- ■Basic idea 1930, . Lilienfeld
- ■Lab study 1940, Heil
- Development method for growing oxide –1960, Kahng and Atalla

- Simple operation of n-MOS
- ■p-doped Body concentration: 10¹⁶ /cm³ to 10¹⁸/cm³
- Body or substrate
- Oxide thickness: 1.2 nm (high performance) to 10s nm (high voltage transistor)
- ■Gate: heavily doped n or p type polysilicon (10²⁰/cm³)
- Source and Drain: heavily doped n type dopant with 10 nm depth in modern technology
- Lateral diffusion: 10 nm in modern technology due to high temp. fabrication steps –ion movement
- Channel: w×L, where L is the channel length.
- ■In digital application L designed so that become minimum

- ■The positive gate potential effect: preparing the channel by attracting the electron to oxide semiconductor interference
- ■The number of electrons in the channel can be varied through the gate potential Channel strength variation.
- Source and Drain bias
 - With same voltage bias: no current
 - with different bias voltage: one with lower voltage act like a source and inject electron to channel and the other one sinks electrons of channel
- ■S, G,D and B acronyms
- MOS, MOSFET, MOST (MOS Transistor), IGFET (insulated-gate field-effect transistor).
- ■Leakage current (1 pA): source and drain biased so that become negative in compare to body voltage. This current increases with temp. (double for each & C)

- ■A Qualitative Description of MOS Transistor Operation
- ■Channel formation <u>Inversion</u> layer
 - First holes repel from the surface
 - Second electrons attracted to surface
 - Electrons in body
 - Electrons in source and drain
- Weak, Moderate and Strong inversion
- Source and drain to body junction:
 - Form 2 np junction
 - Reverse bias, why?
 - $V_{DB}>V_{SB}$ → more electrons near the source

- Drain source voltage: V_{DS}
 - Electron movement: As it is positive electrons flow from source to drain!
 - Constant current: Slow movement near source and speed up near drain
- ■Current and V_{DS} Dependency
 - Saturation region- Pinch off
 - Nonsaturation region or linear region Resistor

- ■V_{SB} effect Body effect
 - Decreasing the current, why?
 - Back gate concept

A Fluid Dynamical Analog

Carrier distribution in Weak and Moderate regime

MOS Transistor Characteristics – Typical value for long channel MOS

Operation region

- Weak inversion
 - Diffusion mechanism is permanent
 - ∘ I_D is exponentially related to V_{GS}—Like BJT
- Moderate inversion
 - Drift and Diffusion mechanism present
- Strong inversion
 - Drift mechanism is permanent
 - I_D has quadratic relation to V_{GS}

