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ANNOUNCEMENTS
• No class next Tuesday! (11/02 - Democracy Day)
• Homework 2 due today

• Thanks for attending group OH! We will hold another 
one for Homework 3

• Recordings are available on Canvas
• Later today:

• Homework 3 out (due in two weeks on 11/11)
• Colab 2 & Project Proposal grades released



¡ Subgraphs are the building blocks of 
networks:

¡ They have the power to characterize and 
discriminate networks

10/28/21

Pedro Ribeiro

Building Blocks of Networks

Subnetworks, or subgraphs, are the building 
blocks of networks

They have the power to characterize and 
discriminate networks
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In many domains, recurring structural components 
determine the function or behavior of the graph

Carboxyl 
group = Acidic



1) Subgraphs and motifs
§ Defining Subgraphs and Motifs
§ Determining Motif Significance

2) Neural Subgraph Representations

3) Mining Frequent Motifs
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Two ways to formalize "network building blocks"
¡ Given graph 𝑮 = (𝑽, 𝑬):
Def 1. Node-induced subgraph: Take subset of 
the nodes and all edges induced by the nodes:
§ 𝐺′ = (𝑉′, 𝐸′) is a node induced subgraph iff
§𝑉! ⊆ 𝑉
§𝐸′ = {(𝑢, 𝑣) ∈ 𝐸 | 𝑢, 𝑣 ∈ 𝑉′}
§𝐺′ is the subgraph of 𝐺 induced by 𝑉′

¡ Alternate terminology: "induced subgraph"
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Two ways to formalize "network building blocks"
¡ Given graph 𝑮 = (𝑽, 𝑬):
Def 2. Edge-induced subgraph: Take subset of 
the edges and all corresponding nodes
§ 𝐺′ = (𝑉′, 𝐸′) is an edge induced subgraph iff
§ 𝐸′ ⊆ 𝐸
§ 𝑉′ = {𝑣 ∈ 𝑉 | (𝑣, 𝑢) ∈ 𝐸′ for some 𝑢}

¡ Alternate terminology: "non-induced subgraph" or 
just "subgraph"
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Two ways to formalize "network building blocks"

¡ The best definition depends on the domain! 
Examples:
§ Chemistry: Node-induced (functional groups)
§ Knowledge graphs: Often edge-induced (focus is on 

edges representing logical relations)
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¡ The preceding definitions define subgraphs when 
𝑉′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸, i.e. nodes and edges are taken 
from the original graph G.

¡ What if 𝑽′ and 𝑬′ come from a totally different 
graph? Example:

¡ We would like to say that 𝑮𝟏 is “contained in” 𝑮𝟐
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𝐺! 𝐺"

A B

C

X Z

Y

W



¡ Graph isomorphism problem: Check whether two 
graphs are identical:
§ 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) are isomorphic if 

there exists a bijection 𝑓: 𝑉1 → 𝑉2 such that (𝑢, 𝑣) ∈
𝐸1 iff 𝑓 𝑢 , 𝑓 𝑣 ∈ 𝐸2
§ 𝑓 is called the isomorphism:

¡ We do not know if graph isomorphism is NP-hard, 
nor is any polynomial algorithm found for solving 
graph isomorphism.
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Isomorphic! Not isomorphic!



¡ 𝐺! is subgraph-isomorphic to 𝐺" if some 
subgraph of 𝐺! is isomorphic to 𝐺"
§ We also commonly say 𝐺! is a subgraph of 𝐺"
§ We can use either the node-induced or edge-induced 

definition of subgraph
§ This problem is NP-hard
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A-B-C matches with X-Y-Z: There is a subgraph 
isomorphism between G1 and G2.

𝐺! 𝐺"

𝑉1 𝑉𝟐
A X

B Y

C Z

𝑓:

A B

C

X Z

Y
W



All non-isomorphic, connected, undirected 
graphs of size 4
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All non-isomorphic, connected, directed 
graphs of size 3
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#1 #2 #3 #4 #5 #6 #7

#8 #9 #10 #11 #12 #13



¡ Network motifs: “recurring, significant 
patterns of interconnections” 

¡ How to define a network motif: 
§ Pattern: Small (node-induced) subgraph
§ Recurring: Found many times, i.e., with high 

frequency
§ Significant: More frequent than expected, i.e., in 

randomly generated graphs?
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How to define frequency?

How to define random graphs?
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No match!
(not induced) Match!

(induced)

Induced subgraph
of interest 

(aka Motif):



¡ Motifs:
§ Help us understand how graphs work
§ Help us make predictions based on presence

or lack of presence in a graph dataset
¡ Examples:
§ Feed-forward loops: Found in networks of 

neurons, where they neutralize “biological noise”
§ Parallel loops: Found in food webs
§ Single-input modules: Found in gene control 

networks
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Feed-forward loop

Single-input module Parallel loop



¡ Let 𝐺$ be a small graph and 𝐺% be a target graph 
dataset.

¡ Graph-level Subgraph Frequency Definition
Frequency of 𝐺$ in 𝐺%: number of unique subsets of 
nodes 𝑉% of 𝐺% for which the subgraph of 𝐺%
induced by the nodes 𝑉% is isomorphic to 𝐺$
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Frequency: 2

𝑮𝑸: Star Subgraph𝑮𝑻

Frequency: 𝟏𝟎𝟎
𝟔

Degree 
100

𝑮𝑻 𝑮𝑸



¡ Let 𝐺$ be a small graph, 𝑣 be a node in 𝐺$ (the 
“anchor”) and 𝐺% be a target graph dataset.

¡ Node-level Subgraph Frequency Definition:
The number of nodes 𝑢 in 𝐺% for which some
subgraph of 𝐺% is isomorphic to 𝐺$ and the 
isomorphism maps node 𝑢 to 𝑣

¡ Let (𝐺$ , 𝑣) be called a node-anchored subgraph
¡ Robust to outliers

𝑮𝑸
Anchor 𝑣

𝑮𝑸: Star subgraph

Degree 
100

𝑮𝑻

Frequency: 𝟏

Anchor

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu10/28/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 19



¡ What if the dataset contains multiple graphs, 
and we want to compute frequency of 
subgraphs in the dataset?

¡ Solution: Treat the dataset as a giant graph 𝐺#
with disconnected components corresponding 
to individual graphs.
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¡ To define significance, we need to have a 
null-model (i.e., point of comparison).

¡ Key idea: Subgraphs that occur in a real 
network much more often than in a random
network have functional significance.

10/28/21
Milo et. al., Science 2002
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Erdős–Rényi (ER) random graphs:
¡ 𝑮𝒏,𝒑: undirected graph on 𝑛 nodes where each 

edge (𝑢, 𝑣) appears i.i.d. with probability 𝑝
§ How to generate the graph: Create 𝑛 nodes, for each 

pair of nodes 𝑢, 𝑣 flip a biased coin with bias 𝑝
¡ Generated graph is a result of a random process:
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Three random graphs drawn from 𝑮𝟓,𝟎.𝟔



¡ Goal: Generate a random graph with a 
given degree sequence k1, k2, … kN

¡ Useful as a “null” model of networks:
§ We can compare the real network 𝐺!"#$ and a “random” 
𝐺!#%& which has the same degree sequence as 𝐺!"#$

¡ Configuration model:
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Nodes with spokes
Randomly pair up

“mini”-n0des

A C

D A B C D
B

A C

D

Resulting graph

We ignore double edges and self-loops when creating the final graph



¡ Start from a given graph 𝑮
¡ Repeat the switching step 𝑄 ⋅ |𝐸| times:

§ Select a pair of edges AàB, CàD at random
§ Exchange the endpoints to give AàD, CàB

§ Exchange edges only if no multiple edges 
or self-edges are generated

¡ Result: A randomly rewired graph:
§ Same node degrees, randomly rewired edges

¡ 𝑄 is chosen large enough (e.g., 𝑄 = 100) for the 
process to converge
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B

A C

D

B

A C

D

Q is a constant parameter



¡ Intuition: Motifs are overrepresented in a 
network when compared to random graphs:

¡ Step 1: Count motifs in the given graph (𝐺$%&')
¡ Step 2: Generate random graphs with similar 

statistics (e.g. number of nodes, edges, degree 
sequence), and count motifs in the random 
graphs

¡ Step 3: Use statistical measures to evaluate 
how significant is each motif
§ Use Z-score
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¡ 𝑍( captures statistical significance of motif 𝒊: 
𝑍( = (𝑁($%&'−(𝑁($&)*)/std(𝑁($&)*)

§ 𝑁+,-./ is #(motif 𝑖) in graph 𝐺,-./

§ 4𝑁+,.01 is average #(motifs 𝑖) in random graph instances
¡ Network significance profile (SP):

𝑆𝑃+ = 𝑍+/ :
2

𝑍2"

§ 𝑆𝑃 is a vector of normalized Z-scores
§ The dimension depends on number of motifs considered
§ 𝑆𝑃 emphasizes relative significance of subgraphs:

§ Important for comparison of networks of different sizes
§ Generally, larger graphs display higher Z-scores
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¡ For each subgraph: 
§ z-score metric is capable of classifying the subgraph 

“significance”:
§ Negative values indicate under-representation 
§ Positive values indicate over-representation 

¡ We create a network significance profile: 
§ A feature vector with values for all subgraph types

¡ Next: Compare profiles of different graphs with random 
graphs:

§ Regulatory network (gene regulation) 
§ Neuronal network (synaptic connections) 
§ World Wide Web (hyperlinks between pages) 
§ Social network (friendships)
§ Language networks (word adjacency) 
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Pedro Ribeiro

Example Application

Image:  (Milo et al., 2004)Different networks have similar fingerprints!

10/28/21

Networks from the same domain have similar significance profiles

Milo et al., Science 2004
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Web and social

Neurons

Gene regulation 
networks

Word connectivity

Network significance profile



¡ Count subgraphs 𝑖 in 𝐺$%&'
¡ Count subgraphs 𝑖 in random graphs 𝐺$&)*:
§ Null model: Each 𝐺)*+, has the same #(nodes), 

#(edges) and degree distribution as 𝐺)-*.

¡ Assign Z-score to motif 𝑖:
§ 𝑍/ = (𝑁/)-*.−9𝑁/)*+,)/std(𝑁/)*+,)
§ High Z-score: Subgraph 𝑖

is a network motif of 𝑮
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¡ Extensions:
§ Directed and undirected 
§ Colored and uncolored 
§ Temporal and static motifs

¡ Variations on the concept: 
§ Different frequency concepts 
§ Different significance metrics 
§ Under-Representation (anti-motifs) 
§ Different null models
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3-Subgraph

1 2
3

54

0

1 2

54

0

1 2

54

0
3 3

{0,4,5}
Occurrence

{3,4,5}
Not an occurrence!

Original Network

Blogs
Conservative
Liberal

Motif C Motif D Motif E Motif F
Overrepresentation of C
much larger than D

E is overrepresented
F is underrepresented



¡ Subgraphs and motifs are the building blocks 
of graphs
§ Subgraph isomorphism and counting are NP-hard

¡ Understanding which motifs are frequent or 
significant in a dataset gives insight into the 
unique characteristics of that domain

¡ Use random graphs as null model to evaluate 
the significance of motif via Z-score

10/28/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 31



CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu



1) Subgraphs and Motifs
§ Defining Subgraphs and Motifs
§ Determining Motif Significance

2) Neural Subgraph Representations

3) Mining Frequent Motifs
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Given: 
¡ Large target graph (can be disconnected)
¡ Query graph (connected)
Decide:
¡ Is a query graph a subgraph in the target graph?

¡ Node colors indicate the correct mapping of the nodes
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Query Target

A subgraph?



¡ Large target graph (can be disconnected)
¡ Query graph (has to be connected)
¡ Use GNN to predict subgraph isomorphism:

¡ Intuition: Exploit the geometric shape of 
embedding space to capture the properties of 
subgraph isomorphism

Query Target

A subgraph?
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¡ Consider a binary prediction: Return True if 
query is isomorphic to a subgraph of the 
target graph, else return False

Query Q Target T

True
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Finding node correspondences between Q and T is another challenging 
problem, which will not be covered in this lecture.



¡ Input graph:
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Q
ue

ry

Decompose into neighborhoods

…
Embed 

neighborhoodsEmbed 
query

Predict subgraph
relation

No. Yes.Yes.



¡ (1) We are going to work with node-anchored 
definitions:

Query

Target
Graph

Anchor

Anchor

Embedding of 

True / False
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Embedding of 
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¡ (2) We are going to work with node-anchored
neighborhoods:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu10/28/21 39

Query

Target
Graph

Anchor

Anchor
1st hop edge

2nd hop edge

Neighborhoods 
around anchors



¡ Use GNN to obtain representations of 𝑢 and 𝑣
¡ Predict if node 𝒖’s neighborhood is 

isomorphic to node 𝒗’s neighborhood:
Query

Target

Anchor

Anchor

Neighborhoods 
around anchors

1st hop edge

2nd hop edge

Embedding of 

True / False

GNN

GNN

How to use embeddings
to make predictions? 
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Embedding of 
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¡ Recall node-level frequency definition:
The number of nodes 𝑢 in 𝐺! for which some
subgraph of 𝐺! is isomorphic to 𝐺" and the
isomorphism maps 𝑢 to 𝑣

¡ We can compute embeddings for 𝑢 and 𝑣 using 
GNN

¡ Use embeddings to decide if neighborhood of 𝑢 is 
isomorphic to subgraph of neighborhood of 𝑣

¡ We not only predict if there exists a mapping, but 
also a identify corresponding nodes (𝑢 and 𝑣)!
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¡ For each node in 𝑮𝑻:
§ Obtain a k-hop neighborhood around the anchor
§ Can be performed using breadth-first search (BFS)
§ The depth 𝑘 is a hyper-parameter (e.g. 3)

§ Larger depth results in more expensive model
¡ Same procedure applies to 𝐺, to obtain the 

neighborhoods

¡ We embed the neighborhoods using a GNN
§ By computing the embeddings for the anchor nodes 

in their respective neighborhoods
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Map graph 𝐴 to a point 𝑧- into a high-
dimensional (e.g. 64-dim) embedding space, 
such that 𝑧- is non-negative in all dimensions
Capture partial ordering (transitivity):
¡ We use      ≼ to denote that the embedding 

of      is less than or equal to      in all of its 
coordinates

¡ If     ≼ ,    ≼ then    ≼

O

Embedding space
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Intuition: subgraph is to the 
lower-left of its supergraph (in 2D)
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O

Order Embedding 
space

Anchor node 𝒕

𝑮𝑻

Neighborhood

Example Query 1

Anchor

By comparing the embedding, we find that    ≼ but     ≼ ,
Indicating that only query 1 is a subgraph of the neighborhood of 𝑡

Anchor

Example Query 2

GNN



¡ Subgraph isomorphism relationship can be 
nicely encoded in order embedding space
§ Transitivity: If 𝐺0 is a subgraph of 𝐺1, 𝐺1 is a 

subgraph of 𝐺2, then 𝐺0 is a subgraph of 𝐺2
§ Anti-symmetry: If 𝐺0 is a subgraph of 𝐺1, and 𝐺1 is 

a subgraph of 𝐺0, then 𝐺0 is isomorphic to 𝐺1
§ Closure under intersection: The trivial graph of 1 

node is a subgraph of any graph
§ All properties have their counter-parts in the 

order embedding space
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¡ Subgraph isomorphism relationship can be nicely encoded in 
order embedding space
§ Transitivity: If     ≼ ,    ≼ then    ≼
§ Anti-symmetry: If     ≼ and     ≼ , then    =
§ Closure under intersection: The 0 embedding satisfies 0 ≼

for any order embedding     since all dimensions of order 
embedding are non-negative
§ Corollary: If     ≼ and     ≼ then      has a valid embedding
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O

Transitivity

O

Anti-symmetry

O

Closure under intersection

0 embedding: 
Trivial graph 
with one node



¡ We use a GNN to learn to embed neighborhoods 
and preserve the order embedding structure

¡ What loss function should we use, so that the 
learned order embedding reflects the subgraph 
relationship?

¡ We design loss functions based on the order 
constraint:
§ Order constraint specifies the ideal order embedding 

property that reflects subgraph relationships

10/28/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 47



We specify the order constraint to ensure that 
the subgraph properties are preserved in the 
order embedding space
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O

Embedding space
Subgraph anchored at is subgraph 
of the one anchored at 

Query embedding Target embedding

Embedding dimension

Subgraph Relation

trained with max-margin loss∀'()* 𝑧+ 𝑖 ≤ 𝑧, 𝑖 iff 𝐺- ⊆ 𝐺.



¡ GNN Embeddings are learned by minimizing a max-
margin loss

¡ Define 𝐸 𝐺4 , 𝐺5 = ∑/607 (max(0, 𝑧4[𝑖] − 𝑧5[𝑖]))1 as 
the “margin” between graphs 𝐺4 and 𝐺5
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O

Embedding space

𝐺#

𝐺$

𝐸 𝐺$ , 𝐺# = 0
According to the order embedding, 
𝐺$ is a subgraph of 𝐺#!

O

Embedding space

𝐺$

𝐺#

𝐸 𝐺$ , 𝐺# > 0
According to the order embedding, 
𝐺$ is not a subgraph of 𝐺#!



¡ Embeddings are learned by minimizing a max-
margin loss

¡ Let 𝐸 𝐺# , 𝐺$ = ∑%&'( (max(0, 𝑧#[𝑖] − 𝑧$[𝑖]))) be 
the “margin” between graphs 𝐺# and 𝐺$

¡ To learn the correct order embeddings, we want 
to learn 𝒛𝒒, 𝒛𝒕 such that

§ 𝐸 𝐺# , 𝐺$ = 0 when 𝐺# is a subgraph of 𝐺$
§ 𝐸 𝐺# , 𝐺$ > 0 when 𝐺# is not a subgraph of 𝐺$
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¡ To learn such embeddings, construct training 
examples (𝐺. , 𝐺/) where half the time, 𝐺. is a 
subgraph of 𝐺/, and the other half, it is not

¡ Train on these examples by minimizing the 
following max-margin loss:
§ For positive examples: Minimize 𝐸(𝐺4 , 𝐺5) when 
𝐺4 is a subgraph of 𝐺5

§ For negative examples:
Minimize max(0, 𝛼 − 𝐸 𝐺4 , 𝐺5 )
§ Max-margin loss prevents the model from learning the 

degenerate strategy of moving embeddings further and 
further apart forever
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¡ Need to generate training queries 𝐺$ and targets 𝐺% from the dataset 𝐺
¡ Get 𝐺% by choosing a random anchor 𝑣 and taking all nodes in 𝐺 within 

distance 𝐾 from 𝑣 to be in 𝐺%
¡ Positive examples: Sample induced subgraph 𝐺$ of 𝐺%. Use BFS sampling:

§ Initialize 𝑆 = 𝑣 ,  𝑉 = ∅
§ Let 𝑁(𝑆) be all neighbors of nodes in S. At every step, sample 10% of the 

nodes in 𝑁 𝑆 ∖ 𝑉, put them in 𝑆. Put the remaining nodes of 𝑁 𝑆 in 𝑉.
§ After 𝐾 steps, take the subgraph of 𝐺 induced by 𝑆 anchored at 𝑞

¡ Negative examples (𝐺$ not subgraph of 𝐺%): “corrupt” 𝐺$ by 
adding/removing nodes/edges so it’s no longer a subgraph.
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BFS sampling

S

V
Not yet visited

𝐺%



¡ How many training examples to sample?
§ At every iteration, we sample new training pairs
§ Benefit: Every iteration, the model sees different 

subgraph examples
§ Improves performance and avoids overfitting – since 

there are exponential number of possible subgraphs 
to sample from

¡ How deep is the BFS sampling?
§ A hyper-parameter that trades off runtime and 

performance
§ Usually use 3-5, depending on size of the dataset
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¡ Given: query graph 𝐺. anchored at node 𝑞, 
target graph 𝐺/ anchored at node 𝑡

¡ Goal: output whether the query is a node-
anchored subgraph of the target

¡ Procedure: 
§ If	𝐸 𝐺4 , 𝐺5 < 𝜖, predict “True”; else “False”
§ 𝜖 is a hyper-parameter

¡ To check if 𝐺, is isomorphic to a subgraph of 
𝐺# , repeat this procedure for all 𝑞 ∈ 𝐺,, 𝑡 ∈
𝐺#. Here 𝐺. is the neighborhood around node 
𝑞 ∈ 𝐺,.

10/28/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 54



¡ Neural subgraph matching uses a machine learning-
based approach to learn the NP-hard problem of 
subgraph isomorphism
§ Given query and target graph, it embeds both graphs into an 

order embedding space

§ Using these embeddings, it then computes 𝐸 𝐺;, 𝐺< to 
determine whether query is a subgraph of the target

¡ Embedding graphs within an order embedding 
space allows subgraph isomorphism to be 
efficiently represented and tested by the relative 
positions of graph embeddings
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1) Subgraphs and Motifs
§ Defining Subgraphs and Motifs
§ Determining Motif Significance

2) Neural Subgraph Representations

3) Mining Frequent Subgraphs
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¡ Generally, finding the most frequent size-𝑘
motifs requires solving two challenges: 
§ 1) Enumerating all size-𝑘 connected subgraphs
§ 2) Counting #(occurrences of each subgraph type)
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Possible size-3 motifs count # of triangle motifs



¡ Just knowing if a certain subgraph exists in 
a graph, is a hard computational problem!
§ Subgraph isomorphism is NP-complete 

¡ Computation time grows exponentially as 
the size of the subgraphs increases 
§ Feasible motif size for traditional methods is 

relatively small (3 to 7)
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¡ Finding frequent subgraph patterns is 
computationally hard
§ Combinatorial explosion of number of possible patterns
§ Counting subgraph frequency is NP-hard

¡ Representation learning can tackle these 
challenges:
§ Combinatorial explosion à organize the search space
§ Subgraph isomorphism à prediction using GNN
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¡ Representation learning can tackle these 
challenges:
§ 1) Counting #(occurrences of each subgraph type)

§ Solution: Use GNN to “predict” the frequency
of the subgraph.

§ 2) Enumerating all size-𝑘 connected subgraphs
§ Solution: Don’t enumerate subgraphs but construct a 

size-k subgraph incrementally
§ Note: We are only interested 

in high frequency subgraphs
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¡ Target graph (dataset) 𝐺%, size parameter 𝑘
¡ Desired number of results 𝑟
¡ Goal: Identify, among all possible graphs of 𝑘 nodes, 

the 𝑟 graphs with the highest frequency in 𝐺%.
¡ We use the node-level definition:

The number of nodes 𝑢 in 𝐺% for which some
subgraph of 𝐺% is isomorphic to 𝐺$ and the
isomorphism maps 𝑢 to 𝑣.

𝑮𝑸: Star Subgraph

Degree 
100

𝑮𝑻

Frequency: 𝟏

Anchor
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Encoder: Embed 
subgraphs into order 
embedding space

Decompose: Overlapping
node-anchored neighborhoods

….

Input 𝐺&

Search Procedure: Find 
frequent subgraphs by 
growing patterns

…
Step 1 Step 2

Step 9Step 10

…

SPMiner: A neural model to identify frequent motifs

Same as neural subgraph matching
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¡ Decompose input graph 𝐺# into 
neighborhoods

¡ Embed neighborhoods into an order 
embedding space

¡ Key benefit of order embedding:
We can quickly “predict” the frequency of a 
given subgraph 𝐺,
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¡ Given: Set of subgraphs (“node-anchored 
neighborhoods”) 𝐺E# of 𝐺% (sampled randomly)

¡ Key idea: Estimate frequency of 𝐺$ by counting the 
number of 𝐺E# such that their embeddings 𝑧E# satisfy 
𝑧$ ≤ 𝑧E#
§ This is a consequence of the order embedding space property
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“Super-graph” region:
All points in the red shaded region 
correspond to neighborhoods in 𝐺%
that contain 𝐺$

Node-anchored
neighborhood

Motif

Embedding Space

O10/28/21

Benefit: Super-fast subgraph
frequency counting!



Initial step: Start by randomly picking a starting 
node 𝑢 in the target graph 𝐺#. Set 𝑆 = 𝑢 .
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Step 1

Walk in Embedding Space Each point in the shaded region 
represents a neighborhood in 
target graph that contains the 
motif pattern

Step 1

𝑢

Initially, all neighborhoods 
contain the trivial subgraph

Neighborhood 
embeddings

Motif walk



Iteratively: Grow a motif by iteratively choosing a 
neighbor in 𝐺% of a node in 𝑆 and add that node to 𝑆. 
We grow the motif 𝑆 to find larger frequent motifs!
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Frequent Subgraph Mining by Walking in Order Embedding Space

Goal: maximize number of 
neighborhoods in red shaded 
area after 𝑘 step!

Step 10Step 11Step 12

… 

Neighborhood 
embeddings

Motif walk

Step 3

Step 12
…

Walk in Embedding Space

Step 12

• Small motifs grow by adding neighbors
• Their embeddings correspond to red 

points on the left
Step 3 Step 4 Step 5

Step 10Step 11Step 12



Neighborhood 
embeddings

Motif walk

Step 3

Step 12
…

Walk in Embedding Space

Termination: Upon reaching a desired motif size, take 
the subgraph of the target graph induced by 𝑆.
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Identified frequent motif of size 12:
It has the largest number of blue 
points in super-graph region,
among all embeddings of possible 
subgraphs of size 12

Step 3 Step 4 Step 5

Step 10Step 11Step 12



How to pick which node to add at each step?
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Neighborhood 
embeddings

Motif walk

Step 1

Step 12
…

Walk in Embedding Space

Def: Total violation of a subgraph 𝐺:
the number of neighborhoods
that do not contain 𝐺.
• The number of neighborhoods 𝐺=!

that do not satisfy 𝑧> ≼ 𝑧=!
• Minimizing total violation = 

maximizing frequency

Greedy strategy (heuristic):
At every step, add the node 
that results in the smallest 
total violation
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¡ Ground-truth: Find most frequent 10 motifs in 
dataset by brute-force exact enumeration (expensive)

¡ Question: Can the model identify frequent motifs?

¡ Result: The model identifies 9 and 8 of the top 10 
motifs, respectively.

Traditional methods
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Ground-truth



¡ Question: How do the frequencies of the 
identified motif compare?

¡ Result: SPMiner identifies motifs that appear 
10-100x more frequently than the baselines
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COX2 ENZYMES

Molecule dataset Protein dataset
𝑘 𝑘



¡ Subgraphs and motifs are important concepts that 
provide insights into the structure of graphs. Their 
frequency can be used as features for nodes/graphs.

¡ We covered neural approaches to prediction subgraph 
isomorphism relationship.

¡ Order embeddings have desirable properties and can 
be used to encode subgraph relations

¡ Neural embedding-guided search in order embedding 
space can enable ML model to identify motifs much 
more frequent than existing methods
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