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Three topics for today:
1. GNN recommendation (PinSage)

2. Heterogeneous GNN (Decagon)

3. Goal-directed generation (GCPN)
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Items

Users

¡ Users interacts with items 
§ Watch movies, buy merchandise, listen to music

¡ Goal: Recommend items users might like
§ Customer X buys Metallica and Megadeth CDs
§ Customer Y buys Megadeth, the recommender system 

suggests Metallica as well

12/5/19

Interactions

“You might also like”



Goal: Learn what items are related
¡ For a given query item(s) Q, return a set of 

similar items that we 
recommend to the user

Idea:
¡ User interacts with 

a set of items
¡ Formulate a query Q
¡ Search the items and

return recommendations
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Items

Query Recommendations

Products, web 
sites, movies, 
posts, ads, …



Query:
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Query: Recommendations:
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Query:
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Query: Recommendations:
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Having a universal similarity function allows 
for many applications:
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Homefeed
(endless feed of 

recommendations)

Related pins
(find most 

similar/related pins)

Ads and shopping
(use organic for the 

query and search the
ads database)



Question: How do we define similarity? 
¡ 1) Content-based: User and item features, in 

the form of images, text, categories, etc.

¡ 2) Graph-based: User-item interactions, in the 
form of graph/network structure
§ This is called collaborative filtering:

§ For a given user X, find others who liked similar items
§ Estimate what X will like based on what similar others like
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How do we define similarity:
¡ (1) Gathering “known” similarities

§ How to collect the data about what users like

¡ (2) Extrapolating unknown similarities from the 
known ones
§ Mainly interested in high unknown similarities

§ We are not interested in knowing what you don’t like 
but what you like

¡ (3) Evaluating methods
§ How to measure success/performance of

recommendation methods
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¡ 300M users
¡ 4+B pins, 2+B boards
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Pinterest: Human curated collection of pins

Pin: A visual bookmark someone has 
saved from the internet to a board 
they’ve created.
Pin: Image, text, link

Board: A collection of ideas (pins having something in common) 



Two sources of signal:
Features:
¡ Image and text of each pin
Graph:
¡ Graph is dynamic: Need to apply to new 

nodes without model retraining

12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

Q



Goal: Learn embeddings for items
¡ Related Pins Query: Which pin to recommend when a 

user interacts with a pin 𝑣"?
¡ Answer:  Find the closest embedding (𝑣#) to 𝑣" by 

nearest neighbor. Recommend it.
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𝑣$

𝑣%

𝑣"

𝑣#
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Item 
embeddings

Previously pinned

Query pin

Related pin 
recommendation



¡ Goal 1: Efficiently learn embeddings for billions 
of pins (items, nodes) using neural networks

¡ Goal 2: Perform nearest neighbor query to 
recommend items in real-time
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Query pin

“Predicted”
related pin

Embed

Embedding space

The closer the embeddings are,
the more similar the pins are



Task: Recommend related pins to users

Query pin

8

Predict whether two nodes in a graph are related

Task: Learn node 
embeddings 𝑧' such that
𝑑 𝑧)*+,$, 𝑧)*+,%
< 𝑑(𝑧)*+,$, 𝑧01,*2,3)
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𝑧$ 𝑧%

𝑑(𝑧$, 𝑧%)
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Approach:
¡ Pins have embeddings at each 

layer
¡ Layer-0 embedding of 

a node are its features:
§ Text, image, …

pin

board ...

Aggregator

... ... ...
Agg. Agg. Agg.

Predict whether two nodes in a graph are related
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¡ PinSage graph convolutional network:
§ Goal: Generate embeddings for nodes (e.g., pins) in the 

Pinterest graph containing billions of objects
§ Key Idea: Borrow information from nearby nodes

§ E.g., bed rail Pin might look like a garden fence, but gates and 
beds are rarely adjacent in the graph

§ Pin embeddings are essential to many different tasks. 
Aside from the “Related Pins” task, it can also be used in:
§ Recommend related ads
§ Homefeed recommendation
§ Cluster users by their interest
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[Ying et al., WWW 2018]

Under review as a conference paper at ICLR 2019

sum - multiset

>
mean - distribution max - set

>
Input

Figure 2: Ranking by expressive power for sum, mean and max-pooling aggregators over a multiset.
Left panel shows the input multiset and the three panels illustrate the aspects of the multiset a given
aggregator is able to capture: sum captures the full multiset, mean captures the proportion/distribution
of elements of a given type, and the max aggregator ignores multiplicities (reduces the multiset to a
simple set).

vs.

(a) Mean and Max both fail

vs.

(b) Max fails

vs.

(c) Mean and Max both fail

Figure 3: Examples of simple graph structures that mean and max-pooling aggregators fail to
distinguish. Figure 2 gives reasoning about how different aggregators “compress” different graph
structures/multisets.

existing GNNs instead use a 1-layer perceptron � �W (Duvenaud et al., 2015; Kipf & Welling, 2017;
Zhang et al., 2018), a linear mapping followed by a non-linear activation function such as a ReLU.
Such 1-layer mappings are examples of Generalized Linear Models (Nelder & Wedderburn, 1972).
Therefore, we are interested in understanding whether 1-layer perceptrons are enough for graph
learning. Lemma 7 suggests that there are indeed network neighborhoods (multisets) that models
with 1-layer perceptrons can never distinguish.

Lemma 7. There exist finite multisets X1 6= X2 so that for any linear mapping W ,P
x2X1

ReLU (Wx) =
P

x2X2
ReLU (Wx) .

The main idea of the proof for Lemma 7 is that 1-layer perceptrons can behave much like linear
mappings, so the GNN layers degenerate into simply summing over neighborhood features. Our
proof builds on the fact that the bias term is lacking in the linear mapping. With the bias term and
sufficiently large output dimensionality, 1-layer perceptrons might be able to distinguish different
multisets. Nonetheless, unlike models using MLPs, the 1-layer perceptron (even with the bias term)
is not a universal approximator of multiset functions. Consequently, even if GNNs with 1-layer
perceptrons can embed different graphs to different locations to some degree, such embeddings may
not adequately capture structural similarity, and can be difficult for simple classifiers, e.g., linear
classifiers, to fit. In Section 7, we will empirically see that GNNs with 1-layer perceptrons, when
applied to graph classification, sometimes severely underfit training data and often underperform
GNNs with MLPs in terms of test accuracy.

5.2 STRUCTURES THAT CONFUSE MEAN AND MAX-POOLING

What happens if we replace the sum in h (X) =
P

x2X f(x) with mean or max-pooling as in GCN
and GraphSAGE? Mean and max-pooling aggregators are still well-defined multiset functions because
they are permutation invariant. But, they are not injective. Figure 2 ranks the three aggregators by
their representational power, and Figure 3 illustrates pairs of structures that the mean and max-pooling
aggregators fail to distinguish. Here, node colors denote different node features, and we assume the
GNNs aggregate neighbors first before combining them with the central node.

In Figure 3a, every node has the same feature a and f(a) is the same across all nodes (for any
function f ). When performing neighborhood aggregation, the mean or maximum over f(a) remains
f(a) and, by induction, we always obtain the same node representation everywhere. Thus, mean and
max-pooling aggregators fail to capture any structural information. In contrast, a sum aggregator
distinguishes the structures because 2 · f(a) and 3 · f(a) give different values. The same argument
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1. Collect billions of training pairs from logs.
§ Positive pair: Two pins that are consecutively saved 

into the same board within a time interval (1 hour)
§ Negative pair: A random pair of 2 pins
§ With high probability the pins are not on the same board
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1. Collect billions of training pairs from logs.
§ Positive pair: Two pins that are consecutively saved 

into the same board within a time interval (1 hour)
§ Negative pair: A random pair of 2 pins
§ With high probability the pins are not on the same board

2. Train GNN to generate similar embeddings for 
training pairs

3. Inference: Generate embeddings for all pins
4. Nearest neighbor search in embedding space to 

make recommendations.
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¡ Train so that pins that are consecutively 
pinned have similar embeddings

¡ Max-margin loss:
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L =
X

(u,v)2D

max(0,�z>u zv + z>u zn +�)

set of training pairs 
from user logs

“positive”/true 
training pair

“negative” 
example

“margin” (i.e., how 
much larger positive 
pair similarity should 

be compared to 
negative) 



¡ Four key innovations: 
1. On-the-fly graph convolutions
§ Sample the neighborhood around a node and 

dynamically construct a computation graph
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Minibatch of neighborhoods



¡ Four key innovations: 
1. On-the-fly graph convolutions
§ Perform a localized graph convolution around a 

particular node
§ Does not need the entire graph during training
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At every iteration, only source node embeddings are computed



¡ Four key innovations: 
2.   Selecting neighbors via random walks
§ Performing aggregation on all neighbors is infeasible:
§ How to select the set of neighbors of a node to convolve over?

§ Personalized PageRank can help!
§ Define Importance pooling: Define importance-based 

neighborhoods by simulating random walks and 
selecting the neighbors with the highest visit counts
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¡ Proximity to query node(s) Q
Pixie Random Walk

5 5 5 5 5 5 14 9 16 7 8 8 8 8 1 1 1

Strawberries SmoothiesYummm Smoothie Madness!•!•!•!

Q
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¡ Proximity to query node(s) Q
¡ Importance pooling
§ Choose nodes with top K visit counts
§ Pool over the chosen nodes
§ The chosen nodes are not necessarily neighbors

Pixie Random Walk

5 5 5 5 5 5 14 9 16 7 8 8 8 8 1 1 1

Strawberries SmoothiesYummm Smoothie Madness!•!•!•!

Q
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¡ Example: suppose 𝐾=5
¡ Rank nodes based on Random Walk visit counts
¡ Pick top 𝑲 nodes and normalize counts

16
55 ,

14
55 ,

9
55 ,

8
55 ,

8
55

¡ Aggregate messages from the top 𝐾 nodes
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Pixie Random Walk

5 5 5 5 5 5 14 9 16 7 8 8 8 8 1 1 1

Strawberries SmoothiesYummm Smoothie Madness!•!•!•!

Q

Top 𝑲 nodes

12/5/19



¡ Pick top K nodes and normalize counts
16
55 ,

14
55 ,

9
55 ,

8
55 ,

8
55

¡ GraphSAGE mean pooling
§ Average the messages from direct neighbors

¡ PinSAGE Importance pooling
§ Use the normalized counts as weights for weighted 

mean of messages from the top K nodes
¡ PinSAGE uses 𝐾 = 50
§ Negligible performance gain for 𝐾 > 50
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Four key innovations: 
3. Efficient MapReduce inference
§ Problem: Many repeated computation if using 

localized graph convolution at inference step 
§ Need to avoid repeated computation
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Repeated computation



¡ Recall how we obtain negative examples
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L =
X

(u,v)2D

max(0,�z>u zv + z>u zn +�)

set of training 
pairs from logs

“positive”/true 
example

“negative” 
example

“margin” (i.e., how 
much larger positive 
pair similarity should 

be compared to 
negative) 
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Goal: Identify target pin among 3B pins
¡ Issue: Need to learn with resolution of 100 vs. 3B
¡ Massive size: 3 billion nodes, 20 billion edges
¡ Idea: Use harder and harder negative samples
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L =
X

(u,v)2D

max(0,�z>u zv + z>u zn +�)

“positive”/true 
example

negative 
examples

“margin” (i.e., how 
much larger positive 
pair similarity should 

be compared to 
negative) 

set of training 
pairs from logs

Force model to learn 
subtle distinctions 
between pins
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¡ Hard negative examples improve performance

¡ How to obtain hard negatives: Use random walks: 
§ Use nodes with visit counts ranked at 1000-5000 as hard 

negatives
§ Have something in common, but are not too similar

12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

Harder to distinguish from the positive pair

Positive pair



¡ Hard negative examples improve performance

¡ Curriculum training on hard negatives
§ Start with random negative examples
§ Provide harder negative examples over time
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Harder to distinguish from the positive pair

Positive pair



Related Pin recommendations
¡ Given a user just saved pin Q, predict what pin 

X are they going to save next 
¡ Setup: Embed 3B pins, find nearest neighbors 

of Q
¡ Baseline embeddings: 
§ Visual: VGG visual 

embeddings 
Annotation: Word2vec 
embeddings 

§ Combined: Concatenate 
embeddings
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MRR: Mean reciprocal rank of the 
positive example X w.r.t Q
Hit rate: Fraction of times the positive
example X is among top K closest to Q
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Pixie (graph-based): the method of simulating random walks starting at 
query Pin using the Pixie algorithm in class. Items with top scores are 
retrieved as recommendations
Visual, Annot. (feature-based): nearest neighbor recommendation using 
visual (CNN) and annotation features of pins



Pixie

Graph-
SAGE

Query

PinSAGE
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Pixie

Graph-
SAGE

Query

PinSAGE
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1. GNN recommendation (PinSage)

2. Heterogeneous GNN (Decagon)

3. Goal-directed generation (GCPN)
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¡ So far we only applied GNNs to simple graphs
§ GNNs do not explicitly use node and edge type 

information
¡ Real networks are often heterogeneous
¡ How to use GNN for heterogeneous graphs?
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,

Patient’s side effectsPatient’s medications

Polypharmacy 
side effectDrug combination

Polypharmacy: use multiple drugs for a disease



¡ Polypharmacy is common to treat complex 
diseases and co-existing conditions

¡ High risk of side effects due to interactions
¡ 15% of the U.S. population affected
¡ Annual costs exceed $177 billion
¡ Difficult to identify manually:

§ Rare, occur only in a subset of patients 
§ Not observed in clinical testing
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¡ Systematic experimental screening of 
drug interactions is challenging

¡ Idea: Computationally screen/predict 
polypharmacy side effects
§ Use molecular, pharmacological and patient 

population data
§ Guide translational strategies for 

combination treatments in patients
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,

. .
 .

. .
 .

How likely with a pair 
of drugs 𝑐, 𝑑 lead to 
side effect 𝑟?

Model and predict 
side effects of drug pairs

𝑐 𝑑

𝑟
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¡ Heterogeneous (multimodal) graphs: graphs 
with different node types and/or edge types
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2 node types edge types



Goal: Given a partially observed graph, predict 
labeled edges between drug nodes

Ciprofloxacin
r1

r2

Simvastatin

Mupirocin

r2

Doxycycline

S

C

MD

Query: Given a drug pair 𝑐, 𝑑, how likely does an 
edge (𝑐, 𝑟%, 𝑑) exist?

Co-prescribed drugs 𝑐 and 
𝑑 lead to side effect 𝑟%
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¡ Predict labeled edges between drugs nodes
§ i.e., predict the likelihood that an edge (𝑐, 𝑟%, 𝑠)

exists between drug nodes 𝑐 and 𝑠
§ Meaning: Drug combination (𝑐, 𝑠) leads to 

polypharmacy side effect 𝑟%
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Predictions:



¡ Key Insight: Compute GNN messages from 
each edge type, then aggregate across 
different edge types
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§ Input: heterogenous graph
§ Output: node embeddings

One layer of Heterogeneous GNN

GNN for
Edge type:

𝒓𝟐
GNN for
Edge type: 
drug-target

Sum 

GNN for
Edge type:

𝒓𝟏
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§ Input: Node embeddings 
of query drug pairs

§ Output: predicted edges 

¡ Key Insight: Use pair of computed node 
embeddings to make edge predictions

Predict possible edges with NN

Neural 
Network



v

v

v

p – probability Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu12/5/19 53



¡ Data:
§ Graph over Molecules: protein-protein interaction and 

drug target relationships
§ Graph over Population: Side effects of individual drugs, 

polypharmacy side effects of drug combinations
¡ Setup: 
§ Construct a heterogeneous graph of all the data
§ Train: Fit a model to predict known associations of drug 

pairs and polypharmacy side effects
§ Test: Given a query drug pair, predict candidate 

polypharmacy side effects
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¡ Up to 54% improvement over baselines
¡ First opportunity to computationally flag 

polypharmacy side effects for follow-up 
analyses
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AUROC AUPRC AP@50

Decagon (3-layer) 0.834 0.776 0.731

Decagon (2-layer) 0.809 0.762 0.713

RESCAL 0.693 0.613 0.476

Node2vec 0.725 0.708 0.643

Drug features 0.736 0.722 0.679



Drug c Drug d
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Evidence foundDrug c Drug d
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1. GNN recommendation (PinSage)

2. Heterogeneous GNN (Decagon)

3. Goal-directed generation (GCPN)
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¡ Given: Graphs sampled from 𝑝G*2*(𝐺)
¡ Goal: 
§ Learn the distribution 𝑝IJG,K(𝐺)
§ Sample from 𝑝IJG,K(𝐺)
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𝑝G*2*(𝐺) 𝑝IJG,K(𝐺)Learn & 
Sample



Generating graphs via sequentially adding 
nodes and edges
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[You et al., ICML 2018]

1 1

2

1

2

3 1

2 4

3 1

2 4

3
5

1

2 4

3
5

Graph 𝐺

Generation process 𝑆M



Quick Summary of GraphRNN:
§ Generate a graph by generating a two level sequence
§ Use RNN to generate the sequences
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0 1 1 0 0
1 0 0 1 0
1 0 0 1 1
0 1 1 0 1
0 0 1 1 0

1

2 4

3
5

Graph 𝐺

Node-level RNN

Edge-level RNN

Adjacency matrix

⇔
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Can we do more than 
imitating given graphs?



Question: Can we learn a model that can 
generate valid and realistic molecules with high 
value of a given chemical property?
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Model Property
output that optimizes

e.g., drug_likeness=0.95

[You et al., NeurIPS 2018]

Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, B. 
Liu, R. Ying, V. Pande, J. Leskovec. Neural Information Processing Systems (NeurIPS), 2018.

https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf
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§ Node types: C, N, O, …
§ Edge types: single bond, double bond, …
§ Note: “H”s can be automatically inferred via 

chemical validity rules, thus are ignored in 
molecular graphs

C N

C

CN

C
C Nodes

Edges

N



Generating graphs that:
¡ Optimize a given objective (High scores)
§ e.g., drug-likeness

¡ Obey underlying rules (Valid)
§ e.g., chemical validity rules

¡ Are learned from examples (Realistic)
§ e.g., Imitating a molecule graph dataset
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Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, B. 
Liu, R. Ying, V. Pande, J. Leskovec. Neural Information Processing Systems (NeurIPS), 2018.

https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf


Generating graphs that:
¡ Optimize a given objective (High scores)
§ e.g., drug-likeness

¡ Obey underlying rules (Valid)
§ e.g., chemical validity rules
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Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, B. 
Liu, R. Ying, V. Pande, J. Leskovec. Neural Information Processing Systems (NeurIPS), 2018.

Including “Black-box” in ML:
Objectives like drug-likeness are governed by physical 
law, which are assumed to be unknown to us!

https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf


¡ A ML agent observes the environment, takes 
an action to interact with the environment, 
and receives positive or negative reward

¡ The agent then learns from this loop
¡ Key: Environment is a blackbox to the agent
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ML Agent

Action

Environment

Observation,
Reward



¡ Policy: Agent behavior, which maps 
observation to action

¡ Policy-based RL: An agent directly learns an 
optimal policy from data
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Agent Policy

Action

Environment

Observation,
Reward



Graph Convolutional Policy Network combines 
graph representation + RL:
¡ Graph Neural Network captures complex 

structural information, and enables validity 
check in each state transition (Valid)

¡ Reinforcement learning optimizes 
intermediate/final rewards (High scores)

¡ Adversarial training imitates examples in 
given datasets (Realistic)
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¡ (a) Insert nodes/scaffolds
¡ (b) Compute state via GCN
¡ (c) Sample next action
¡ (d) Take action (check chemical validity)
¡ (e, f) Compute reward
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¡ Learn to take valid action
§ At each step, assign small positive reward for valid 

action
¡ Optimize desired properties
§ At the end, assign positive reward for high desired 

property
¡ Generate realistic graphs
§ At the end, adversarially train a GCN discriminator, 

compute adversarial rewards that encourage 
realistic molecule graphs
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Reward: 𝑟2 = Final reward + Step reward
¡ Final reward = Domain-specific reward 
¡ Step rewards = Step-wise validity reward
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¡ Two parts:
¡ (1) Supervised training: Train policy by 

imitating the action given by real observed 
graphs. Use gradient.

¡ (2) RL training: Train policy to optimize 
rewards. Use standard policy gradient 
algorithm (refer to any RL course, e.g., CS234).
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¡ Property optimization
§ Generate molecules with high specified property 

score
¡ Property targeting
§ Generate molecules whose specified property score 

falls within given range
¡ Constrained property optimization
§ Edit a given molecule for a few steps to achieve 

higher specified property score
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¡ ZINC250k dataset
§ 250,000 drug like molecules whose maximum atom 

number is 38
¡ Baselines:
§ ORGAN: String representation + RL 

[Guimaraes et al., 2017]
§ JT-VAE: VAE-based vector representation + Bayesian 

optimization [Jin et al., 2018]
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Property optimization
¡ +60% higher property scores
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logP: octanol-water partition coef., indicates solubility
QED: indicator of drug-likeness
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Property targeting
¡ 7x higher success rate than JT-VAE, 10% less 

diversity
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logP: octanol-water partition coef., indicates solubility
MW: molecular weight an indicator of drug-likeness
Diversity: avg. pairwise Tanimoto distance between Morgan fingerprints of molecules
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Constrained property optimization
¡ +180% higher scores than JT-VAE
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Visualization of GCPN graphs: Property 
optimization

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8312/5/19



Visualization of GCPN graphs: 
Constrained optimization
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¡ Complex graphs can be successfully generated 
via sequential generation

¡ Each step a decision is made based on hidden 
state, which can be 
§ Explicit: intermediate generated graphs, decode 

with GCN
§ Implicit: vector representation, decode with RNN

¡ Possible tasks:
§ Imitating a set of given graphs
§ Optimizing graphs towards given goals
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PinSage: 
¡ Graph convolutional neural networks for web-scale recommender 

systems. R. Ying, R. He, K. Chen, P. Eksombatchai, W. Hamilton, J. 
Leskovec. KDD 2018.

Decagon: 
¡ Modeling polypharmacy side effects with graph convolutional 

networks. Z., Marinka, M. Agrawal, J. Leskovec. Bioinformatics 2018.
¡ Website: http://snap.stanford.edu/decagon/

GCPN:
¡ Graph Convolutional Policy Network for Goal-Directed Molecular 

Graph Generation. J. You, B. Liu, R. Ying, V. Pande, J. Leskovec. NeurIPS
2018.

¡ Code: https://github.com/bowenliu16/rl_graph_generation
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https://arxiv.org/pdf/1806.01973.pdf
http://snap.stanford.edu/decagon/


¡ Project write-ups:
§ Tue Dec 10 (11:59PM) Pacific Time

§ 1 team member uploads PDF to Gradescope
§ Don’t forget to tag your other team members!

¡ Poster session:
§ Thu Dec 12, 12:15 – 3:15 pm in Huang Foyer

§ All groups with at least one non-SCPD member 
must present

§ There should be 1 person at the poster at all times
§ Prepare a 2-minute elevator pitch of your poster
§ More instructions on Piazza
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¡ CS246: Mining Massive Datasets (Winter 2020) 
§ Data Mining & Machine Learning for Big Data 

§ (big==doesn’t fit in memory/single machine), SPARK

¡ CS341: Project in Data Mining (Spring 2020) 
§ Groups do a research project on Big Data 
§ We provide interesting data, projects and access to 

the Google Cloud infrastructure
§ Nice way to finish up CS224W project & publish it!
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¡ Conferences / Journals:
§ KDD: Conf. on Knowledge Discovery & Data Mining
§ ICML: Intl. Conf. on Machine Learning
§ NeurIPS: Neural Information Processing Systems
§ ICLR: Intl. Conf. on Learning Representations
§ WWW: ACM World Wide Web Conference
§ WSDM: ACM Web search and Data Mining
§ ICWSM: AAAI Int. Conf. on Web-blogs & Social Media
§ Journal of Network Science
§ Journal of Complex Networks
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¡ Other relevant courses:
§ CS229: Machine Learning
§ CS230: Deep Learning
§ MSE231: Computational Social Science
§ MSE334: The Structure of Social Data
§ CS276: Information Retrieval and Web Search
§ CS245: Database System Principles
§ CS347: Transaction Processing & Databases
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Thank You
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¡ You Have Done a Lot!!!
¡ And (hopefully) learned a lot!!!
§ Answered questions and proved many 

interesting results
§ Implemented a number of methods
§ And are doing excellently on the class project!
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Thank You for the
Hard Work!!!
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