
n = n\Big|_{\psi_{sa} = 2\phi_F + V'_{GB}} = 1 + \frac{\gamma}{2\sqrt{2\phi_F + V'_{CB}}}
$$

Then:

$$
\boxed{\color{red} \textbf{U}}
$$

$$
\psi_{sa} - (2\phi_F + V_{CB}') \approx \frac{1}{n}(V_{GB} - V_{MB}) = \frac{1}{n}(V_{GC} - V_M)
$$

Semiconductor Devices: Operation and Modeling Theory: By: DR. M. Razaghi 150

Weak Inversion…

Substituting to previous equations:

 $Q'_I \approx Q'_M e^{(V_{GB}-V_{MB})/n\phi_T}$

or

$$
Q'_I \approx Q'_M e^{(V_{GC}-V_M)/n\phi_T}
$$

Where

$$
Q'_M = \frac{-\sqrt{2q\epsilon_s}N_A}{2\sqrt{2\phi_F + V'_{CB}}} \phi_T
$$

This result represents the value of Q'_I at the top of weak inversion ($V_{GB} = V_{MB}$).

• These equations predicts exponential behavior for Q'_I **in weak inversion.**

As was the case with the two-terminal structure, this is only approximately true.

- **If V_{GB}** is fixed and V_{CB} is varied instead above equations can be misleading. The reason is that the dependence of Q'_I on $\bm{V_{CB}}$ is hidden in Q_M^r , V_{MB} and *n*, each of which depends on $\bm{V_{CB}}$ in a complicated manner.
- In this case previous Eq. is ideal for such cases, since it makes explicit the exponential dependence of Q'_I on V_{CB} in a simple manner.

Moderate Inversion

For a given \boldsymbol{V}_{GB} value in moderate inversion, one can numerically solve the *implicit equation* for ψ_s and substitute ψ_s into equation to find Q'_I .

Semiconductor Devices: Operation and Modeling By: DR. M. Razaghi 152

