
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2

…

Output: Node embeddings.
Also, we can embed subgraphs
and entire graphs

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(4) Graph augmentation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure augmentation

https://arxiv.org/pdf/2011.08843.pdf

Our assumption so far has been
¡ Raw input graph = computational graph
Reasons for breaking this assumption
§ Features:

§ The input graph lacks features
§ Graph structure:

§ The graph is too sparse à inefficient message passing
§ The graph is too dense à message passing is too costly
§ The graph is too large à cannot fit the computational

graph into a GPU
§ It’s unlikely that the input graph happens to be

the optimal computation graph for embeddings
2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

¡ Graph Feature augmentation
§ The input graph lacks features à feature

augmentation
¡ Graph Structure augmentation
§ The graph is too sparse à Add virtual nodes / edges
§ The graph is too dense à Sample neighbors when

doing message passing
§ The graph is too large à Sample subgraphs to

compute embeddings
§ Will cover later in lecture: Scaling up GNNs

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7

Why do we need feature augmentation?
¡ (1) Input graph does not have node features
§ This is common when we only have the adj. matrix

¡ Standard approaches:
¡ a) Assign constant values to nodes

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

1

1

1

1

1

1

Why do we need feature augmentation?
¡ (1) Input graph does not have node features
§ This is common when we only have the adj. matrix

¡ Standard approaches:
¡ b) Assign unique IDs to nodes
§ These IDs are converted into one-hot vectors

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 9

1

4

2

3

6

5

[0, 0, 0, 0, 1, 0]

Total number of IDs = 6

ID = 5
One-hot vector for node with ID=5

¡ Feature augmentation: constant vs. one-hot

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

Constant node feature One-hot node feature

Expressive power Medium. All the nodes are
identical, but GNN can still learn
from the graph structure

High. Each node has a unique ID,
so node-specific information can
be stored

Inductive learning
(Generalize to
unseen nodes)

High. Simple to generalize to new
nodes: we assign constant
feature to them, then apply our
GNN

Low. Cannot generalize to new
nodes: new nodes introduce new
IDs, GNN doesn’t know how to
embed unseen IDs

Computational
cost

Low. Only 1 dimensional feature High. 𝑂 𝑉 dimensional feature,
cannot apply to large graphs

Use cases Any graph, inductive settings
(generalize to new nodes)

Small graph, transductive
settings (no new nodes)

1

4

2

3

6

5

1

1

1

1

1

1

Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Example: Cycle count feature:
§ Can GNN learn the length of a cycle that 𝑣! resides in?
§ Unfortunately, no

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 11

𝑣! 𝑣!

𝑣! resides in a cycle with length 3 𝑣! resides in a cycle with length 4

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Identity-aware%20Graph%20Neural%20Networks

¡ 𝒗𝟏 cannot differentiate which graph it resides in
§ Because all the nodes in the graph have degree of 2
§ The computational graphs will be the same binary tree

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

𝑣! 𝑣"

𝑣! resides in a cycle
with length 3

𝑣! resides in a cycle
with length 4

𝑣!

𝑣! resides in a cycle with infinite length

… …

…

!!

The computational
graphs for node 𝒗𝟏
are always the same

More about this topic later!

Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Solution:
§ We can use cycle count as augmented node features

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

𝑣! 𝑣!

𝑣! resides in a cycle with length 3 𝑣! resides in a cycle with length 4

[0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 1, 0]
We start
from cycle
with length 0

Augmented node feature for 𝒗𝟏 Augmented node feature for 𝒗𝟏

Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Other commonly used augmented features:
§ Node degree
§ Clustering coefficient
§ PageRank
§ Centrality
§ …

¡ Any feature we have introduced in
Lecture 2 can be used!

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

¡ Motivation: Augment sparse graphs
¡ (1) Add virtual edges
§ Common approach: Connect 2-hop neighbors via

virtual edges
§ Intuition: Instead of using adj. matrix 𝐴 for GNN

computation, use 𝐴 + 𝐴#

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

A

B

C

D

E

Authors Papers

§ Use cases: Bipartite graphs
§ Author-to-papers (they authored)
§ 2-hop virtual edges make an author-author

collaboration graph

¡ Motivation: Augment sparse graphs
¡ (2) Add virtual nodes
§ The virtual node will connect to all the

nodes in the graph
§ Suppose in a sparse graph, two nodes have

shortest path distance of 10
§ After adding the virtual node, all the nodes

will have a distance of two
§ Node A – Virtual node – Node B

§ Benefits: Greatly improves message
passing in sparse graphs

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16

The virtual
node

¡ Previously:
§ All the nodes are used for message passing

¡ New idea: (Randomly) sample a node’s
neighborhood for message passing

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf

¡ For example, we can randomly choose 2
neighbors to pass messages in a given layer
§ Only nodes 𝐵 and 𝐷 will pass messages to 𝐴

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

¡ In the next layer when we compute the
embeddings, we can sample different
neighbors
§ Only nodes 𝐶 and 𝐷 will pass messages to 𝐴

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 19

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

¡ In expectation, we get embeddings similar to
the case where all the neighbors are used
§ Benefits: Greatly reduces computational cost

§ Allows for scaling to large graphs (more about this later)

§ And in practice it works great!

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

https://dl.acm.org/doi/abs/10.1145/3219819.3219890?casa_token=VNpSwK1pq_0AAAAA:OARlBJdJIGnQMyGUJfULBgPhtEF0yu2vgyHjHgemNaalHPVUUKCDN4Vors3g194zfxBOCG1OvnBjnA

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Next: How do we train a GNN?

https://arxiv.org/pdf/2011.08843.pdf

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 23

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

So far what we have covered

Output of a GNN: set of node embeddings
{𝐡&

' , ∀𝑣 ∈ 𝐺}

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 24

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(1) Different prediction heads:
- Node-level tasks
- Edge-level tasks
- Graph-level tasks

¡ Idea: Different task levels require different
prediction heads

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25

Node-level
prediction

Edge-level
prediction

Graph-level
prediction

¡ Node-level prediction: We can directly make
prediction using node embeddings!

¡ After GNN computation, we have 𝑑-dim node
embeddings: {𝐡!

" ∈ ℝ# , ∀𝑣 ∈ 𝐺}
¡ Suppose we want to make 𝑘-way prediction
§ Classification: classify among 𝑘 categories
§ Regression: regress on 𝑘 targets

¡ -𝒚𝒗 = Head%&'((𝐡!
") = 𝐖(*)𝐡!

(")

§ 𝐖(%) ∈ ℝ'∗) : We map node embeddings from
𝐡*
(+) ∈ ℝ) to -𝒚* ∈ ℝ' so that we can compute the

loss
2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

¡ Edge-level prediction: Make prediction using
pairs of node embeddings

¡ Suppose we want to make 𝑘-way prediction
¡ -𝒚𝒖𝒗 = Head('-.(𝐡/

" , 𝐡!
")

¡ What are the options for Head('-.(𝐡/
" , 𝐡!

")?

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

?
𝐡(
'

𝐡&
'

¡ Options for Head('-.(𝐡/
" , 𝐡!

"):
¡ (1) Concatenation + Linear
§ We have seen this in graph attention

§ -𝒚𝒖𝒗 = Linear(Concat(𝐡.
+ , 𝐡*

+))
§ Here Linear(⋅) will map 2𝑑-dimensional

embeddings (since we concatenated embeddings)
to 𝑘-dim embeddings (𝑘-way prediction)

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

𝐡!
(#$%)𝐡'

(#$%)

Concatenate Linear *𝒚(&

¡ Options for Head!"#$(𝐡%
& , 𝐡'

&):
¡ (2) Dot product

§ !𝒚𝒖𝒗 = (𝐡#
$)%𝐡&

$

§ This approach only applies to 𝟏-way prediction (e.g.,
link prediction: predict the existence of an edge)

§ Applying to 𝒌-way prediction:
§ Similar to multi-head attention: 𝐖(#), … ,𝐖(%) trainable

+𝒚𝒖𝒗
(𝟏) = (𝐡)

*)+𝐖(#)𝐡,
*

…
+𝒚𝒖𝒗
(𝒌) = (𝐡)

*)+𝐖(%)𝐡,
*

+𝒚), = Concat(+𝒚𝒖𝒗
(𝟏), … , +𝒚𝒖𝒗

(𝒌)) ∈ ℝ%

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

¡ Graph-level prediction: Make prediction using
all the node embeddings in our graph

¡ Suppose we want to make 𝑘-way prediction
¡ -𝒚0 = Head-1234({𝐡!

" ∈ ℝ# , ∀𝑣 ∈ 𝐺})

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

Graph-level prediction

(2) Aggregation

(1) Message
¡ Head-1234(⋅) is similar to
AGG(⋅) in a GNN layer!

¡ Options for Head-1234({𝐡!
" ∈ ℝ# , ∀𝑣 ∈ 𝐺})

¡ (1) Global mean pooling
-𝒚0 = Mean({𝐡!

" ∈ ℝ# , ∀𝑣 ∈ 𝐺})
¡ (2) Global max pooling

-𝒚0 = Max({𝐡!
" ∈ ℝ# , ∀𝑣 ∈ 𝐺})

¡ (3) Global sum pooling
-𝒚0 = Sum({𝐡!

" ∈ ℝ# , ∀𝑣 ∈ 𝐺})
¡ These options work great for small graphs
¡ Can we do better for large graphs?

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

K. Xu*, W. Hu*, J. Leskovec, S. Jegelka. How Powerful Are Graph Neural Networks, ICLR 2019

https://arxiv.org/pdf/1810.00826.pdf

¡ Issue: Global pooling over a (large) graph will lose
information

¡ Toy example: we use 1-dim node embeddings
§ Node embeddings for 𝐺': {−1,−2, 0, 1, 2}
§ Node embeddings for 𝐺(: {−10,−20, 0, 10, 20}
§ Clearly 𝐺' and 𝐺(have very different node embeddings
à Their structures should be different

¡ If we do global sum pooling:
§ Prediction for 𝐺': 1𝑦) = Sum −1,−2, 0, 1, 2 = 0
§ Prediction for 𝐺(: 1𝑦) = Sum −10,−20, 0, 10, 20 = 0
§ We cannot differentiate 𝐺' and 𝐺(!

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32

¡ A solution: Let’s aggregate all the node
embeddings hierarchically
§ Toy example: We will aggregate via ReLU Sum ⋅

§ We first separately aggregate the first 2 nodes and last 3 nodes
§ Then we aggregate again to make the final prediction

§ 𝐺' node embeddings: {−1,−2, 0, 1, 2}
§ Round 1: 9𝑦. = ReLU Sum −1,−2 = 0, 9𝑦/ =
ReLU Sum 0,1, 2 = 3

§ Round 2: 9𝑦0 = ReLU Sum 𝑦., 𝑦/ = 𝟑
§ 𝐺(node embeddings: {−10,−20, 0, 10, 20}

§ Round 1: 9𝑦. = ReLU Sum −10,−20 = 0, 9𝑦/ =
ReLU Sum 0,10, 20 = 30

§ Round 2: 9𝑦0 = ReLU Sum 𝑦., 𝑦/ = 𝟑𝟎
2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

Now we can
differentiate
𝑮𝟏 and 𝑮𝟐 !

¡ DiffPool idea:
§ Hierarchically pool node embeddings

§ Leverage 2 independent GNNs at each level
§ GNN A: Compute node embeddings
§ GNN B: Compute the cluster that a node belongs to

§ GNNs A and B at each level can be executed in parallel
2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

Ying et al. Hierarchical Graph Representation Learning with Differentiable Pooling, NeurIPS 2018

https://arxiv.org/pdf/1806.08804.pdf

¡ DiffPool idea:

§ For each Pooling layer
§ Use clustering assignments from GNN B to aggregate node

embeddings generated by GNN A
§ Create a single new node for each cluster, maintaining

edges between clusters to generated a new pooled network

§ Jointly train GNN A and GNN B
2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(2) Where does ground-truth come from?
- Supervised labels
- Unsupervised signals

¡ Supervised learning on graphs
§ Labels come from external sources

§ E.g., predict drug likeness of a molecular graph
¡ Unsupervised learning on graphs
§ Signals come from graphs themselves

§ E.g., link prediction: predict if two nodes are connected
¡ Sometimes the differences are blurry
§ We still have “supervision” in unsupervised learning

§ E.g., train a GNN to predict node clustering coefficient
§ An alternative name for “unsupervised” is “self-

supervised”

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 38

¡ Supervised labels come from the specific use
cases. For example:
§ Node labels 𝒚𝒗: in a citation network, which subject

area does a node belong to
§ Edge labels 𝒚𝒖𝒗: in a transaction network, whether an

edge is fraudulent
§ Graph labels 𝒚): among molecular graphs, the drug

likeness of graphs
¡ Advice: Reduce your task to node / edge / graph

labels, since they are easy to work with
§ E.g., we knew some nodes form a cluster. We can treat

the cluster that a node belongs to as a node label
2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

¡ The problem: sometimes we only have a graph,
without any external labels

¡ The solution: “self-supervised learning”, we can
find supervision signals within the graph.
§ For example, we can let GNN predict the following:
§ Node-level 𝒚*. Node statistics: such as clustering

coefficient, PageRank, …
§ Edge-level 𝒚.*. Link prediction: hide the edge

between two nodes, predict if there should be a link
§ Graph-level 𝒚0 . Graph statistics: for example, predict

if two graphs are isomorphic
§ These tasks do not require any external labels!

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(3) How do we compute the final loss?
- Classification loss
- Regression loss

¡ The setting: We have 𝑁 data points
§ Each data point can be a node/edge/graph

§ Node-level: prediction -𝒚*
(1), label 𝒚*

(1)

§ Edge-level: prediction -𝒚.*
(1), label 𝒚.*

(1)

§ Graph-level: prediction -𝒚0
(1), label 𝒚0

(1)

§ We will use prediction -𝒚(1), label 𝒚 1 to refer
predictions at all levels

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

¡ Classification: labels 𝒚 5 with discrete value
§ E.g., Node classification: which category does a

node belong to
¡ Regression: labels 𝒚 5 with continuous value
§ E.g., predict the drug likeness of a molecular graph

¡ GNNs can be applied to both settings
¡ Differences: loss function & evaluation

metrics

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

¡ As discussed in lecture 6, cross entropy (CE) is
a very common loss function in classification

¡ 𝐾-way prediction for 𝑖-th data point:

CE 𝒚(1), -𝒚(1) = −B
23!

4
𝒚2
(1) log(-𝒚𝒋

(𝒊))

where:
𝒚(1) 𝜖 ℝ4 = one-hot label encoding

-𝒚(1)𝜖 ℝ4 = prediction after Softmax(⋅)

¡ Total loss over all 𝑁 training examples
Loss =0

*+,

-
CE 𝒚(*), 3𝒚(*)

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

Label Prediction

𝒊-th data point

𝒋-th class

0 0 1 0 0

0.1 0.3 0.4 0.1 0.1

E.g.

E.g.

¡ For regression tasks we often use Mean Squared
Error (MSE) a.k.a. L2 loss

¡ 𝐾-way regression for data point (i):

MSE 𝒚(*), &𝒚(*) =(
2+,

3
(𝒚2

(*)− &𝒚2
*)4

where:

𝒚(𝒊) 𝜖 ℝ5 = Real valued vector of targets
&𝒚(𝒊)𝜖 ℝ5 = Real valued vector of predictions

¡ Total loss over all 𝑁 training examples

Loss =J
12#

3

MSE 𝒚(1), +𝒚(1)

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

1.4 2.3 1.0 0.5 0.6

0.9 2.8 2.0 0.3 0.8

E.g.

E.g.

𝒊-th data point

𝒋-th target

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(4) How do we measure the success of a GNN?
- Accuracy
- ROC AUC

¡ We use standard evaluation metrics for GNN
§ (Content below can be found in any ML course)
§ In practice we will use sklearn for implementation
§ Suppose we make predictions for 𝑁 data points

¡ Evaluate regression tasks on graphs:
§ Root mean square error (RMSE)

0
*+,

- 𝒚(*) − 3𝒚(*) 4

𝑁

§ Mean absolute error (MAE)
∑*+,- 𝒚(*) − 3𝒚(*)

𝑁
2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

https://scikit-learn.org/stable/modules/model_evaluation.html

¡ Evaluate classification tasks on graphs:
¡ (1) Multi-class classification

§ We simply report the accuracy
1 argmax !𝒚(+) = 𝒚(+)

𝑁
¡ (2) Binary classification

§ Metrics sensitive to classification threshold
§ Accuracy
§ Precision / Recall
§ If the range of prediction is [0,1], we will use 0.5 as threshold

§ Metric Agnostic to classification threshold
§ ROC AUC

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

¡ Accuracy:
TP + TN

TP + TN + FP + FN
=
TP + TN
|Dataset|

¡ Precision (P):
TP

TP + FP
¡ Recall (R):

TP
TP + FN

¡ F1-Score:
2P ∗ R
P + R

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

Sklearn Classification Report

Confusion matrix

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html

¡ ROC Curve: Captures the tradeoff in TPR and
FPR as the classification threshold is varied
for a binary classifier.

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

TPR = Recall =
TP

TP + FN

FPR =
FP

FP + TN

Note: the dashed line
represents performance of
a random classifierImage Credit: Wikipedia

FPR

TPR

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

¡ ROC AUC: Area under the ROC Curve.
¡ Intuition: The probability that a classifier will rank a

randomly chosen positive instance higher than a
randomly chosen negative one

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

Content Credit: Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 53

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

(5) How do we split our dataset
into train / validation / test set?

Dataset split

¡ Fixed split: We will split our dataset once
§ Training set: used for optimizing GNN parameters
§ Validation set: develop model/hyperparameters
§ Test set: held out until we report final performance

¡ A concern: sometimes we cannot guarantee
that the test set will really be held out

¡ Random split: we will randomly split our
dataset into training / validation / test
§ We report average performance over different

random seeds

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 54

¡ Suppose we want to split an image dataset
§ Image classification: Each data point is an image
§ Here data points are independent

§ Image 5 will not affect our prediction on image 1

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 55

Training

Validation

Test

3
2

45

1

6

¡ Splitting a graph dataset is different!
§ Node classification: Each data point is a node
§ Here data points are NOT independent

§ Node 5 will affect our prediction on node 1, because it will
participate in message passing à affect node 1’s embedding

¡ What are our options?

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 56

Training

Validation

Test

3
2

45

1

6

¡ Solution 1 (Transductive setting): The input
graph can be observed in all the dataset splits
(training, validation and test set).

¡ We will only split the (node) labels
§ At training time, we compute embeddings using the

entire graph, and train using node 1&2’s labels
§ At validation time, we compute embeddings using

the entire graph, and evaluate on node 3&4’s labels

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 57

Training

Validation

Test

3
2

45

1

6

¡ Solution 2 (Inductive setting): We break the edges
between splits to get multiple graphs
§ Now we have 3 graphs that are independent. Node 5 will

not affect our prediction on node 1 any more
§ At training time, we compute embeddings using the

graph over node 1&2, and train using node 1&2’s labels
§ At validation time, we compute embeddings using the

graph over node 3&4, and evaluate on node 3&4’s labels

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 58

Training

Validation

Test

3
2

45

1

6

¡ Transductive setting: training / validation / test
sets are on the same graph
§ The dataset consists of one graph
§ The entire graph can be observed in all dataset splits,

we only split the labels
§ Only applicable to node / edge prediction tasks

¡ Inductive setting: training / validation / test sets
are on different graphs
§ The dataset consists of multiple graphs
§ Each split can only observe the graph(s) within the split.

A successful model should generalize to unseen graphs
§ Applicable to node / edge / graph tasks

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59

¡ Transductive node classification
§ All the splits can observe the entire graph structure, but

can only observe the labels of their respective nodes

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 60

Training

Validation

Test

Training

Validation

Test

¡ Inductive node classification
§ Suppose we have a dataset of 3 graphs
§ Each split contains an independent graph

¡ Only the inductive setting is well defined for
graph classification
§ Because we have to test on unseen graphs
§ Suppose we have a dataset of 5 graphs. Each split

will contain independent graph(s).

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

Training Validation Test

¡ Goal of link prediction: predict missing edges
¡ Setting up link prediction is tricky:
§ Link prediction is an unsupervised / self-supervised

task. We need to create the labels and dataset
splits on our own

§ Concretely, we need to hide some edges from the
GNN and the let the GNN predict if the edges exist

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

3
2

45

1

Original graph Input graph to GNN

3
2

45

1 3
2

45

1

Predictions made by GNN

?

¡ For link prediction, we will split edges twice
¡ Step 1: Assign 2 types of edges in the original graph

§ Message edges: Used for GNN message passing
§ Supervision edges: Use for computing objectives
§ After step 1:

§ Only message edges will remain in the graph
§ Supervision edges are used as supervision for edge

predictions made by the model, will not be fed into GNN!
2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

3
2

45

1

Original graph

Message edges Supervision edges

¡ Step 2: Split edges into train / validation / test
¡ Option 1: Inductive link prediction split
§ Suppose we have a dataset of 3 graphs. Each

inductive split will contain an independent graph

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 64

3
2

45

1 8
7

910

6 13
12

1415

11

Training set Validation set Test set

𝐺! 𝐺$ 𝐺%

¡ Step 2: Split edges into train / validation / test
¡ Option 1: Inductive link prediction split
§ Suppose we have a dataset of 3 graphs. Each

inductive split will contain an independent graph
§ In train or val or test set, each graph will have 2

types of edges: message edges + supervision edges
§ Supervision edges are not the input to GNN

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 65

Training set Validation set

Message
edge

Supervision
edge

Test set

𝐺! 𝐺$ 𝐺%

3
2

45

1 8
7

910

6 13
12

1415

11

¡ Option 2: Transductive link prediction split:
§ This is the default setting when people talk about

link prediction
§ Suppose we have a dataset of 1 graph

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 66

3
2

45

1

¡ Option 2: Transductive link prediction split:
§ By definition of “transductive”, the entire graph can

be observed in all dataset splits
§ But since edges are both part of graph structure and the

supervision, we need to hold out validation / test edges
§ To train the training set, we further need to hold out

supervision edges for the training set

§ Next: we will show the exact settings
2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 67

3
2

45

1

¡ Option 2: Transductive link prediction split:

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 68

3
2

45

1

The original graph

3
2

45

1

(1) At training time:
Use training message
edges to predict training
supervision edges

(2) At validation time:
Use training message
edges & training
supervision edges to
predict validation edges

(3) At test time:
Use training message
edges & training
supervision edges &
validation edges to
predict test edges

3
2

45

1 3
2

45

1

¡ Option 2: Transductive link prediction split:

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 69

3
2

45

1

(1) At training time:
Use training message
edges to predict training
supervision edges

(2) At validation time:
Use training message
edges & training
supervision edges to
predict validation edges

(3) At test time:
Use training message
edges & training
supervision edges &
validation edges to
predict test edges

Why do we use growing number of edges?
After training, supervision edges are known to GNN.
Therefore, an ideal model should use supervision
edges in message passing at validation time.
The same applies to the test time.

3
2

45

13
2

45

1

¡ Summary: Transductive link prediction split:

§ Note: Link prediction settings are tricky and complex. You
may find papers do link prediction differently. But if you
follow our reasoning steps, this should be the right way to
implement link prediction

§ Luckily, we have full support in DeepSNAP and GraphGym

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 70

3
2

45

1

The original graph

3
2

45

1

Split Graph with
4 types of edges

Split
Training message edges
Training supervision edges
Validation edges
Test edges

https://github.com/snap-stanford/deepsnap
https://github.com/snap-stanford/GraphGym

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 71

Prediction
head Predictions Labels

Loss
function

Evaluation
metrics

Graph
Neural
Network

Node
embeddings

Input
Graph

Dataset split

Implementation resources:
DeepSNAP provides core modules for this pipeline
GraphGym further implements the full pipeline to facilitate GNN design

https://github.com/snap-stanford/deepsnap
https://github.com/snap-stanford/GraphGym

¡ We introduce a general perspective for GNNs
§ GNN Layer:

§ Transformation + Aggregation
§ Classic GNN layers: GCN, GraphSAGE, GAT

§ Layer connectivity:
§ The over-smoothing problem
§ Solution: skip connections

§ Graph Augmentation:
§ Feature augmentation
§ Structure augmentation

§ Learning Objectives
§ The full training pipeline of a GNN

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 72

