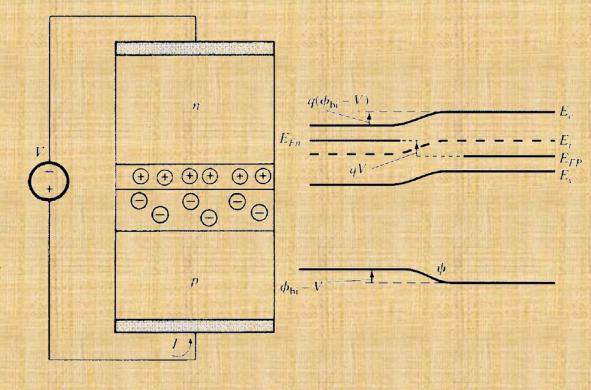
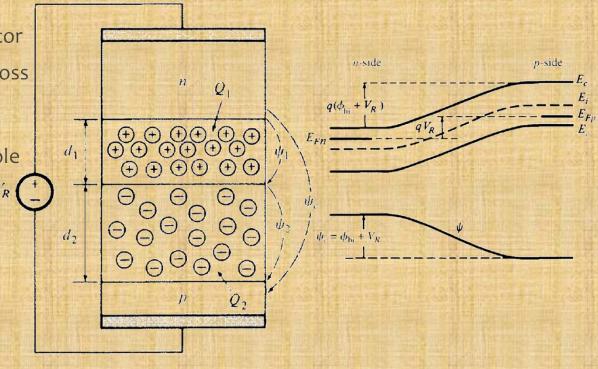

- Abrupt and Graded junction
- Zero bias condition
 - Zero external bias
 - Free electron and hole movement
 - Charged ions
 - Depletion region approximation
 - Electric field formation Anti-movement mechanism
 - Zero Current
 - Three contact potential
 - Zero electrostatic potential across the device!


- •Zero bias contact potential—Built in potential $\phi_{bi} = \phi_{Fp} \phi_{Fn}$
- •Assume that then side is degenerate, and the doping of the p side is 10^{17} cm⁻³. Find the value of the contact potential Φ_{bi} at room temperature:

$$\phi_{bi} = \phi_{Fp} - \phi_{Fn}$$
=0.42-(-0.56)=0.98

- Forward bias: V>0
- Equilibrium is now destroyed
- External field is opposite the internal field.
- Current established due to decrease of potential barrier
- •How can current flow in depletion region?
- •Why it increases exponentially? $I = I_0(e^{(V/\phi_T)} 1)$
- •I_o is a quantity dependent on junction geometry and physical parameters of the semiconductor material and is an increasing function of temperature
- Depletion region reduction

- Reverse bias: V<0
- Same as what happen in MOS transistor
- •Increase of electrostatic potential across the depletion region:


$$\phi_c = \phi_{bi} + V_R$$

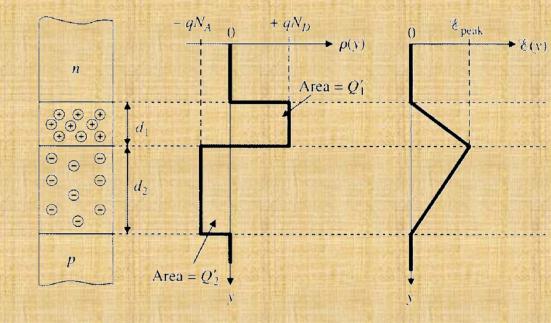
- More band bending—electron and hole movement
- Local charge densities:

$$Q_{1} = +q(d_{1}A)N_{D}$$

$$Q_{2} = -q(d_{2}A)N_{A}$$

$$Q_{1} = -Q_{2} \Rightarrow \frac{d_{1}}{d_{2}} = \frac{N_{A}}{N_{D}}$$

Calculation of electric field in the depletion region

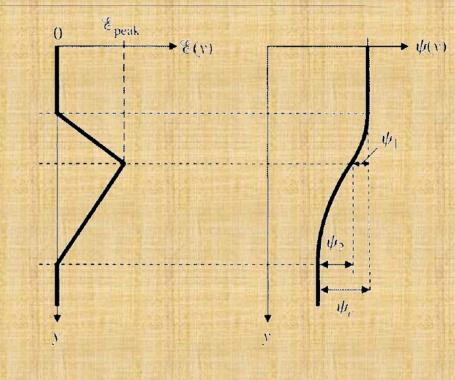

$$\frac{dE(x)}{dx} = \frac{\rho}{\varepsilon_{sy}}$$

$$E(y) = E(y_0) + \frac{1}{\varepsilon_s} \int_{y_0} \rho(y') dy'$$

$$\rho = qN_D \text{ for } Q_1'$$

$$E_{\text{max}(peak)} = \frac{qN_D d_1}{\varepsilon_s}$$

$$= \frac{qN_A d_2}{\varepsilon_s}$$


Calculation of electrostatic potential in the depletion region:

$$\psi(y) = \psi(y_0) - \int_{y_0}^{y} E(y')dy'$$

$$\psi_1 = \frac{E_{max}d_1}{2} = \frac{qN_Dd_1^2}{2\varepsilon_S}$$

$$\psi_2 = \frac{E_{max}d_2}{2} = \frac{qN_Ad_2^2}{2\varepsilon_S}$$

$$\psi_c = \psi_1 + \psi_2$$

Equation for highly doped sided such as n⁺p junction we have:

$$N_D \gg N_A \Rightarrow d_1 \ll d_2$$

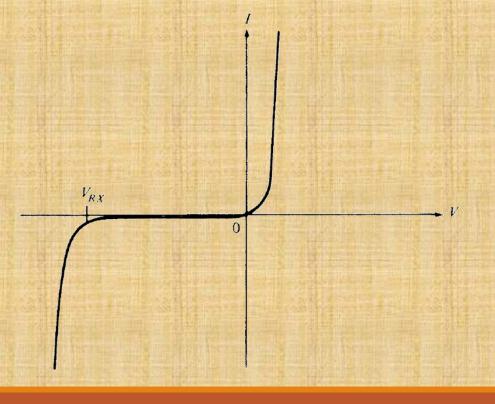
$$\psi_1 \ll \psi_2 \Rightarrow \psi_c = \psi_2$$

Nearly all voltage drop will be on low level doping region

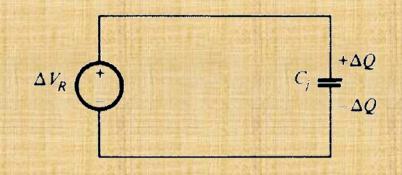
$$d_2 = \sqrt{\frac{2\varepsilon_s}{qN_A}}\sqrt{\psi_c}$$

$$Q_2' = \frac{Q_2}{A} = \sqrt{2q\varepsilon_sN_A}\sqrt{\psi_c}$$

- Minority and Majority carrier motion! Small current flow. Why?
- Saturation current V<3Φ_τ

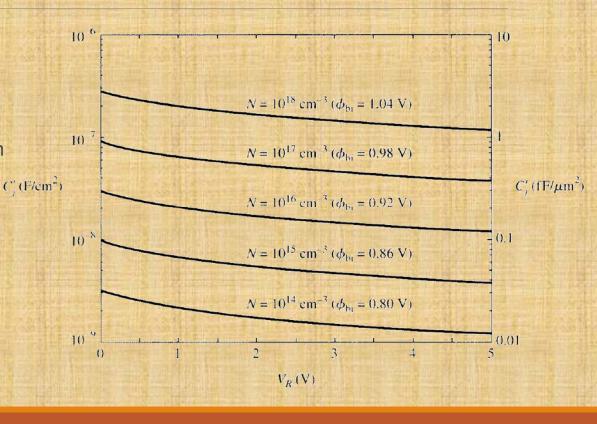

$$I = -I_0$$

- Can we assume it as a constant value?
- Saturation current dependency to temperature -- double for every & C
- Reverse break down voltage V_{RX} from 5 V to 100 V


I/V characteristics of pn junction

$$I = I_0(e^{(V/\phi_T)} - 1)$$

- Junction capacitance Small signal overview
- •The change in reverse voltage ⇒ Change in depletion region
- •If ΔV_R Increases then depletion region increases and vise versa
- •As we know: $C = \frac{Q}{V}$
- •For small signal capacitance we have:



Other type of junction capacitance:

$$C_j' = \frac{C_{j0}'}{\left(\frac{V_R}{\phi_{bi}} + 1\right)^{\alpha}}$$

- •α is ½ for abrupt highly doped junction
- •α is 1/3 for gradually linearly doped junction
- for other type of junction can be extracted from fitting results

