Weak Inversion

Semiconductor Devices: Operation and Modeling

By: DR. M. Razaghi

Special Conditions in Weak Inversion

•For a transistor operating in weak inversion *no* part of the channel is moderately or strongly inverted.

•For a weakly inverted point in the channel, the surface potential satisfies:

$$\psi_s \approx \psi_{sa}(V_{GB}) = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} + V_{GB} - V_{FB}}\right)^2$$

Since the surface potential depends only on V_{GB} it is independent of the position along the channel. This implies two important facts:

- 1. Q'_{I} will be independent of position along the channel, as seen <u>before</u>. This means that the depletion region depth does not change along the channel.
- 2. Since all points at the surface are assumed at the same potential with respect to the substrate, the potential difference between such points is zero. Therefore, the electric field has a zero horizontal component. If there is current through the channel, then, it cannot be caused by drift; thus, all current must be caused by <u>diffusion</u>.

Special Conditions in Weak Inversion

From our <u>previous discussion</u> (and <u>here</u>) about diffusion current we have: $I_{DS} = \frac{W}{L} \mu \phi_T (Q'_{IL} - Q'_{I0})$

Semiconductor Devices: Operation and Modeling

By: DR. M. Razaghi

The two values of Q'_I can be found from previous equation, which is valid in weak inversion and even in depletion:

$$Q_{I0}' = \frac{-\sqrt{2q\epsilon_{s}N_{A}}}{2\sqrt{\psi_{sa}}} \phi_{T} e^{(\psi_{sa}-2\phi_{F})/\phi_{T}} e^{-(V_{SB})/\phi_{T}}$$
$$Q_{IL}' = \frac{-\sqrt{2q\epsilon_{s}N_{A}}}{2\sqrt{\psi_{sa}}} \phi_{T} e^{(\psi_{sa}-2\phi_{F})/\phi_{T}} e^{-(V_{DB})/\phi_{T}}$$

With substitution we have:

$$I_{DS} = \frac{W}{L} \hat{I}(V_{GB}) \left(e^{-(V_{SB})/\phi_T} - e^{-(V_{DB})/\phi_T} \right)$$

Where

$$\hat{I}(V_{GB}) = \mu \frac{\sqrt{2q\epsilon_s N_A}}{2\sqrt{\psi_{sa}}} \phi_T^2 e^{(\psi_{sa} - 2\phi_F)/\phi_T}$$

•Note: this equation is very similar to Ebers-Moll equations. Because similar mechanisms are responsible for current flow in the bipolar transistor (under common assumptions) and the weakly inverted MOS transistor

Source-Referenced Model

Ips Equation (4.8.3) can be rewritten as follows:

$$I_{DS} = -\frac{W}{L} \mu \phi_T Q'_{I0} (1 - \frac{Q'_{IL}}{Q'_{I0}})$$
$$\frac{Q'_{IL}}{Q'_{I0}} = e^{-(V_{DB} - V_{SB})/\phi_T} = e^{-V_{DS}/\phi_T}$$

Thus we have:

$$I_{DS} = -\frac{W}{L}\mu\phi_T Q_{I0}'(1 - \frac{e^{-V_{DS}/\phi_T}}{e^{-V_{DS}/\phi_T}})$$

Again based on what we have found for three terminal MOS:

$$I_{DS} = \frac{W}{L} I'_{M} e^{\frac{(V_{GS} - V_{M})}{n\phi_{T}}} (1 - e^{-V_{DS}/\phi_{T}})$$

Where

$$I'_{M} = \mu \frac{-\sqrt{2q\epsilon_{s}N_{A}}}{2\sqrt{2\phi_{F}} + V_{SB}} \phi_{T}^{2} \text{ and } \psi_{sa} = 2\phi_{F} + V_{SB}$$

Semiconductor Devices: Operation and Modeling

By: DR. M. Razaghi

Source-Referenced Model

• I_{DS} is plotted vs. V_{DS} by using past equation in I_D Fig., with V_{GS} as a parameter, for a fixed V_{SB} .

As seen, the curves become horizontal for V_{DS} larger than a few ϕ_T since the last exponential in the equation becomes negligible compared to 1.

•Using equal V_{GS} steps, the vertical spacing of successive curves in Fig for a given V_{DS} increases nearly exponentially. This exponential behavior is brought out clearly by plotting log I_{DS} vs. V_{GS} with V_{DS} fixed, as shown in next Fig.

Source-Referenced Model

Semiconductor Devices: Operation and Modeling

By: DR. M. Razaghi

221

Moderate-Inversion and Single-Piece Models

Semiconductor Devices: Operation and Modeling

By: DR. M. Razaghi

222

Moderate-Inversion and Single-Piece Models

- The IDS-VDS characteristics of the transistor in this region have a shape roughly similar to that in strong inversion, but are not described accurately by strong inversion equations since, as shown before.
- In moderate inversion, both drift and diffusion contribute significantly to the value of the drain current.
- Convenient simplifications are not known for this region.
- •One can use the all-region models described before.
- Due to the difficulties mentioned previously in developing moderate inversion expressions, and the need for continuity of *I*_{DS} and its derivatives, several semiempirical "single-piece" expressions have been proposed

