Applications of Graph Neural Networks

CS224W: Analysis of Networks Jure Leskovec, R. Ying and J. You, Stanford University http://cs224w.stanford.edu

Outline of Today's Lecture

Three topics for today:

1. GNN recommendation (PinSage)

2. Heterogeneous GNN (Decagon)

3. Goal-directed generation (GCPN)

PinSAGE: GNN for Recommender Systems

Recommender Systems

Users interacts with items

- Watch movies, buy merchandise, listen to music
- Goal: Recommend items users might like
 - Customer X buys Metallica and Megadeth CDs
 - Customer Y buys Megadeth, the recommender system suggests Metallica as well

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Recommender Systems

Goal: Learn what items are related

For a given query item(s) Q, return a set of similar items that we recommend to the user

Idea:

- User interacts with a set of items
- Formulate a query Q
- Search the items and return recommendations

Example: Pinterest

Query:

Chocolate Strawberry # 249 Shake

This healthier chocolate strawberry shake is like sipping a...

One Lovely Life

12/5/19

Example: Pinterest

Query:

Chocolate Strawberry Shake

This healthier chocolate strawberry shake is like sipping a...

12/5/19

One Lovely Life

Recommendations:

Chocolate # 5.3k Dipped Strawberry Smoothie Chocolate Dipped Strawberry Smoothie. Just in time for... Be Whole. Be You.


```
ropical
Orange
Smoothie
```


Easy Breezy #80.1k Tropical Orange Smoothie

8 Staple Smoothies You Should Know How to Make 8 Staple Smoothies That You Should Know

∓5.2k

Vanilla Pumpkin Smoothie: A Quick &... The perfect vanilla pumpkin smoothie recipe. Quick, easy and... Bab/Savers Marybeth @ Bab... Best Comfort Fo...

Spinach-Pear-Celery Smoothie drink this daily and watch the pounds come off without fuss...

areenreset.com Spring Stutzman R - Drink Up

₹249

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Ŧ 60

Example (2): Pinterest

Query:

Chocolate Strawberry Shake

₹249

This healthier chocolate strawberry shake is like sipping a...

One Lovely Life

Healthy Chocolate Peanut Butter Chips Muffins Healthy Chocolate Peanut Butter Chip Muffins made with greek... The First Year Re Katie - You Brew W Healthy Recipes

×119

The Ultimate

221

Healthy Soft & Chewy Chocolate Chip Cookies The ULTIMATE Healthy Chocolate Chip Cookies -- so buttery... Amv's Healthy Baking Robin Guertin healthy cooking

12/5/19

Example (2): Pinterest

Query:

Chocolate Strawberry Shake

¥ 249

This healthier chocolate strawberry shake is like sipping a...

One Lovely Life

Chocolate Peanut Butter Chips Muffins Healthy Chocolate Peanut Butter Chip Muffins made with greek... The First Year 🕵 Katie - You Brew ... W Healthy Recipes

Healthy Soft & Chewy Chocolate Chip Cookies The ULTIMATE Healthy Chocolate Chip Cookies -- so buttery... Amv's Healthy Baking

healthy cooking

Recommendations:

3 INGREDIENT "ICE CREAM"

30 minute Skinny ∓ 2.3k 6 Ridiculously Healthy But Delicious 3-Banana Chocolate Chip Muffins Ingredient Treats... chocolate chips. Rita Pittmon Foodies

Chip Muffins

Almost fat free. healthy banana muffins with

ropical Orange Smoothie

Healthy Peanut Butter Chocolate Chip Oatmeal

Healthy Peanut Butter Chocolate Chip Oatmeal Bars

Live Well Bake Often

Live Well, Bake O. Best Comfort Fo.

Bars

Oatmeal Bars

Gina @ Kleinwort. Food, Drink & Al-

-d

Chocolate Dipped Strawberry Smoothie. Just in time for...

Be Whole. Be You.

Ed Todd Drinks- Smoothies

uick & Nutrition

VANILLA PUMPKIN

A A A

AND DESCRIPTION OF A

Chocolate Dipped Strawberry

Smoothie

Dark Chocolate Sea Salt Almonds A simple, gluten free, healthy chocolate treat to feel good...

allvs Baking Addiction jarena Campbe clean eating

CHEESECAKE BARS

Healthy Chocolate Chip

Cookie Dough Blizzard

Healthy Chocolate Chip Cookie Dough Blizzard NeuroticMommv

NeuroticMommy NeuroticMommy

* 108.3k

Many Applications

Having a universal similarity function allows for many applications:

Homefeed (endless feed of recommendations)

Ads and shopping (use organic for the query and search the ads database)

Key Problem: Defining Similarity

- Question: How do we define similarity?
 1) Content-based: User and item features, in the form of images, text, categories, etc.
- 2) Graph-based: User-item interactions, in the form of graph/network structure
 - This is called collaborative filtering:
 - For a given user X, find others who liked similar items
 - Estimate what X will like based on what similar others like

Key Problems

How do we define similarity:

- (1) Gathering "known" similarities
 - How to collect the data about what users like
- (2) Extrapolating unknown similarities from the known ones
 - Mainly interested in high unknown similarities
 - We are not interested in knowing what you don't like but what you like

(3) Evaluating methods

 How to measure success/performance of recommendation methods

Pinterest

Blue accents 219 Pins

Vintage kitchen 377 Pins

300M users4+B pins, 2+B boards

12/5/19

Pinterest

Pinterest: Human curated collection of pins

₹14

Nitty Gritty

Hans Wegner chair

Promoted by Room & Board

Annie Teng Plantation

Pin: A visual bookmark someone has saved from the internet to a board they've created. **Pin:** Image, text, link

Board: A collection of ideas (pins having something in common)

Pinterest: 2 Sources of Signal

Two sources of signal:

Features:

- Image and text of each pin Graph:
- Graph is dynamic: Need to apply to new nodes without model retraining

Recommendations via Embeddings

Goal: Learn embeddings for items

- Related Pins Query: Which pin to recommend when a user interacts with a pin v₃?
- Answer: Find the closest embedding (v₄) to v₃ by nearest neighbor. Recommend it.

Recommendations via Embeddings

Goal 1: Efficiently learn embeddings for billions of pins (items, nodes) using neural networks
Goal 2: Perform nearest neighbor query to recommend items in real-time

Overview: Pin Recommendation

Task: Recommend related pins to users

Task: Learn node embeddings z_i such that $d(z_{cake1}, z_{cake2})$ $< d(z_{cake1}, z_{sweater})$

Predict whether two nodes in a graph are related

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://

PinSage: Graph Neural Networks

Predict whether two nodes in a graph are related

Approach:

- Pins have embeddings at each layer
- Layer-0 embedding of a node are its features:
 - Text, image, ...

- Pin embeddings are essential to many different tasks. Aside from the "Related Pins" task, it can also be used in:
 - Recommend related ads
 - Homefeed recommendation
 - Cluster users by their interest

2018]

PinSage Pipeline

- **1. Collect** billions of training pairs from logs.
 - Positive pair: Two pins that are consecutively saved into the same board within a time interval (1 hour)
 - Negative pair: A random pair of 2 pins
 - With high probability the pins are not on the same board

PinSage Pipeline

- **1. Collect** billions of training pairs from logs.
 - Positive pair: Two pins that are consecutively saved into the same board within a time interval (1 hour)
 - Negative pair: A random pair of 2 pins
 - With high probability the pins are not on the same board
- 2. Train GNN to generate similar embeddings for training pairs
- 3. Inference: Generate embeddings for all pins
- Nearest neighbor search in embedding space to make recommendations.

Training Objective Function

- Train so that pins that are consecutively pinned have similar embeddings
- Max-margin loss:

Four key innovations:

1. On-the-fly graph convolutions

 Sample the neighborhood around a node and dynamically construct a computation graph

Minibatch of neighborhoods

Four key innovations:

1. On-the-fly graph convolutions

- Perform a localized graph convolution around a particular node
- Does not need the entire graph during training

At every iteration, only source node embeddings are computed

Four key innovations:

2. Selecting neighbors via random walks

- Performing aggregation on all neighbors is infeasible:
 - How to select the set of neighbors of a node to convolve over?
- Personalized PageRank can help!
- Define Importance pooling: Define importance-based neighborhoods by simulating random walks and selecting the neighbors with the highest visit counts

Key Innovation (2): Random Walks

Key Innovation (2): Random Walks

- Proximity to query node(s) Q
- Importance pooling
 - Choose nodes with top K visit counts
 - Pool over the chosen nodes
 - The chosen nodes are not necessarily neighbors

Key Innovation (2): Importance Pooling

- Example: suppose K=5
- Rank nodes based on Random Walk visit counts
- Pick top K nodes and normalize counts

$\frac{16}{55}, \frac{14}{55}, \frac{9}{55}, \frac{8}{55}, \frac{8}{55}, \frac{8}{55}$

Aggregate messages from the top K nodes

Key Innovation (2): Importance Pooling

Pick top K nodes and normalize counts $\begin{array}{c} 16 & 14 & 9 & 8 & 8 \\ \hline 55' & 55' & 55' & 55' & 55 \end{array}$

GraphSAGE mean pooling

Average the messages from direct neighbors

PinSAGE Importance pooling

- Use the normalized counts as weights for weighted mean of messages from the top K nodes
- PinSAGE uses K = 50
 - Negligible performance gain for K > 50

Four key innovations:

3. Efficient MapReduce inference

- Problem: Many repeated computation if using localized graph convolution at inference step
- Need to avoid repeated computation

Recall how we obtain negative examples

Positive Example

Random Negative

Goal: Identify target pin among 3B pins

- Issue: Need to learn with resolution of 100 vs. 3B
- Massive size: 3 billion nodes, 20 billion edges
- Idea: Use harder and harder negative samples

Hard negative examples improve performance

Positive pair

QueryPositive ExampleRandom NegativeHard NegativeHarder to distinguish from the positive pair

How to obtain hard negatives: Use random walks:

- Use nodes with visit counts ranked at 1000-5000 as hard negatives
- Have something in common, but are not too similar

Hard negative examples improve performance

Positive pair

QueryPositive ExampleRandom NegativeHard NegativeHarder to distinguish from the positive pair

Curriculum training on hard negatives

- Start with random negative examples
- Provide harder negative examples over time

PinSage: Experiments

Related Pin recommendations

- Given a user just saved pin Q, predict what pin
 X are they going to save next
- Setup: Embed 3B pins, find nearest neighbors of Q
 Method Hit-rate M
- Baseline embeddings:
 - Visual: VGG visual embeddings
 Annotation: Word2vec embeddings
 - Combined: Concatenate embeddings

Method	Hit-rate	MRR
Visual	17%	0.23
Annotation	14%	0.19
Combined	27%	0.37
max-pooling	39%	0.37
mean-pooling	41%	0.51
mean-pooling-xent	29%	0.35
mean-pooling-hard	46%	0.56
PinSage	67 %	0.59

MRR: Mean reciprocal rank of the positive example X w.r.t Q **Hit rate:** Fraction of times the positive example X is among top K closest to Q
Example Pin Recommendations

Pixie (graph-based): the method of simulating random walks starting at query Pin using the Pixie algorithm in class. Items with top scores are retrieved as recommendations **Visual Appot (feature-based)**: pearest peighbor recommendation using

Visual, Annot. (feature-based): nearest neighbor recommendation using visual (CNN) and annotation features of pins

Comparing against Prod (1)

Query

PinSAGE

Comparing against Prod (2)

PinSAGE

Query

Outline of Today's Lecture

- **1.** GNN recommendation (PinSage)
- 2. Heterogeneous GNN (Decagon)

DECAGON: Heterogeneous GNN

Challenge

- So far we only applied GNNs to simple graphs
 - GNNs do not explicitly use node and edge type information
- Real networks are often heterogeneous
- How to use GNN for heterogeneous graphs?

Polypharmacy Side Effects

Polypharmacy: use multiple drugs for a disease

Polypharmacy Side Effects

- Polypharmacy is common to treat complex diseases and co-existing conditions
- High risk of side effects due to interactions
- **15%** of the U.S. population affected
- Annual costs exceed \$177 billion
- Difficult to identify manually:
 - Rare, occur only in a subset of patients
 - Not observed in clinical testing

Modeling Polypharmacy

- Systematic experimental screening of drug interactions is challenging
- Idea: Computationally screen/predict polypharmacy side effects
 - Use molecular, pharmacological and patient population data
 - Guide translational strategies for combination treatments in patients

This Work

Model and predict side effects of drug pairs

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Problem Formulation: Graphs

Heterogeneous (multimodal) graphs: graphs with different node types and/or edge types

Problem Formulation: Predict

Goal: Given a partially observed graph, predict labeled edges between drug nodes

Query: Given a drug pair c, d, how likely does an edge (c, r_2, d) exist?

Task Description

- Predict labeled edges between drugs nodes
 - i.e., predict the likelihood that an edge (c, r₂, s) exists between drug nodes c and s
 - Meaning: Drug combination (c, s) leads to polypharmacy side effect r₂

Model: Heterogenous GNN

- Key Insight: Compute GNN messages from each edge type, then aggregate across different edge types
- Input: heterogenous graph
- Output: node embeddings

One layer of Heterogeneous GNN

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Making Edge Predictions

- Key Insight: Use pair of computed node embeddings to make edge predictions
- Input: Node embeddings of query drug pairs
- Output: predicted edges

Predict possible edges with NN

polypharmacy side effects

(C).

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Decoder: Link Prediction

Experiment Setup

Data:

- Graph over Molecules: protein-protein interaction and drug target relationships
- Graph over Population: Side effects of individual drugs, polypharmacy side effects of drug combinations
 Setup:
 - Construct a heterogeneous graph of all the data
 - Train: Fit a model to predict known associations of drug pairs and polypharmacy side effects
 - Test: Given a query drug pair, predict candidate polypharmacy side effects

Prediction Performance

	AUROC	AUPRC	AP@50
Decagon (3-layer)	0.834	0.776	0.731
Decagon (2-layer)	0.809	0.762	0.713
RESCAL	0.693	0.613	0.476
Node2vec	0.725	0.708	0.643
Drug features	0.736	0.722	0.679

 Up to 54% improvement over baselines
 First opportunity to computationally flag polypharmacy side effects for follow-up analyses

De novo Predictions

Rank	Drug c	Drug d	Side effect r
1	Pyrimethamine	Aliskiren	Sarcoma
2	Tigecycline	Bimatoprost	Autonomic neuropathy
3	Omeprazole	Dacarbazine	Telangiectases
4	Tolcapone	Pyrimethamine	Breast disorder
5	Minoxidil	Paricalcitol	Cluster headache
6	Omeprazole	Amoxicillin	Renal tubular acidosis
7	Anagrelide	Azelaic acid	Cerebral thrombosis
8	Atorvastatin	Amlodipine	Muscle inflammation
9	Aliskiren	Tioconazole	Breast inflammation
10	Estradiol	Nadolol	Endometriosis

De novo Predictions

Rank	Drug c	Drug d	Side effect r	Evidence found
1	Pyrimethamine	Aliskiren	Sarcoma	Stage <i>et al.</i> 2015
2	Tigecycline	Bimatoprost	Autonomi	
3	Omeprazole	Dacarbazine	Telangiec	
4	Tolcapone	Pyrimethamine	Breast dis	Bicker <i>et al.</i> 2017
5	Minoxidil	Paricalcitol	Cluster headache	
6	Omeprazole	Amoxicillin	Renal tubular acidosis	Russo et al. 2016
7	Anagrelide	Azelaic acid	Cerebral thrombosis	
8	Atorvastatin	Amlodipine	Muscle inflammation	Banakh et al. 2017
9	Aliskiren	Tioconazole	Breast inflammation	Parving et al. 2012
10	Estradiol	Nadolol	Endometriosis	

Case Report

Severe Rhabdomyolysis due to Presumed Drug Interactions between Atorvastatin with Amlodipine and Ticagrelor

12/5/19

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Outline of Today's Lecture

- **1.** GNN recommendation (PinSage)
- 2. Heterogeneous GNN (Decagon)
- 3. Goal-directed generation (GCPN)

GCPN: Goal-Directed Graph Generation (an extension of GraphRNN)

Recap: Graph Generative Models

- Given: Graphs sampled from p_{data}(G)
 Goal:
 - Learn the distribution p_{model}(G)
 - Sample from $p_{model}(G)$

Recap: GraphRNN Idea [You et al., ICML 2018]

Generating graphs via sequentially adding nodes and edges

GraphRNN: Two levels of RNN

Quick Summary of GraphRNN:

- Generate a graph by generating a two level sequence
- Use RNN to generate the sequences

Imitating Given Graphs

Grid

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Imitating Given Graphs

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Question: Can we learn a model that can generate valid and realistic molecules with high value of a given chemical property?

<u>Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation</u>. J. You, B. Liu, R. Ying, V. Pande, J. Leskovec. *Neural Information Processing Systems (NeurIPS)*, 2018.

Molecules as Heterogenous Graphs

- Node types: C, N, O, ...
- Edge types: single bond, double bond, ...
- Note: "H"s can be automatically inferred via chemical validity rules, thus are ignored in molecular graphs

Goal-Directed Graph Generation

Generating graphs that:

- Optimize a given objective (High scores)
 - e.g., drug-likeness
- Obey underlying rules (Valid)
 - e.g., chemical validity rules
- Are learned from examples (Realistic)
 - e.g., Imitating a molecule graph dataset

<u>Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation</u>. J. You, B. Liu, R. Ying, V. Pande, J. Leskovec. *Neural Information Processing Systems (NeurIPS)*, 2018.

Generating graphs that:

- Optimize a given objective (High scores)
 - e.g., drug-likeness
- Obey underlying rules (Valid)
 - e.g., chemical validity rules

Including "Black-box" in ML:

Objectives like drug-likeness are governed by physical law, which are assumed to be unknown to us!

<u>Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation</u>. J. You, B. Liu, R. Ying, V. Pande, J. Leskovec. *Neural Information Processing Systems (NeurIPS)*, 2018.

Solution: Reinforcement Learning

- A ML agent observes the environment, takes an action to interact with the environment, and receives positive or negative reward
- The agent then learns from this loop
- Key: Environment is a blackbox to the agent

Policy-based RL

- Policy: Agent behavior, which maps observation to action
- Policy-based RL: An agent directly learns an optimal policy from data

Graph Convolutional Policy Network combines graph representation + RL:

- Graph Neural Network captures complex structural information, and enables validity check in each state transition (Valid)
- Reinforcement learning optimizes intermediate/final rewards (High scores)
- Adversarial training imitates examples in given datasets (Realistic)

Overview of GCPN

- (a) Insert nodes/scaffolds
- (b) Compute state via GCN
- (c) Sample next action
- (d) Take action (check chemical validity)
- (e, f) Compute reward

How Do We Set the Reward?

- Learn to take valid action
 - At each step, assign small positive reward for valid action
- Optimize desired properties
 - At the end, assign positive reward for high desired property
- Generate realistic graphs
 - At the end, adversarially train a GCN discriminator, compute adversarial rewards that encourage realistic molecule graphs
How Do We Set the Reward?

Reward: r_t = Final reward + Step reward

- Final reward = Domain-specific reward
- Step rewards = Step-wise validity reward

How Do We Train?

Two parts: (1) Supervised training: Train policy by imitating the action given by real observed graphs. Use gradient.

 (2) RL training: Train policy to optimize rewards. Use standard policy gradient algorithm (refer to any RL course, e.g., CS234).

GCPN Architecture

GCPN Architecture

GCPN: Tasks

Property optimization

- Generate molecules with high specified property score
- Property targeting
 - Generate molecules whose specified property score falls within given range
- Constrained property optimization
 - Edit a given molecule for a few steps to achieve higher specified property score

Data and Baselines

- ZINC250k dataset
 - 250,000 drug like molecules whose maximum atom number is 38
- Baselines:
 - ORGAN: String representation + RL [Guimaraes et al., 2017]
 - JT-VAE: VAE-based vector representation + Bayesian optimization [Jin et al., 2018]

Property optimization +60% higher property scores

Table 1: Comparison of the top 3 property scores of generated molecules found by each model.

Method	Penalized logP				QED			
	1st	2nd	3rd	Validity	1st	2nd	3rd	Validity
ZINC	4.52	4.30	4.23	100.0%	0.948	0.948	0.948	100.0%
ORGAN	3.63	3.49	3.44	0.4%	0.896	0.824	0.820	2.2%
JT-VAE	5.30	4.93	4.49	100.0%	0.925	0.911	0.910	100.0%
GCPN	7.98	7.85	7.80	100.0%	0.948	0.947	0.946	100.0%

logP: octanol-water partition coef., indicates <u>solubility</u> **QED:** indicator of <u>drug-likeness</u>

Quantitative Results

Property targeting

• 7x higher success rate than JT-VAE, 10% less diversity

	$9 \text{ f} < 1_{0} \text{ c} \mathbb{D} < -9$		$\Gamma < l_{\rm ac} D < \Gamma \Gamma$		150 < MW < 200		$E_{00} < \mathbf{MW} < E_{00}$	
Method	$-2.5 \le \log P \le -2$		$5 \le 10 \text{gP} \le 5.5$		$150 \le W W \le 200$		$000 \le MM \le 000$	
	Success	Diversity	Success	Diversity	Success	Diversity	Success	Diversity
ZINC	0.3%	0.919	1.3%	0.909	1.7%	0.938	0	—
JT-VAE	11.3%	0.846	7.6%	0.907	0.7%	0.824	16.0%	0.898
ORGAN	0	—	0.2%	0.909	15.1%	0.759	0.1%	0.907
GCPN	85.5%	0.392	54.7%	0.855	76.1%	0.921	74.1 %	0.920

Table 2: Comparison of the effectiveness of property targeting task.

logP: octanol-water partition coef., indicates <u>solubility</u>
MW: molecular weight an indicator of <u>drug-likeness</u>
Diversity: avg. pairwise Tanimoto distance between Morgan fingerprints of molecules

12/5/19

Constrained property optimization +180% higher scores than JT-VAE

Table 3: Comparison of the performance in the constrained optimization task.

δ		JT-VAE		GCPN			
	Improvement	Similarity	Success	Improvement	Similarity	Success	
0.0	1.91 ± 2.04	0.28 ± 0.15	97.5%	4.20 ± 1.28	0.32 ± 0.12	100.0%	
0.2	1.68 ± 1.85	0.33 ± 0.13	97.1%	4.12 ± 1.19	0.34 ± 0.11	100.0 %	
0.4	0.84 ± 1.45	0.51 ± 0.10	83.6%	2.49 ± 1.30	0.47 ± 0.08	$\mathbf{100.0\%}$	
0.6	0.21 ± 0.71	0.69 ± 0.06	46.4%	0.79 ± 0.63	0.68 ± 0.08	100.0 %	

Qualitative Results

Visualization of GCPN graphs: Property optimization

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Qualitative Results

Visualization of GCPN graphs: constrained optimization

(c) Constrained optimization of penalized logP

Summary of Graph Generation

- Complex graphs can be successfully generated via sequential generation
- Each step a decision is made based on hidden state, which can be
 - Explicit: intermediate generated graphs, decode with GCN
 - Implicit: vector representation, decode with RNN
- Possible tasks:
 - Imitating a set of given graphs
 - Optimizing graphs towards given goals

References

PinSage:

 Graph convolutional neural networks for web-scale recommender systems. R. Ying, R. He, K. Chen, P. Eksombatchai, W. Hamilton, J. Leskovec. *KDD 2018*.

Decagon:

- Modeling polypharmacy side effects with graph convolutional networks. Z., Marinka, M. Agrawal, J. Leskovec. *Bioinformatics* 2018.
- Website: <u>http://snap.stanford.edu/decagon/</u>

GCPN:

- Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, B. Liu, R. Ying, V. Pande, J. Leskovec. *NeurIPS* 2018.
- Code: <u>https://github.com/bowenliu16/rl_graph_generation</u>

What Next?

Project write-ups:

- Tue Dec 10 (11:59PM) Pacific Time
 - 1 team member uploads PDF to Gradescope
 - Don't forget to tag your other team members!

Poster session:

- Thu Dec 12, 12:15 3:15 pm in Huang Foyer
 - All groups with at least one non-SCPD member must present
 - There should be 1 person at the poster at all times
 - Prepare a 2-minute elevator pitch of your poster
 - More instructions on Piazza

No late days!

87

What Next? Our Courses

CS246: Mining Massive Datasets (Winter 2020)

- Data Mining & Machine Learning for Big Data
 - (big==doesn't fit in memory/single machine), SPARK

CS341: Project in Data Mining (Spring 2020)

- Groups do a research project on Big Data
- We provide interesting data, projects and access to the Google Cloud infrastructure
- Nice way to finish up CS224W project & publish it!

Conferences / Journals:

- **KDD**: Conf. on Knowledge Discovery & Data Mining
- ICML: Intl. Conf. on Machine Learning
- NeurIPS: Neural Information Processing Systems
- ICLR: Intl. Conf. on Learning Representations
- **WWW**: ACM World Wide Web Conference
- WSDM: ACM Web search and Data Mining
- ICWSM: AAAI Int. Conf. on Web-blogs & Social Media
- Journal of Network Science
- Journal of Complex Networks

What Next? Other Courses

Other relevant courses:

- CS229: Machine Learning
- CS230: Deep Learning
- MSE231: Computational Social Science
- MSE334: The Structure of Social Data
- CS276: Information Retrieval and Web Search
- CS245: Database System Principles
- CS347: Transaction Processing & Databases

Thank you Michele and TAs!!

Teaching Assistants

Christina Yuan Head TA

Lingzi (Liz) Guo

Benjamin (Ben) Hannel

Kuangcong (Cecilia) Liu

Zhitao (Rex) Ying

Co-Instructor

Michele Catasta

Vasco Portilheiro

Andrew Wang

Alexis Goh Weiying

Thank You

In Closing...

- You Have Done a Lot!!!
- And (hopefully) learned a lot!!!
 - Answered questions and proved many interesting results
 - Implemented a number of methods
 - And are doing excellently on the class project!

Thank You for the Hard Work!!!

