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…

Output: Node embeddings. 
Also, we can embed subgraphs 
and entire graphs
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(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer 
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf
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(4) Graph augmentation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure augmentation

https://arxiv.org/pdf/2011.08843.pdf


Our assumption so far has been 
¡ Raw input graph = computational graph
Reasons for breaking this assumption
§ Features: 

§ The input graph lacks features
§ Graph structure:

§ The graph is too sparse à inefficient message passing
§ The graph is too dense à message passing is too costly
§ The graph is too large à cannot fit the computational 

graph into a GPU
§ It’s unlikely that the input graph happens to be 

the optimal computation graph for embeddings
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¡ Graph Feature augmentation
§ The input graph lacks features à feature 

augmentation
¡ Graph Structure augmentation
§ The graph is too sparse à Add virtual nodes / edges
§ The graph is too dense à Sample neighbors when 

doing message passing
§ The graph is too large à Sample subgraphs to 

compute embeddings 
§ Will cover later in lecture: Scaling up GNNs
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Why do we need feature augmentation?
¡ (1) Input graph does not have node features
§ This is common when we only have the adj. matrix

¡ Standard approaches:
¡ a) Assign constant values to nodes
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Why do we need feature augmentation?
¡ (1) Input graph does not have node features
§ This is common when we only have the adj. matrix

¡ Standard approaches:
¡ b) Assign unique IDs to nodes
§ These IDs are converted into one-hot vectors
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Total number of IDs = 6

ID = 5
One-hot vector for node with ID=5



¡ Feature augmentation: constant vs. one-hot
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Constant node feature One-hot node feature

Expressive power Medium. All the nodes are 
identical, but GNN can still learn 
from the graph structure

High. Each node has a unique ID, 
so node-specific information can 
be stored

Inductive learning
(Generalize to 
unseen nodes)

High. Simple to generalize to new 
nodes: we assign constant 
feature to them, then apply our 
GNN

Low. Cannot generalize to new 
nodes: new nodes introduce new 
IDs, GNN doesn’t know how to 
embed unseen IDs

Computational 
cost

Low. Only 1 dimensional feature High. 𝑂 𝑉 dimensional feature, 
cannot apply to large graphs

Use cases Any graph, inductive settings 
(generalize to new nodes)

Small graph, transductive 
settings (no new nodes)
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Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Example: Cycle count feature:
§ Can GNN learn the length of a cycle that 𝑣! resides in?
§ Unfortunately, no
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𝑣! 𝑣!

𝑣! resides in a cycle with length 3 𝑣! resides in a cycle with length 4

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Identity-aware%20Graph%20Neural%20Networks


¡ 𝒗𝟏 cannot differentiate which graph it resides in 
§ Because all the nodes in the graph have degree of 2
§ The computational graphs will be the same binary tree
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𝑣! 𝑣"

𝑣! resides in a cycle 
with length 3

𝑣! resides in a cycle 
with length 4

𝑣!

𝑣! resides in a cycle with infinite length

… …

…

!!

The computational 
graphs for node 𝒗𝟏
are always the same

More about this topic later!



Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Solution: 
§ We can use cycle count as augmented node features
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𝑣! 𝑣!

𝑣! resides in a cycle with length 3 𝑣! resides in a cycle with length 4

[0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 1, 0]
We start 
from cycle 
with length 0

Augmented node feature for 𝒗𝟏 Augmented node feature for 𝒗𝟏



Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Other commonly used augmented features:
§ Node degree
§ Clustering coefficient
§ PageRank
§ Centrality
§ …

¡ Any feature we have introduced in 
Lecture 2 can be used!
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¡ Motivation: Augment sparse graphs
¡ (1) Add virtual edges
§ Common approach: Connect 2-hop neighbors via 

virtual edges
§ Intuition: Instead of using adj. matrix 𝐴 for GNN 

computation, use 𝐴 + 𝐴#
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§ Use cases: Bipartite graphs
§ Author-to-papers (they authored)
§ 2-hop virtual edges make an author-author 

collaboration graph



¡ Motivation: Augment sparse graphs
¡ (2) Add virtual nodes
§ The virtual node will connect to all the 

nodes in the graph
§ Suppose in a sparse graph, two nodes have 

shortest path distance of 10
§ After adding the virtual node, all the nodes 

will have a distance of two
§ Node A – Virtual node – Node B

§ Benefits: Greatly improves message 
passing in sparse graphs
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The virtual 
node



¡ Previously:
§ All the nodes are used for message passing

¡ New idea: (Randomly) sample a node’s 
neighborhood for message passing

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf


¡ For example, we can randomly choose 2 
neighbors to pass messages in a given layer
§ Only nodes 𝐵 and 𝐷 will pass messages to 𝐴
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¡ In the next layer when we compute the 
embeddings, we can sample different 
neighbors
§ Only nodes 𝐶 and 𝐷 will pass messages to 𝐴
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¡ In expectation, we get embeddings similar to 
the case where all the neighbors are used
§ Benefits: Greatly reduces computational cost

§ Allows for scaling to large graphs (more about this later)

§ And in practice it works great!
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Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

https://dl.acm.org/doi/abs/10.1145/3219819.3219890?casa_token=VNpSwK1pq_0AAAAA:OARlBJdJIGnQMyGUJfULBgPhtEF0yu2vgyHjHgemNaalHPVUUKCDN4Vors3g194zfxBOCG1OvnBjnA
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J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Next: How do we train a GNN?

https://arxiv.org/pdf/2011.08843.pdf
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Prediction 
head Predictions Labels

Loss 
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Input 
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So far what we have covered

Output of a GNN: set of node embeddings
{𝐡&

' , ∀𝑣 ∈ 𝐺}
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(1) Different prediction heads:
- Node-level tasks
- Edge-level tasks
- Graph-level tasks



¡ Idea: Different task levels require different 
prediction heads
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Node-level
prediction

Edge-level 
prediction

Graph-level 
prediction



¡ Node-level prediction: We can directly make 
prediction using node embeddings!

¡ After GNN computation, we have 𝑑-dim node 
embeddings: {𝐡!

" ∈ ℝ# , ∀𝑣 ∈ 𝐺}
¡ Suppose we want to make 𝑘-way prediction
§ Classification: classify among 𝑘 categories
§ Regression: regress on 𝑘 targets

¡ -𝒚𝒗 = Head%&'((𝐡!
" ) = 𝐖(*)𝐡!

(")

§ 𝐖(%) ∈ ℝ'∗) : We map node embeddings from 
𝐡*
(+) ∈ ℝ) to -𝒚* ∈ ℝ' so that we can compute the 

loss
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¡ Edge-level prediction: Make prediction using 
pairs of node embeddings

¡ Suppose we want to make 𝑘-way prediction
¡ -𝒚𝒖𝒗 = Head('-.(𝐡/

" , 𝐡!
" )

¡ What are the options for Head('-.(𝐡/
" , 𝐡!

" )?
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?
𝐡(
'

𝐡&
'



¡ Options for Head('-.(𝐡/
" , 𝐡!

" ):
¡ (1) Concatenation + Linear
§ We have seen this in graph attention

§ -𝒚𝒖𝒗 = Linear(Concat(𝐡.
+ , 𝐡*

+ ))
§ Here Linear(⋅) will map 2𝑑-dimensional 

embeddings (since we concatenated embeddings) 
to 𝑘-dim embeddings (𝑘-way prediction)
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𝐡!
(#$%)𝐡'

(#$%)

Concatenate Linear *𝒚(&



¡ Options for Head!"#$(𝐡%
& , 𝐡'

& ):
¡ (2) Dot product

§ !𝒚𝒖𝒗 = (𝐡#
$ )%𝐡&

$

§ This approach only applies to 𝟏-way prediction (e.g., 
link prediction: predict the existence of an edge)

§ Applying to 𝒌-way prediction: 
§ Similar to multi-head attention: 𝐖(#), … ,𝐖(%) trainable

+𝒚𝒖𝒗
(𝟏) = (𝐡)

* )+𝐖(#)𝐡,
*

…
+𝒚𝒖𝒗
(𝒌) = (𝐡)

* )+𝐖(%)𝐡,
*

+𝒚), = Concat(+𝒚𝒖𝒗
(𝟏), … , +𝒚𝒖𝒗

(𝒌)) ∈ ℝ%
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¡ Graph-level prediction: Make prediction using 
all the node embeddings in our graph

¡ Suppose we want to make 𝑘-way prediction
¡ -𝒚0 = Head-1234({𝐡!

" ∈ ℝ# , ∀𝑣 ∈ 𝐺})
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Graph-level prediction

(2) Aggregation

(1) Message
¡ Head-1234(⋅) is similar to 
AGG(⋅) in a GNN layer!



¡ Options for Head-1234({𝐡!
" ∈ ℝ# , ∀𝑣 ∈ 𝐺})

¡ (1) Global mean pooling
-𝒚0 = Mean({𝐡!

" ∈ ℝ# , ∀𝑣 ∈ 𝐺})
¡ (2) Global max pooling

-𝒚0 = Max({𝐡!
" ∈ ℝ# , ∀𝑣 ∈ 𝐺})

¡ (3) Global sum pooling
-𝒚0 = Sum({𝐡!

" ∈ ℝ# , ∀𝑣 ∈ 𝐺})
¡ These options work great for small graphs
¡ Can we do better for large graphs?
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K. Xu*, W. Hu*, J. Leskovec, S. Jegelka. How Powerful Are Graph Neural Networks, ICLR 2019

https://arxiv.org/pdf/1810.00826.pdf


¡ Issue: Global pooling over a (large) graph will lose 
information

¡ Toy example: we use 1-dim node embeddings
§ Node embeddings for 𝐺': {−1,−2, 0, 1, 2}
§ Node embeddings for 𝐺(: {−10,−20, 0, 10, 20}
§ Clearly 𝐺' and 𝐺( have very different node embeddings 
à Their structures should be different

¡ If we do global sum pooling: 
§ Prediction for 𝐺': 1𝑦) = Sum −1,−2, 0, 1, 2 = 0
§ Prediction for 𝐺(: 1𝑦) = Sum −10,−20, 0, 10, 20 = 0
§ We cannot differentiate 𝐺' and 𝐺(!
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¡ A solution: Let’s aggregate all the node 
embeddings hierarchically
§ Toy example: We will aggregate via ReLU Sum ⋅

§ We first separately aggregate the first 2 nodes and last 3 nodes
§ Then we aggregate again to make the final prediction

§ 𝐺' node embeddings: {−1,−2, 0, 1, 2}
§ Round 1: 9𝑦. = ReLU Sum −1,−2 = 0, 9𝑦/ =
ReLU Sum 0,1, 2 = 3

§ Round 2: 9𝑦0 = ReLU Sum 𝑦., 𝑦/ = 𝟑
§ 𝐺( node embeddings: {−10,−20, 0, 10, 20}

§ Round 1: 9𝑦. = ReLU Sum −10,−20 = 0, 9𝑦/ =
ReLU Sum 0,10, 20 = 30

§ Round 2: 9𝑦0 = ReLU Sum 𝑦., 𝑦/ = 𝟑𝟎
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Now we can 
differentiate 
𝑮𝟏 and 𝑮𝟐 !



¡ DiffPool idea:
§ Hierarchically pool node embeddings

§ Leverage 2 independent GNNs at each level
§ GNN A: Compute node embeddings
§ GNN B: Compute the cluster that a node belongs to

§ GNNs A and B at each level can be executed in parallel
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Ying et al. Hierarchical Graph Representation Learning with Differentiable Pooling, NeurIPS 2018

https://arxiv.org/pdf/1806.08804.pdf


¡ DiffPool idea:

§ For each Pooling layer
§ Use clustering assignments from GNN B to aggregate node 

embeddings generated by GNN A
§ Create a single new node for each cluster, maintaining 

edges between clusters to generated a new pooled network

§ Jointly train GNN A and GNN B
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(2) Where does ground-truth come from? 
- Supervised labels
- Unsupervised signals



¡ Supervised learning on graphs
§ Labels come from external sources

§ E.g., predict drug likeness of a molecular graph
¡ Unsupervised learning on graphs
§ Signals come from graphs themselves 

§ E.g., link prediction: predict if two nodes are connected
¡ Sometimes the differences are blurry
§ We still have “supervision” in unsupervised learning

§ E.g., train a GNN to predict node clustering coefficient
§ An alternative name for “unsupervised” is “self-

supervised”
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¡ Supervised labels come from the specific use 
cases. For example:
§ Node labels 𝒚𝒗: in a citation network, which subject 

area does a node belong to
§ Edge labels 𝒚𝒖𝒗: in a transaction network, whether an 

edge is fraudulent
§ Graph labels 𝒚): among molecular graphs, the drug 

likeness of graphs
¡ Advice: Reduce your task to node / edge / graph 

labels, since they are easy to work with
§ E.g., we knew some nodes form a cluster. We can treat 

the cluster that a node belongs to as a node label
2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39



¡ The problem: sometimes we only have a graph, 
without any external labels

¡ The solution: “self-supervised learning”, we can 
find supervision signals within the graph.
§ For example, we can let GNN predict the following:
§ Node-level 𝒚*. Node statistics: such as clustering 

coefficient, PageRank, …
§ Edge-level 𝒚.*. Link prediction: hide the edge 

between two nodes, predict if there should be a link
§ Graph-level 𝒚0 . Graph statistics: for example, predict 

if two graphs are isomorphic
§ These tasks do not require any external labels!
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(3) How do we compute the final loss?
- Classification loss
- Regression loss



¡ The setting: We have 𝑁 data points
§ Each data point can be a node/edge/graph

§ Node-level: prediction -𝒚*
(1), label 𝒚*

(1)

§ Edge-level: prediction -𝒚.*
(1), label 𝒚.*

(1)

§ Graph-level: prediction -𝒚0
(1), label 𝒚0

(1)

§ We will use prediction -𝒚(1), label 𝒚 1 to refer 
predictions at all levels
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¡ Classification: labels 𝒚 5 with discrete value
§ E.g., Node classification: which category does a 

node belong to
¡ Regression: labels 𝒚 5 with continuous value
§ E.g., predict the drug likeness of a molecular graph

¡ GNNs can be applied to both settings
¡ Differences: loss function & evaluation 

metrics
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¡ As discussed in lecture 6, cross entropy (CE) is 
a very common loss function in classification

¡ 𝐾-way prediction for 𝑖-th data point:

CE 𝒚(1), -𝒚(1) = −B
23!

4
𝒚2
(1) log(-𝒚𝒋

(𝒊))

where:
𝒚(1) 𝜖 ℝ4 = one-hot label encoding

-𝒚(1)𝜖 ℝ4 = prediction after Softmax(⋅)

¡ Total loss over all 𝑁 training examples
Loss =0

*+,

-
CE 𝒚(*), 3𝒚(*)
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Label Prediction

𝒊-th data point

𝒋-th class

0 0 1 0 0

0.1 0.3 0.4 0.1 0.1

E.g. 

E.g. 



¡ For regression tasks we often use Mean Squared 
Error (MSE) a.k.a. L2 loss

¡ 𝐾-way regression for data point (i):

MSE 𝒚(*), &𝒚(*) =(
2+,

3
(𝒚2

(*)− &𝒚2
* )4

where:

𝒚(𝒊) 𝜖 ℝ5 = Real valued vector of targets
&𝒚(𝒊)𝜖 ℝ5 = Real valued vector of predictions

¡ Total loss over all 𝑁 training examples

Loss =J
12#

3

MSE 𝒚(1), +𝒚(1)
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1.4 2.3 1.0 0.5 0.6

0.9 2.8 2.0 0.3 0.8

E.g. 

E.g. 

𝒊-th data point

𝒋-th target
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(4) How do we measure the success of a GNN?
- Accuracy
- ROC AUC



¡ We use standard evaluation metrics for GNN
§ (Content below can be found in any ML course)
§ In practice we will use sklearn for implementation
§ Suppose we make predictions for 𝑁 data points

¡ Evaluate regression tasks on graphs:
§ Root mean square error (RMSE)

0
*+,

- 𝒚(*) − 3𝒚(*) 4

𝑁

§ Mean absolute error (MAE)
∑*+,- 𝒚(*) − 3𝒚(*)

𝑁
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https://scikit-learn.org/stable/modules/model_evaluation.html


¡ Evaluate classification tasks on graphs:
¡ (1) Multi-class classification

§ We simply report the accuracy
1 argmax !𝒚(+) = 𝒚(+)

𝑁
¡ (2) Binary classification

§ Metrics sensitive to classification threshold
§ Accuracy
§ Precision / Recall
§ If the range of prediction is [0,1], we will use 0.5 as threshold

§ Metric Agnostic to classification threshold
§ ROC AUC
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¡ Accuracy:
TP + TN

TP + TN + FP + FN
=
TP + TN
|Dataset|

¡ Precision (P):
TP

TP + FP
¡ Recall (R):

TP
TP + FN

¡ F1-Score:
2P ∗ R
P + R
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Sklearn Classification Report

Confusion matrix

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html


¡ ROC Curve: Captures the tradeoff in TPR and 
FPR as the classification threshold is varied 
for a binary classifier. 

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

TPR = Recall =
TP

TP + FN

FPR =
FP

FP + TN

Note: the dashed line 
represents performance of 
a random classifierImage Credit: Wikipedia

FPR

TPR

https://en.wikipedia.org/wiki/Receiver_operating_characteristic


¡ ROC AUC: Area under the ROC Curve. 
¡ Intuition: The probability that a classifier will rank a 

randomly chosen positive instance higher than a 
randomly chosen negative one
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Content Credit: Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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(5) How do we split our dataset 
into train / validation / test set?

Dataset split



¡ Fixed split: We will split our dataset once
§ Training set: used for optimizing GNN parameters
§ Validation set: develop model/hyperparameters
§ Test set: held out until we report final performance

¡ A concern: sometimes we cannot guarantee 
that the test set will really be held out

¡ Random split: we will randomly split our 
dataset into training / validation / test
§ We report average performance over different 

random seeds
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¡ Suppose we want to split an image dataset
§ Image classification: Each data point is an image
§ Here data points are independent

§ Image 5 will not affect our prediction on image 1
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¡ Splitting a graph dataset is different!
§ Node classification: Each data point is a node
§ Here data points are NOT independent

§ Node 5 will affect our prediction on node 1, because it will 
participate in message passing à affect node 1’s embedding

¡ What are our options?
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¡ Solution 1 (Transductive setting): The input 
graph can be observed in all the dataset splits 
(training, validation and test set). 

¡ We will only split the (node) labels
§ At training time, we compute embeddings using the 

entire graph, and train using node 1&2’s labels
§ At validation time, we compute embeddings using 

the entire graph, and evaluate on node 3&4’s labels
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¡ Solution 2 (Inductive setting): We break the edges 
between splits to get multiple graphs
§ Now we have 3 graphs that are independent. Node 5 will 

not affect our prediction on node 1 any more
§ At training time, we compute embeddings using the 

graph over node 1&2, and train using node 1&2’s labels
§ At validation time, we compute embeddings using the 

graph over node 3&4, and evaluate on node 3&4’s labels
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¡ Transductive setting: training / validation / test 
sets are on the same graph
§ The dataset consists of one graph
§ The entire graph can be observed in all dataset splits, 

we only split the labels
§ Only applicable to node / edge prediction tasks

¡ Inductive setting: training / validation / test sets 
are on different graphs
§ The dataset consists of multiple graphs
§ Each split can only observe the graph(s) within the split. 

A successful model should generalize to unseen graphs
§ Applicable to node / edge / graph tasks
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¡ Transductive node classification
§ All the splits can observe the entire graph structure, but 

can only observe the labels of their respective nodes
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¡ Inductive node classification
§ Suppose we have a dataset of 3 graphs
§ Each split contains an independent graph



¡ Only the inductive setting is well defined for 
graph classification
§ Because we have to test on unseen graphs
§ Suppose we have a dataset of 5 graphs. Each split 

will contain independent graph(s).
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¡ Goal of link prediction: predict missing edges
¡ Setting up link prediction is tricky:
§ Link prediction is an unsupervised / self-supervised 

task. We need to create the labels and dataset 
splits on our own

§ Concretely, we need to hide some edges from the 
GNN and the let the GNN predict if the edges exist
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¡ For link prediction, we will split edges twice
¡ Step 1: Assign 2 types of edges in the original graph

§ Message edges: Used for GNN message passing
§ Supervision edges: Use for computing objectives
§ After step 1:

§ Only message edges will remain in the graph
§ Supervision edges are used as supervision for edge 

predictions made by the model, will not be fed into GNN!
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¡ Step 2: Split edges into train / validation / test
¡ Option 1: Inductive link prediction split
§ Suppose we have a dataset of 3 graphs. Each 

inductive split will contain an independent graph
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¡ Step 2: Split edges into train / validation / test
¡ Option 1: Inductive link prediction split
§ Suppose we have a dataset of 3 graphs. Each 

inductive split will contain an independent graph
§ In train or val or test set, each graph will have 2

types of edges: message edges + supervision edges
§ Supervision edges are not the input to GNN
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¡ Option 2: Transductive link prediction split:
§ This is the default setting when people talk about 

link prediction
§ Suppose we have a dataset of 1 graph
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¡ Option 2: Transductive link prediction split:
§ By definition of “transductive”, the entire graph can 

be observed in all dataset splits
§ But since edges are both part of graph structure and the 

supervision, we need to hold out validation / test edges
§ To train the training set, we further need to hold out 

supervision edges for the training set

§ Next: we will show the exact settings
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¡ Option 2: Transductive link prediction split:
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¡ Option 2: Transductive link prediction split:
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¡ Summary: Transductive link prediction split:

§ Note: Link prediction settings are tricky and complex. You 
may find papers do link prediction differently. But if you 
follow our reasoning steps, this should be the right way to 
implement link prediction

§ Luckily, we have full support in DeepSNAP and GraphGym
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https://github.com/snap-stanford/deepsnap
https://github.com/snap-stanford/GraphGym
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Implementation resources:
DeepSNAP provides core modules for this pipeline 
GraphGym further implements the full pipeline to facilitate GNN design

https://github.com/snap-stanford/deepsnap
https://github.com/snap-stanford/GraphGym


¡ We introduce a general perspective for GNNs
§ GNN Layer: 

§ Transformation + Aggregation
§ Classic GNN layers: GCN, GraphSAGE, GAT

§ Layer connectivity: 
§ The over-smoothing problem
§ Solution: skip connections

§ Graph Augmentation:
§ Feature augmentation
§ Structure augmentation

§ Learning Objectives
§ The full training pipeline of a GNN
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