

Crystal Growth (Cont.)

- Forthcoming subjects:
- Basic techniques to grow silicon and GaAs single-crystal ingots
- • Wafer-shaping steps from ingots to polished wafers
- • Wafer characterization in terms of its electrical and mechanical properties

Crystal Growth (Cont.)

- The basic technique for silicon crystal growth from the melt which is material in liquid form the *Czochralski technique*.
- A <u>substantial percentage</u> (>90%) of silicon crystals for the semiconductor industry are prepared by the Czochralski technique and so is virtually all the silicon used for fabricating integrated circuits.

• The purified SiHCl3 is then used in a hydrogen reduction reaction to prepare the electronic grade silicon (EGS):

SiHCl3(gas)+H2(gas)→Si(Solid)+3HCl(gas)

- Pure EGS generally bas impurity concentrations in the parts-perbillion range.
- Finally polycrystalline silicon made with this technique (\$3.20/kg).

. 4/. 7/1449

•		opants in Silicon								
Dopant	k _a	Туре	Dopant	k _o	Туре					
В	8×10^{-1}	р	As	3.0×10^{-1}	n					
Al	2×10^{-3}	p	Sb	2.3×10^{-2}	n					
Ga	8×10^{-3}	p	Te	2.0×10^{-4}	n					
In	4×10^{-4}	p	Li	1.0×10^{-2}	n					
0	1.25	n	Cu	4.0×10^{-4}						
С	7×10^{-4}	n	Au	2.5×10^{-5}	*					
Р	0.35	n								

That most values are below 1 which means that during growth the dopants are *rejected in to the melt*. Consequently the melt becomes progressively enriched with the dopant as the crystal grows.

. 4/. 1/1449

. 4/. 1/1449

• Consider a melt that is initial , of composition x (e.g 85 atomic percent arsenic. as shown in Fig. 2.10). then the temperature is lowered, its composition will remain fixed until liquidus line is reached. At the point (T_1, x) , material of 50 atomic percent arsenic (i.e. gallium arsenide) will begin to solidify.

Wafer shaping (Cont.) The ingot is then ready to be sliced by diamond saw into wafers. Slicing determines four wafer parameters: Surface orientation (e.g. < 111 > or <100>); Thickness (e.g. 0.5-0.7 mm), depending on wafer diameter); Taper, which is the wafer thickness variations from one end to another; Bow, which is the surface curvature of the wafer, measured from the center of the wafer to its edge.

TABLE 2.3 Specifications for F	olished Monoc	rystalline Silico	n Wafers	10, 01
Parameter	125 mm	150 mm	200 mm	300 mm
Diameter (mm)	125 ± 1	150 ± 1	200 ± 1	300 ± 1
Thickness (mm)	0.6-0.65	0.65-0.7	0.715-0.735	0.755-0.77
Primary flat length (mm)	40-45	55-60	NA	NA
Secondary flat length (mm)	25-30	35-40	NA	NA
Bow (µm)	70	60	30	< 30
Total thickness variation (µm)	65	50	10	< 10
Surface orientation	(100) ± 1°	Same	Same	Same
	(111) ± 1°	Same	Same	Same
NA, not available.		Carl Carl	and the second	P

. 4/. 1/1449

TABLE 2.4 Comparison of Silicon Material Characteristics and Requirements for ULSI						
	Charac	A SECTION OF SECTION				
Property	Czochralski	Float Zone	Requirements for ULSI			
Resistivity (phosphorus) n-type (ohm-cm)	1-50	1-300 and up	5-50 and up			
Resistivity (antimony) n-type (ohm-cm)	0.005 - 10	-	0.001-0.02			
Resistivity (boron) p-type (ohm-cm)	0.005-50	1-300	5-50 and up			
Resistivity gradient (four-point probe) (%)	5-10	20	<1			
Minority carrier lifetime (µs)	30-300	50-500	300-1000			
Oxygen (ppma)	5-25	Not detected	Uniform and controlled			
Carbon (ppma)	1-5	0.1-1	< 0.1			
Dislocation (before processing) (per cm ²)	≤ 500	≤ 500	≤1			
Diameter (mm)	Up to 200	Up to 100	Up to 300			
Slice bow (µm)	≤ 25	≤ 25	<5			
Slice taper (µm)	≤ 15	≤ 15	<5			
Surface flatness (µm)	≤5	\$5	<1			
Heavy-metal impurities (ppba)	51	≤ 0.01	< 0.001			

Introducing course project

- Molecular Beam Epitaxy (MBE)
- Metalorganic Chemical Vapor Epitaxy (MOCVD)

