Applications of
Graph Neural Networks



Outline of Today’s Lecture

Three topics for today:
GNN recommendation (PinSage) %

Heterogeneous GNN (Decagon)

Goal-directed generation (GCPN)
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PINSAGE: GNN for
Recommender Systems



Recommender Systems

12/5/19

Users interacts with items

Watch movies, buy merchandise, listen to music
Goal: Recommend items users might like

Customer X buys Metallica and Megadeth CDs

Customer Y buys Megadeth, the recommender system
suggests Metallica as well

e (B B) B @ ®
I ] Interactions
/

—-—>

“You might also like”

vl
Wy <
-y

Items
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Recommender Systems

Goal: Learn what items are related
For a given query item(s) Q, return a set of
similar items that we
recommend to the user

Idea:
User interacts with

a set of items Query Recommendations
Formulate a query Q

. v
Search the items and. T L ucts, web
return recommendations “ sites, movies,

posts, ads, ...

12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5



Example: Pinterest

HEALTHY CHOCOLATE
STRAWBERRY SHAKE
Sl

Chocolate Strawberry
Shake

This healthier chocolate
strawberry shake is like
sipping a...

L/
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Example: Pinterest

Recommendations:

Chocolate
Dipped
Strawberry
Smoothie
Chocolate Dipped
Strawberry
Smoothie. Just in
time for...

L]

Chocolate Strawberry
Shake

This healthier chocolate
strawberry shake is like
sipping a...

L/

N

12/5/19

Easy Breezy
Tropical Orange
Smoothie

PEANUT
BUTTER
BANANA

8 STAPLE
SMOOTHIES

(THAT YOV SHOVLD
KNOW HOW TO MAKE)

b — S—

ORANGE
CREAMSIGLE

8 Staple
Smoothies You
Should Know
How to Make

8 Staple
Smoothies That

VA Chanild WnaAue
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Quick ¢ Wuteitious
VANILLA PUMPKIN

The Perfect
Vanilla Pumpkin
Smoothie: A
Quick &...

The perfect vanilla
pumpkin
smoothie recipe.
Quick, easy and...

5

(W,

Spinach-Pear-
Celery Smoothie
drink this daily
and watch the
pounds come off
without fuss...




Example (2): Pinterest

P o - The Ultimate

4 Healthy Soft &

Chocolate Chewy

Chocolate Strawberry Peanut Butter Chocolate Chip

Shake Chips Muffins Cookies

This healthier chocolate Health The ULTIMATE

strawberry shake is like Chocolate Peanut HealthY

sipping a... Butter Chip Chocolate Chip
Muffins made Cookies -- so
with greek... buttery...

&
S @
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Example (2): Pinterest

HEALTHY CHOCOLATE
STRAWBERRY SHAKE

Chocolate Strawberry
Shake

This healthier chocolate
strawberry shake is like
sipping a...

L/

12/5/19

Freezer Fruit
Treats : frozen
greek yogurt
covered...

These Frozen
i o8 Greek Yogurt
5 Hath g Chocolate i Strawberries
czi?sMuzf:so ¢ Peanut Butter [aNEInng-Ioq
3 INGREDIENT  GRoiln loy
“ICE CREAM” a ©
et |

s

30 minute Skinny

anana 6 Ridiculously

Chocolate Chip Healthy But

Muffins Delicious 3-

Almost fat free, Ingredient

healthy banana

muffins wi

chocolate chips... Hoalthy Peanut

¥ Butter Chocolate

@ Chip Oatmeal > \
o Chocolate Dark Chocolat
Healthy Peanut locolate ark Chocolate
Buiter Chogolate Dipped Sea Salt
Chip Oatmeal Strawberry Almonds
Bars Smoothie Asimple. gluten

Ghocolate Dipped free, healthy

f Strawberry chocolate treat to
(] Smoothie. Just in feel good.

time for.

* @

The Ultimate 3

o Y Healthy Soft & 2u?

ocolate Chewy toal oAl i bitio
Peanut Butter Chocolate Chip avp cinnabons VANILLA PUMPKIN
Chips Muffins Cookies Gt »
Health The ULTIMATE s
CB)htotco 8}? Peanut HealthY CLEAN EATNG

utter Chip Chocolate Chip .

Muffins made Cookies -- 50 ; nff“rf%ﬁ;ﬁ | skinny raspberny
with greek... buttery... TR R amee CHFFSECAKE BARS

A
- “Lﬁ -~

S “b
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Healthy
Chocolate Chip
Cookie Dough
Blizzard

Heatty
Chocolate Chip
Cookie Dough
Blizzard

Gy
EASYII!
Mﬂ’ia’il,(/ e bites
theblondcook. .com

e



Many Applications

Having a universal similarity function allows
for many applications:

Picked just for you, Mark

$82-89
Windproof Hooded
Sport Men Jacket

Black

$27.78-38.99
Envirofit Men's Rain
Jacket

Homefeed Related pins Ads and shopping
(endless feed of (find most (use organic for the
recommendations) similar/related pins) query and search the

ads database)

12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10



Key Problem: Defining Similarity

Question: How do we define similarity?
1) Content-based: User and item features, in
the form of images, text, categories, etc.

2) Graph-based: User-item interactions, in the
form of graph/network structure

This is called collaborative filtering:

For a given user X, find others who liked similar items
Estimate what X will like based on what similar others like

12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 11



Key Problems

How do we define similarity:
(1) Gathering “known” similarities

How to collect the data about what users like

(2) Extrapolating unknown similarities from the
known ones

Mainly interested in high unknown similarities

We are not interested in knowing what you don’t like
but what you like

(3) Evaluating methods

How to measure success/performance of
recommendation methods

12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12



Pinterest

Saved from

therecipeblog.com Visit
o 9 people tried it 90% ]
4+B pins, 2+B boards
B Phviatina anuad ta Witahan ’
12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Pinterest

Pinterest: Human curated collection of pins

Pin: A visual bookmark someone has
saved from the internet to a board
they’ve created.

Pin: Image, text, link

"ﬁ 1’5’ 9* *L

|||||||||||||||||||||||

PPPPPP M

. S a1 ‘a (

— H'/ | (’

— V “}m‘ V

p—L !&!J wg al
6 959!“/‘ R &0 B (‘ﬁ\" .

Board: A collection of ideas (pins having something in common)
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Pinterest: 2 Sources of Signal

g;Q.QQ"Q?ﬁm?‘
N

Two sources of signal:

Features:
Image and text of each pin

Graph:
Graph is dynamic: Need to apply to new
nodes without model retraining

12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Recommendations via Embeddings

Goal: Learn embeddings for items
Related Pins Query: Which pin to recommend when a
user interacts with a pin v3?

Answer: Find the closest embedding (v,) to v5; by
nearest neighbor. Recommend it.

L
Previously pinned
()
Item I
embeddings Query pin
V3
H I NN .
L Vs Related pin

recommendation
16

12/5/19



Recommendations via Embeddings

Goal 1: Efficiently lear
of pins (items, nodes)

n embeddings for billions
using neural networks

Goal 2: Perform nearest neighbor query to

recommend items inr

eal-time

Embedding space
o

o
»

Query pin Embed

\Q

“Predicted”

> @
| ® The closerthe embeddings are,
the more similar the pins are

a/

related pin

() a
J

A \
——t
12/5/19 ure Leskovec, Stanford C5224W: Machine

Learning with Graphs, http://cs224w.stanford.edu 17



Overview: Pin Recommendation

Task: Recommend related pins to users

\m‘ ’-vnoe_‘lh’\ﬁ

£ ‘ Task: Learn node
/ - embeddings z; such that
/ SUCCESSFUL
%}x\ ‘ b \ T d(ankel’ ZCClkeZ)
= < d(ankelr steater)

BAD RECOMMENDATION

Predict whether two nodes in a graph are related

Query pin

TP00

12/5/19




PinSage: Graph Neural Networks

Predict whether two nodes in a graph are related

xf$?? 0?0 @?

Approach:
Pins have embeddings at each o | }
ayer BN
Layer-0 embedding of oar ( Agggst] b[]
a node are its features: | /‘ 3,/‘ 3./‘ @

Text, image, ... 2 [2] H \ ,ri \ \ H
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[Ying et al., WWW 2018]

PinSage: Why 1t Works

PinSage graph convolutional network:

Goal: Generate embeddings for nodes (e.g., pins) in the
Pinterest graph containing billions of objects
Key Idea: Borrow information from nearby nodes

E.g., bed rail Pin might look like a garden fence, but gates and
beds are rarely adjacent in the graph

E& X 5
s
4 S

Pin embeddings are essential to many different tasks.
Aside from the “Related Pins” task, it can also be used in:
Recommend related ads
Homefeed recommendation
Cluster users by their interest

12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20



PinSage Pipeline

Collect billions of training pairs from logs.

Positive pair: Two pins that are consecutively saved
into the same board within a time interval (1 hour)

Negative pair: A random pair of 2 pins
With high probability the pins are not on the same board

4
Vi y .
iﬂw}f /_ ‘,/“/:T‘ .
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PinSage Pipeline

12/5/19

Collect billions of training pairs from logs.

Positive pair: Two pins that are consecutively saved
into the same board within a time interval (1 hour)

Negative pair: A random pair of 2 pins
With high probability the pins are not on the same board

Train GNN to generate similar embeddings for
training pairs
Inference: Generate embeddings for all pins

Nearest neighbor search in embedding space to
make recommendations.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Training Objective Function

Train so that pins that are consecutively
pinned have similar embeddings
Max-margin loss:

L= Z max (0, —z, Z, + z, @nl+A)
(u,v)€ED

12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 23



Key Innovation (1)

Four key innovations:
On-the-fly graph convolutions

Sample the neighborhood around a node and
dynamically construct a computation graph

S, « T Uy g & SR — o S T W (S A Sy o SN S V)" Sy i iy g i gy R S

Minibatch of neighborhoods
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Key Innovation (1)

Four key innovations:
On-the-fly graph convolutions

Perform a localized graph convolution around a
particular node

Does not need the entire graph during training

® O <:I Source node
Learnable aggregator-1
' <:| Sampled neighb d
®e® > & ®e0® N ° e e
. . ‘ . ‘ ‘ N | | ‘ Learnable aggregator-2
_______ A.___'_'_'_"_'_'_'___v_‘________h_______'______i__'f___"’___ '—______"_.______'_'____'_'_'__________________
e oo ® o P ... e oo @ ® <: Sampled neighbors of neighbors

At every iteration, only source node embeddings are computed

12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25



Key Innovation (2)

Four key innovations:
2. Selecting neighbors via random walks

Performing aggregation on all neighbors is infeasible:
How to select the set of neighbors of a node to convolve over?

Personalized PageRank can help!

Define Importance pooling: Define importance-based

neighborhoods by simulating random walks and
selecting the neighbors with the highest visit counts

12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26



Key Innovation (2): Random Walks

Proximity to query node(s) Q

ALPHA = 0.5 pin node = QUERY NODES.sample by weight()
QUERY_NODES = { ’ } for i in range(N_STEPS):
board node = pin node.get random neighbor()
pin node = board node.get random neighbor()
pin node.visit count += 1
if random() < ALPHA:
pin node = QUERY NODES.sample by weight()

5)(5)(5)(5)(5)(5)14) (9 16)(7)(8)(8)(8)(8) 1)@ @

Yummm Strawberries Smoothies Smoothie Madness!e!
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Key Innovation (2): Random Walks

Proximity to query node(s) Q
Importance pooling

S)(S

12/5/19

Choose nodes with top K visit counts

Pool over the chosen nodes
The chosen nodes are not necessarily neighbors

5)(5)(5)(5)14) (9 16)(7)(8)(8)(8)(8) 1)@ @

Strawberries Smoothies Smoothie Madness!e!

Yummm
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Key Innovation (2): Importance Pooling

Example: suppose K=5
Rank nodes based on Random Walk visit counts

Pick top K nodes and normalize counts
16 14 9 8 8

55'55°55°55°55
Aggregate messages from the top K nodes
_ Top K nodes

555555 7881@@

Yummm Strawberries Smoothies Smoothie Madness!e!
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Key Innovation (2): Importance Pooling

Pick top K nodes and normalize counts
16 14 9 8 8

55°55°55°'55°55

GraphSAGE mean pooling
Average the messages from direct neighbors
PinSAGE Importance pooling

Use the normalized counts as weights for weighted
mean of messages from the top K nodes

PinSAGE uses K = 50
Negllglble performance galn for K > 50

12/5/19 24W: Machin with Graphs, http://cs anford.edu



Key Innovation (3)

Four key innovations:

3. Efficient MapReduce inference

Problem: Many repeated computation if using
localized graph convolution at inference step

Need to avoid repeated computation

- e - - - R, < Y VR 7 § 2 SR v S Y Wy Sy A S~ | S Ry W /Sy Uy g S oA o R

Repeated computation
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Key Innovation (4)

Recall how we obtain negative examples

L= Z max(0, —z, Z, + 2, @]+ A)

Positive Example Random Negative

12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33



Key Innovation (4)

Goal: Identify target pin among 3B pins
Issue: Need to learn with resolution of 100 vs. 3B
Massive size: 3 billion nodes, 20 billion edges
Idea: Use harder and harder negative samples

L= Z max(0, —z, z, + z, @]+ A)
(u,v)eD

Force model to learn
/ P, N . . .

dy R subtle distinctions

oy 7 48 e el \...%ift} .

Positive Example Hard Negative between P'ns
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Key Innovation (4)

Hard negative examples improve performance

Positive pair

Positive Example Random Negative Hard Negative
Harder to distinguish from the positive pair |

How to obtain hard negatives: Use random walks:

Use nodes with visit counts ranked at 1000-5000 as hard
negatives

Have something in common, but are not too similar

12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35



Key Innovation (4)

Hard negative examples improve performance

| Positive pair |

........

_ ST N
Positive Example Random Negative Hard Negative
Harder to distinguish from the positive pair |

Curriculum training on hard negatives

Start with random negative examples
Provide harder negative examples over time

12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36



PinSage: Experiments

Related Pin recommendations
Given a user just saved pin Q, predict what pin
X are they going to save next
Setup: Embed 3B pins, find nearest neighbors

Of Q Method Hit-rate | MRR
H H . Visual 17% 0.23
Baseline embeddings: A | ot
Visual: VGG visual Combinled 27% | 037
. max-pooling 39% 0.37
embedd I.ngs mean-pooling 41% 0.51
Annotation: Word2vec mean-pooling-xent 29% 0.35
embeddin gs mean-pooling-hard 46% 0.56
PinSage 67% 0.59
Com bl nEd . CO n Cate n ate MRR: Mean reciprocal rank of the
. positive example X w.r.t Q
em bedd | ngs Hit rate: Fraction of times the positive

example X is among top K closest to Q
12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37



Example Pin Recommendations

. Visual
Visual

Pixie (graph-based): the method of simulating random walks starting at
query Pin using the Pixie algorithm in class. ltems with top scores are
retrieved as recommendations

Visual, Annot. (feature-based): nearest neighbor recommendation using
visual (CNN) and annotation features of pins

12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Comparing against Prod (1)
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Comparing against Prod (2)

KEEP
CALM
)

LOVE
SHIH TZUS
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Outline of Today’s Lecture

GNN recommendation (PinSage) ‘/
Heterogeneous GNN (Decagon) E

Goal-directed generation (GCPN)

12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



DECAGON:
Heterogeneous GNN



Challenge

So far we only applied GNNs to simple graphs

GNNs do not explicitly use node and edge type
information

Real networks are often heterogeneous
How to use GNN for heterogeneous graphs?

= =

Doxycycline Q /@ Simvastatin
M = 2

Ciprofloxacin r, @ Mupirocin

C
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Polypharmacy Side Effects

Patient’s medications Patient’s side effects

' L}

L)

o Polypharmacy
Drug combination side effect

® s &7a)

Polypharmacy: use multiple drugs for a disease
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Polypharmacy Side Effects

Polypharmacy is common to treat complex
diseases and co-existing conditions

High risk of side effects due to interactions
15% of the U.S. population affected
Annual costs exceed $177 billion

Difficult to identify manually:
Rare, occur only in a subset of patients

Not observed in clinical testing

12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Modeling Polypharmacy

Systematic experimental screening of
drug interactions is challenging

Idea: Computationally screen/predict
polypharmacy side effects

Use molecular, pharmacological and patient
population data

Guide translational strategies for
combination treatments in patients

12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



How likely with a pair
of drugs ¢, d lead to
side effect r?

Model and predict
side effects of drug pairs

1111111



Problem Formulation: Graphs

Heterogeneous (multimodal) graphs: graphs

with different node types and/or edge types
= =

Doxycycline Q /@ Simvastatin
r2 E r2

Ciprofloxacin (@ r, @ Mupirocin

O Drug © Gene Feature vector
r1 Gastrointestinal bleed effect O—O Drug target interaction
> Bradycardia effect O—O Physical protein binding

B p 48
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Problem Formulation: Predict

Goal: Given a partially observed graph, predict
labeled edges between drug nodes

Query: Given a drug pair ¢, d, how likely does an
edge (c,1,,d) exist?

Simvastatin

Co-prescribed drugs ¢ and

I
° d lead to side effect r,

Ciprofloxacin

Mupirocin

Doxycycline
12/5/19



Task Description

Predict labeled edges between drugs nodes

i.e., predict the likelihood that an edge (¢, 13, 5)
exists between drug nodes c and s

Meaning: Drug combination (c, s) leads to
polypharmacy side effect 7,

Simvastatin
O Drug @ Gene E Feature vector r2 Pred ICtIOﬂS
ry Gastrointestinal bleed effect O—O0 Drug target interaction Ciproﬂoxacin Polypharmacy
I'> Bradycardia effect @—O Physical protein binding .
. side effects

2 I
Doxycycline d b Mupirocin
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Model: Heterogenous GNN

Key Insight: Compute GNN messages from
each edge type, then aggregate across
different edge types

= |Input: heterogenous graph One layer of Heterogeneous GNN

= Qutput: node embeddings W @i
g (k) I
E E hye

™
Doxycycline Q /@ Simvastatin Iy Gastrointestinal bleed effect

r
r2 E 2 E (k)
T

Su
. . W h(-k)
Ciprofloxacin r1_® Mupirocin () 2 2 @\z~ I
Of g
0 % h,-‘\-"ﬁz
E ry Bradycardia effect

O o wb
._.
(¢! I

o DruQ O Gene E Feature vector Drug target relation
ry Gastrointestinal bleed effect O—O0 Drug target interaction
> Bradycardia effect O©—O0 Physical protein binding
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Making Edge Predictions

Key Insight: Use pair of computed node
embeddings to make edge predictions

= |nput: Node embeddings Predict possible edges with NN
of query drug pairs polypharmacy

p(©’ I'1, @)
p(©5 I'2, @)

= Qutput: predicted edges

query
drug pair

Simvastatin Zc
® ©—

P

Ciprofloxacir@ ,
I @—»

2 Iy
D i @/ o
oxycyeline &") Mupirocin

O Drug © Gene g Feature vector
ry Gastrointestinal bleed effect O—©O Drug target interaction M, 12:73: - Tn P_olypharmacy p(@ r @)
I'> Bradycardia effect O©—O Physical protein binding side effects o
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Decoder: Link Prediction

Predictions
Query

p(A, r1’A)
drug pair \
— "Z?%{e‘« p(A’ ra; A)

A— <
B 2 (As rs, A)
L s
ke

B

P é é
7

&y p( s F4, )

P(A, I, A)

p — probability -
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Experiment Setup

Data:

Graph over Molecules: protein-protein interaction and
drug target relationships

Graph over Population: Side effects of individual drugs,
polypharmacy side effects of drug combinations

Setup:

12/5/19

Construct a heterogeneous graph of all the data

Train: Fit a model to predict known associations of drug
pairs and polypharmacy side effects

Test: Given a query drug pair, predict candidate
polypharmacy side effects
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Prediction Performance

Decagon (3-layer) 0.834 0.776 0.731
Decagon (2-layer) 0.809 0.762 0.713
RESCAL 0.693 0.613 0.476
Node2vec 0.725 0.708 0.643
Drug features 0.736 0.722 0.679

Up to 54% improvement over baselines
First opportunity to computationally flag
polypharmacy side effects for follow-up
analyses
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De novo Predictions

Rank | Drugc Drug d Side effect r
1 Pyrimethamine Aliskiren Sarcoma
2 Tigecycline Bimatoprost ~ Autonomic neuropathy
3 Omeprazole Dacarbazine  Telangiectases
4 | Tolcapone Pyrimethamine Breast disorder
5 Minoxidil Paricalcitol Cluster headache
6 | Omeprazole Amoxicillin ~ Renal tubular acidosis
7 | Anagrelide Azelaic acid  Cerebral thrombosis
8 | Atorvastatin =~ Amlodipine  Muscle inflammation
9 Aliskiren Tioconazole  Breast inflammation
10 | Estradiol Nadolol Endometriosis

12/5/19
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De novo Predictions

Rank | Drugc Drug d Side effect r Evidence found

| Pyrimethamine Aliskiren Sarcoma @ Stage et al. 2015 ||
2 | Tigecycline Bimatoprost ~ Autonomi -¢ y

3 Omeprazole Dacarbazine  Telangieci

5 Minoxidil Paricalcitol Cluster headache

7 | Anagrelide Azelaic acid  Cerebral thrombosis

8 Atorvastatin Amlodipine  Muscle inflammation  Banakh ef al. 2017

Aliskiren Tioconazole  Breast inflammation  Parving ef al. 2012

10 | Estradiol Nadolol Endometriosis
Case Report

Severe Rhabdomyolysis due to Presumed Drug Interactions
between Atorvastatin with Amlodipine and Ticagrelor
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Outline of Today’s Lecture

GNN recommendation (PinSage) ‘/
Heterogeneous GNN (Decagon) ‘/

Goal-directed generation (GCPN) Eﬁ?
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GCPN:
Goal-Directed Graph Generation
(an extension of GraphRNN)



Recap: Graph Generative Models

Given: Graphs sampled from p;,+4(G)
Goal:

Learn the distribution p,,,5401(G)
Sample from p,,,5401(G)

Pdata (G) | earn & Pmodel (G)

| . P ~ . ‘ : ;al I I |< ’ R oty o ."rm"‘
- P A5 o i, e, acat 2 e, #
. . s » - R S <o 7:la % N
R =0 S .',;" A s = I oS . e s e .
P b . ~y el - SHER >
R Yoot > < y: o - o s .
v % Y. IS 2
¥ e v . 4 s b 20 . [ e
X » LR =) L LS o AE
2 e - e ¥ X X, ..‘9;',
AR = » € 5% 7 i3 2
I e S Sin X =
oL « ’ N ood . . X ! X ol ' I
S ., P . IS ot S . e
S > a7 oY t ol . 2 - TN
= SR oA 22 g b « . Y1z
M p = sl o el . P i * P e P2 =1
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Recap: GraphRNN Idea rvouetal, icmL 2018)

Generating graphs via sequentially adding
nodes and edges

Graph

7 N\
/ N\
/ \
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GraphRNN: Two levels of RNN

Quick Summary of GraphRNN:

Generate a graph by generating a two level sequence
Use RNN to generate the sequences

Node-level RNN
11110

= 0

_L_LOO

ﬂ Edge-level RNN
Adjacency matrix
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Imitating Given Graphs

12/5/19
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mitating Given Graphs
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Drug Discove ry [You et al., NeurlPS 2018]

Question: Can we learn a model that can

generate valid and molecules with
?

output that optimizes

)
BDad®
s

e.d., drug likeness=0.95

Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, B.
Liu, R. Ying, V. Pande, J. Leskovec. Neural Information Processing Systems (NeurIPS), 2018.
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https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf

Molecules as Heterogenous Graphs

12/5/19

Node types: C, N, O, ...
Edge types: single bond, double bond, ...

Note: “H”s can be automatically inferred via
chemical validity rules, thus are ignored in
molecular graphs




Goal-Directed Graph Generation

Generating graphs that:

Obey underlying rules (Valid)

e.g., chemical validity rules

Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, B.
Liu, R. Ying, V. Pande, J. Leskovec. Neural Information Processing Systems (NeurIPS), 2018.
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The Hard Part:

Generating graphs that:

Obey underlying rules (Valid)

e.g., chemical validity rules

Including “Black-box" in ML:

Objectives like drug-likeness are governed by physical
law, which are assumed to be unknown to us!

Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, B.
Liu, R. Ying, V. Pande, J. Leskovec. Neural Information Processing Systems (NeurIPS), 2018.
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Solution: Reinforcement Learning

A ML agent observes the environment, takes
an action to interact with the environment,
and receives positive or negative reward
The agent then learns from this loop

Key: Environment is a blackbox to the agent

I ML Agent ‘

Observation,
Reward

Action

Environment
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Policy-based RL

Policy: Agent behavior, which maps
observation to action

Policy-based RL: An agent directly learns an
optimal policy from data

I Agent Policy

Observation,

Action Reward

Environment
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Model: GCPN

Graph Convolutional Policy Network combines
graph representation + RL:
Graph Neural Network captures complex
structural information, and enables validity
check in each state transition (Valid)
optimizes
intermediate/final rewards

imitates examples in
given datasets
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Overview of GCPN

(1) NodelD (0 ©) (5) N N n
(© Node O—O© © R n .CQ A\ sample |@]NodeD o /0 G\
—— Edge ©w é\b — @ n @ — NodelD = Env = ©) G 0.1 SjcepI rewarccjj
o 3) @) (7) A N N EdgeType update 0 | Final rewar
oo OO O 5.8 & o
«——> pPassing ™ I~ -
m Node (d) Dynamics

embedding  (a) State — G, Scaffold — C (b) GCPN — my(a;|G, U C) (c) Action — a; ~ g p(Ges1|Ge ar) () State — Gyysq (f) Reward — 7

(a) Insert nodes/scaffolds
(b) Compute state via GCN

(c) Sample next action
(d) Take action (check chemical validity)

(e, f) Compute reward
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How Do We Set the Reward?

Learn to take valid action

At each step, assign small positive reward for valid
action
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How Do We Set the Reward?

(1 NodelD ° C(é
Node . . m NodelD
© ©)w 6@5 Oggle n/ f\ Sample |5 |NodelD Act Env .1 | Step reward
— Fdee @) 0 . . n EdgeType update Final reward
f\
f\ Message m Stop
= passing
(d) Dynamics
embedd ing  (a) State — G, Scaffold — C (b) GCPN — mg(a|G, L C) (c) Action — a; ~ my P(Ges1|Ge, ar) (e) State — Gy4q (f) Reward — 7

Reward: 1 = Final reward + Step reward
Final reward = Domain-specific reward
Step rewards = Step-wise validity reward

12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 74



How Do We Train?

(1) NodelD () ° 5)

(O—()
Node Nod ID
© ” Observe n/ ™ l r\ Sample 5| NodelD ét:) Env | render 0/ \G 0.1 | Step reward
— Fdee ( ) G . n . . 1 |EdgeType update . 0 | Final reward
N
-— Messag 10 |Stop ©—0@
< passin
- Node (d) Dynamics
embedding  (a) State — G, Scaffold — C (b) GCPN — mg(a.|G: U C) (c) Action — a; ~ g p(Ges1|Ge ar) (e) State — Gyyq (f) Reward — 7;

Two parts:

(1) Supervised training: Train policy by
imitating the action given by real observed
graphs. Use gradient.

(2) RL training: Train policy to optimize
rewards. Use standard policy gradient
algorithm (refer to any RL course, e.g., CS234).
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GCPN Architecture
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Gradient

@ Cross

Generated

'?"/7 Generated
0,7{/_/ graph Gt
Sfo'o /@ m\ ,
© O,
(©O—©

entropy loss

0.1

Policy gradient

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs,

Step reward
Final reward
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GCPN Architecture

Gradient m
__ Supervised
0.6 | Cross entropy loss I Training
Generated
graph Gg41
(O—WN)
5’&39 @/
Graph G; V .
emmmnd GCPN ‘
1 0 Generated
/7(/,,{, graph Gt
//&fo [ 0.1 ] Step reward
0 " 1 ] Final reward
~ RL
Training
— ] 0.3] Adversarial reward
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GCPN: Tasks

Property optimization
Generate molecules with high specified property
score

Property targeting
Generate molecules whose specified property score
falls within given range

Constrained property optimization

Edit a given molecule for a few steps to achieve
higher specified property score
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Data and Baselines

ZINC250k dataset

250,000 drug like molecules whose maximum atom
number is 38

Baselines:

ORGAN: String representation + RL
[Guimaraes et al., 2017]

JT-VAE: VAE-based vector representation + Bayesian
optimization [Jin et al., 2018]
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Quantitative Results

Property optimization
+60% higher property scores

Table 1: Comparison of the top 3 property scores of generated molecules found by each model.
Penalized logP QED
Ist 2nd 3rd  Validity Ist 2nd 3rd  Validity
ZINC 452 4.30 4.23 100.0% 0.948 0.948 0.948 100.0%

ORGAN 3.63 3.49 344 04% 0.896 0.824 0.820 2.2%
JT-VAE 530 4.93 4.49 100.0% 0.925 0.911 0.910 100.0%
GCPN 798 785 7.80 100.0% 0948 0947 0.946 100.0%

Method

logP: octanol-water partition coef., indicates solubility
QED: indicator of drug-likeness

12/5/19 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 80




Quantitative Results

Property targeting
7x higher success rate than JT-VAE, 10% less
diversity

Table 2: Comparison of the effectiveness of property targeting task.
—2.5 <logP < -2 5 <logP <5.5 150 <MW <200 500 < MW < 550

Method

Success Diversity Success Diversity Success Diversity Success Diversity
ZINC 0.3% 0.919 1.3% 0.909 1.7% 0.938 0 —
JT-VAE 11.3% 0.846 7.6% 0.907 0.7% 0.824 16.0% 0.898
ORGAN 0 — 0.2% 0.909 15.1% 0.759 0.1% 0.907

GCPN 85.5% 0.392 54.7% 0.855 76.1% 0.921 74.1% 0.920

logP: octanol-water partition coef., indicates solubility
MW: molecular weight an indicator of drug-likeness
Diversity: avg. pairwise Tanimoto distance between Morgan fingerprints of molecules
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Quantitative Results

Constrained property optimization
+180% higher scores than JT-VAE

Table 3: Comparison of the performance in the constrained optimization task.

JT-VAE GCPN

Improvement Similarity Success Improvement Similarity Success

0.0 1914+204 028+0.15 975% 4.20+1.28 0.32+0.12 100.0%
02 168+185 0.33+0.13 97.1% 4.124+1.19 0.34+0.11 100.0%
04 084+145 0.51+0.10 83.6% 2.49+1.30 047+0.08 100.0%
0.6 0.214£0.71 0.69+0.06 46.4% 0.79+0.63 0.68+0.08 100.0%
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Qualitative Results

Visualization of GCPN graphs: Property

optimization
M
X \ I
7.98 7.48 0.948 0.945
N D,
A /P _1 = 4
TR \ *Q@@
7.12 23.88* 0.944 0.941
(a) Penalized logP optimization (b) QED optimization
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Qualitative Results

Visualization of GCPN graphs:
constrained optimization

Starting structure Finished structure

A s
] _/—’i/pjt\/\’\/\
8.32 |:>> -0.71
O QA@ _Qé ~©

-5.55 178

(c) Constrained optimization of penalized logP



Summary of Graph Generation

12/5/19

Complex graphs can be successfully generated
via sequential generation

Each step a decision is made based on hidden
state, which can be

Explicit: intermediate generated graphs, decode
with GCN

Implicit: vector representation, decode with RNN
Possible tasks:

Imitating a set of given graphs
Optimizing graphs towards given goals

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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What Next?

Project write-ups:
Tue Dec 10 (11:59PM) Pacific Time

1 team member uploads PDF to Gradescope

No late days!

Don’t forget to tag your other team members!
Poster session:

Thu Dec 12, 12:15 -3:15 pm in Huang Foyer

All groups with at least one non-SCPD member
must present

There should be 1 person at the poster at all times ‘
Prepare a 2-minute elevator pitch of your poster

More instructions on Piazza
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What Next? Our Courses

CS246: Mining Massive Datasets (Winter 2020)

Data Mining & Machine Learning for Big Data
(big==doesn’t fit in memory/single machine), SPARK

CS341: Project in Data Mining (Spring 2020)
Groups do a research project on Big Data

We provide interesting data, projects and access to
the Google Cloud infrastructure

Nice way to finish up C5224W project & publish it!
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What Next?

Conferences / Journals:

12/5/19

KDD: Conf. on Knowledge Discovery & Data Mining
ICML: Intl. Conf. on Machine Learning

NeurlPS: Neural Information Processing Systems
ICLR: Intl. Conf. on Learning Representations

WWW: ACM World Wide Web Conference

WSDM: ACM Web search and Data Mining

ICWSM: AAAI Int. Conf. on Web-blogs & Social Media
Journal of Network Science

Journal of Complex Networks
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What Next? Other Courses

Other relevant courses:
CS229: Machine Learning
CS230: Deep Learning
MSE231: Computational Social Science
MSE334: The Structure of Social Data
CS276: Information Retrieval and Web Search
CS245: Database System Principles
CS347: Transaction Processing & Databases
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Thank you Michele and TAs!!

Teaching Assistants

Head TA Lingzi (Liz) Guo Benjamin (Ben) Hannel Kuangcong (Cecilia) Liu
Co-Instructor

Andrew Wang Alexis Goh Weiying Zhitao (Rex) Ying

Thank You

Michele Catasta
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In Closing...
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You Have Done a Lot!!!
And (hopefully) learned a lot!!!

Answered questions and proved many
interesting results

Implemented a number of methods

And are doing excellently on the class project!

ThankYou for the
Hard Work!!!

anford.edu
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