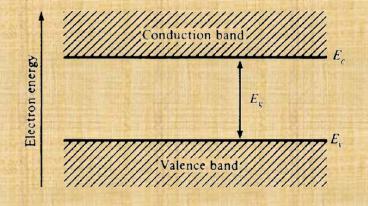
Semiconductors, Junctions, and MOSFET Overview

Introduction

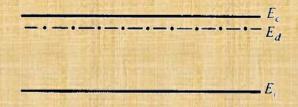
- Introducing semiconductors
- > Evaluation of mobile carrier concentration
- Considering the mechanisms of current transport
- Contacts between different materials and the electrostatic potentials established in such contacts
- >pn contact (junction)
- Overview of MOS transistor

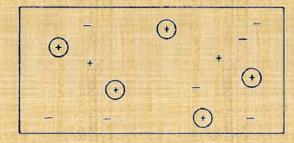
- Intrinsic Semiconductors, Free Electrons, and Holes
 - Equilibrium
 - Pure Silicon
 - o Lattice constant: 0.5 nm
 - o Crystal lattice and contains approximately 5 x 1022 atoms/cm3
 - o Bohr Model, Free Electron and effect of Temperature
 - Hole concept Valance electron movement
 - Carrying Charge mechanism
 - > The motion of free electrons about the lattice
 - The motion of valance electrons from bond to bond corresponding to a motion of "vacancies" or holes
 - Charge neutrality
 - Recombination

- Energy Bands
 - Band gap energy E_g
 - Conduction energy
 - Valance energy
 - Insulator and Conductor band gap energy
 - Charge neutrality n_{i=}p_i
 - Free carrier concentration temperature and material dependency



- Extrinsic Semiconductors
 - Impurities and doping
 - Donor and acceptor atoms
 - Introducing E_d and E_a
 - $N_0 \times P_0 = ni^2$
 - Donor Atoms (N_d): phosphorus, arsenic, and antimony
 - Acceptor Atoms (N_a): boron, gallium, and indium
 - Temperature effect on donor/Acceptor atoms
 - Carrier concentration
 - Majority and Minority Carriers
 - Degeneracy
 - N type and P type Semiconductors





- Equilibrium in the Absence of Electric Field
 - General Carrier densities

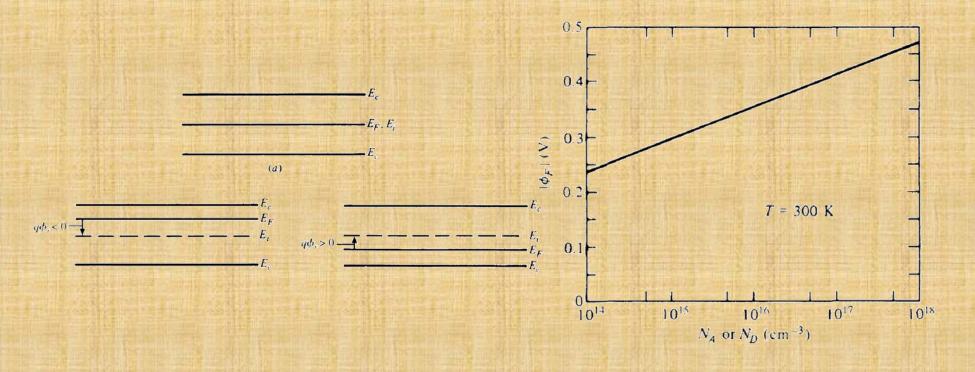
$$p_0 = n_i e^{(E_i - E_f)/kT}$$

$$n_0 = n_i e^{(E_f - E_i)/kT}$$

- Fermi and Intrinsic Energies definitions
- \bullet Φ_f and Φ_T definition

$$\phi_f = \frac{E_i - E_f}{q}$$

$$\phi_T = \frac{kT}{q}$$



By: DR. M. Razaghi

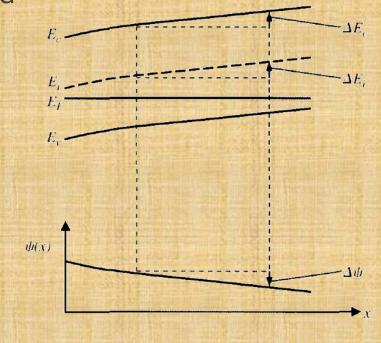
- Equilibrium in the Presence of Electric Field
 - Within electric field 2 contact MOS
 - Charge neutrality n, p product remain ni²

$$p = n_i e^{(E_i - E_f)/kT}$$

$$n = n_i e^{(E_f - E_i)/kT}$$

- Zero current flow
- Electrostatic potential

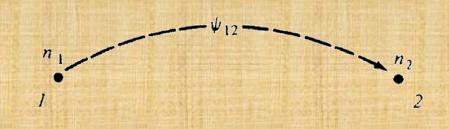
$$\psi(x) = E_i(x)/-q$$



Electrostatic potential deference effects

$$\frac{n_1}{n_2} = \exp\left(\frac{\psi_{12}}{\phi_T}\right)$$

$$\frac{p_1}{p_2} = \exp\left(\frac{\psi_{12}}{\phi_T}\right)$$



Important result

$$n_1p_1 = n_2p_2$$

- Nonequilibrium; Quasi-Fermi Levels
 - Energy exchange between the semiconductor and the external world – Like using battery
 - Fermi level is not constant -- imref
 - Charge neutrality space charge (Depletion region)

$$p = n_i e^{(E_i - E_{fp})/kT}$$

$$n = n_i e^{(E_{fn} - E_i)/kT}$$

■ In equilibrium E_{fn}=E_{fp}=E_f and np=ni²

- •Relations between <u>Charge Density</u>, <u>Electric Field</u>, and <u>Potential</u>; Poisson's Equation
 - charge density (charge concentration per unit volume)
 - 1. holes, which contribute a charge density of (+q)p
 - 2. free electrons, with contribution (-q)n
 - 3. ionized donor atoms, with contribution $(+q)N_D(!)$
 - 4. Ionized acceptor atoms, with contribution $(-q)N_A(!)$
- Total charge density: $\rho = q(p n + N_D N_A)$

- Charge density...
 - Regularly N_A=0 or N_D=0
 - In fab. Process both present, why?
 - Charge neutrality
 - Locally natural region : $p_0 n_0 = -(N_D N_A)$, $p_0 n_0 = n_i^2$
- Gauss Law

$$\frac{dE(x)}{dx} = \frac{\rho}{\varepsilon_s}$$

In the presence of electric fields, the charge density ρ can vary from point to point, why?

- Gauss law....

By integrating both sides of Gauss Eq. from an arbitrary point
$$y_0$$
 to a point y , we obtain
$$E(y) = E(y_0) + \frac{1}{\varepsilon_s} \int\limits_{y_0}^y \rho(y') dy'$$

- We can do this for both the pn junction and the MOS structure
- Poisson equation
 - Electric Field and Potential relationship

$$E(x) = -\frac{d\psi}{dx}$$

$$\psi(y) = \psi(y_0) - \int_{y_0} E(y')dy'$$

$$\frac{d^2\psi(x)}{dx^2} = -\frac{\rho(y)}{\varepsilon_s}$$

