Stanford CS224W: A General Perspective on Graph Neural Networks

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Recap: Deep Graph Encoders

Recap: Graph Neural Networks

Idea: Node's neighborhood defines a computation graph

 $\begin{bmatrix} x_1 \\ x_2 \\ \cdot \end{bmatrix}$

Determine node computation graph Propagate and transform information

aggregator

aggregator

Learn how to propagate information across the graph to compute node features

Recap: Aggregate from Neighbors

Intuition: Nodes aggregate information from their neighbors using neural networks

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Recap: Aggregate Neighbors

 Intuition: Network neighborhood defines a computation graph

Stanford CS224W: A General Perspective on Graph Neural Networks

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

A General GNN Framework (1)

A General GNN Framework (2)

A General GNN Framework (3)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

A General GNN Framework (4)

A General GNN Framework (5)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Stanford CS224W: A Single Layer of a GNN

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

A GNN Layer

A Single GNN Layer

Idea of a GNN Layer:

- Compress a set of vectors into a single vector
- Two step process:
 - (1) Message
 - (2) Aggregation

(2) Aggregation

(1) Message

Node *v*

Message Computation

(1) Message computation

- Message function: $\mathbf{m}_{u}^{(l)} = MSG^{(l)}(\mathbf{h}_{u}^{(l-1)})$
 - Intuition: Each node will create a message, which will be sent to other nodes later
 - Example: A Linear layer $\mathbf{m}_{u}^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}$

Multiply node features with weight matrix $\mathbf{W}^{(l)}$

Message Aggregation

(2) Aggregation

Intuition: Each node will aggregate the messages from node v's neighbors

$$\mathbf{h}_{v}^{(l)} = \mathrm{AGG}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)$$

• **Example:** $Sum(\cdot)$, $Mean(\cdot)$ or $Max(\cdot)$ aggregator

•
$$\mathbf{h}_{v}^{(l)} = \operatorname{Sum}(\{\mathbf{m}_{u}^{(l)}, u \in N(v)\})$$

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Message Aggregation: Issue

- Issue: Information from node v itself could get lost
 - Computation of $\mathbf{h}_v^{(l)}$ does not directly depend on $\mathbf{h}_v^{(l-1)}$
- Solution: Include $\mathbf{h}_{v}^{(l-1)}$ when computing $\mathbf{h}_{v}^{(l)}$
 - (1) Message: compute message from node v itself
 - Usually, a different message computation will be performed

$$\mathbf{m}_{u}^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)} \qquad \mathbf{m}_{v}^{(l)} = \mathbf{B}^{(l)} \mathbf{h}_{v}^{(l-1)}$$

- (2) Aggregation: After aggregating from neighbors, we can aggregate the message from node v itself
 - Via concatenation or summation

Then aggregate from node itself

$$\mathbf{h}_{v}^{(l)} = \text{CONCAT}\left(\text{AGG}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right), \mathbf{m}_{v}^{(l)}\right)$$
First aggregate from neighbors

A Single GNN Layer

Putting things together:

- (1) Message: each node computes a message $\mathbf{m}_{u}^{(l)} = \mathrm{MSG}^{(l)} \left(\mathbf{h}_{u}^{(l-1)} \right), u \in \{N(v) \cup v\}$
- (2) Aggregation: aggregate messages from neighbors $\mathbf{h}_{v}^{(l)} = AGG^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}, \mathbf{m}_{v}^{(l)}\right)$
- Nonlinearity (activation): Adds expressiveness
 - Often written as $\sigma(\cdot)$: ReLU(\cdot), Sigmoid(\cdot), ...
 - Can be added to message or aggregation

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

T. Kipf, M. Welling. Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

Classical GNN Layers: GCN (1)

(1) Graph Convolutional Networks (GCN)

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\mathbf{W}^{(l)} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} \right)$$

How to write this as Message + Aggregation?

Classical GNN Layers: GCN (2)

(1) Graph Convolutional Networks (GCN)

$$\mathbf{h}_{v}^{(l)} = \sigma\left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|}\right)$$
(2) Aggregation (1) Message

Message:

• Each Neighbor: $\mathbf{m}_u^{(l)} = \frac{1}{|N(v)|} \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)}$

Normalized by node degree

(In the GCN paper they use a slightly different normalization)

Aggregation:

Sum over messages from neighbors, then apply activation

•
$$\mathbf{h}_{v}^{(l)} = \sigma\left(\operatorname{Sum}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)\right)$$

Classical GNN Layers: GraphSAGE

(2) GraphSAGE

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\mathbf{W}^{(l)} \cdot \text{CONCAT} \left(\mathbf{h}_{v}^{(l-1)}, \text{AGG} \left(\left\{ \mathbf{h}_{u}^{(l-1)}, \forall u \in N(v) \right\} \right) \right) \right)$$

- How to write this as Message + Aggregation?
 - Message is computed within the AGG(·)
 - Two-stage aggregation
 - Stage 1: Aggregate from node neighbors $\mathbf{h}_{N(v)}^{(l)} \leftarrow AGG\left(\left\{\mathbf{h}_{u}^{(l-1)}, \forall u \in N(v)\right\}\right)$
 - Stage 2: Further aggregate over the node itself

$$\mathbf{h}_{v}^{(l)} \leftarrow \sigma \left(\mathbf{W}^{(l)} \cdot \text{CONCAT}(\mathbf{h}_{v}^{(l-1)}, \mathbf{h}_{N(v)}^{(l)}) \right)$$

GraphSAGE Neighbor Aggregation

Mean: Take a weighted average of neighbors

$$AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|}$$
 Message computation

 Pool: Transform neighbor vectors and apply symmetric vector function Mean(·) or Max(·)

$$AGG = Mean(\{MLP(\mathbf{h}_{u}^{(l-1)}), \forall u \in N(v)\})$$

Aggregation Message computation

LSTM: Apply LSTM to reshuffled of neighbors

AGG = LSTM(
$$[\mathbf{h}_{u}^{(l-1)}, \forall u \in \pi(N(v))]$$
)
Aggregation

GraphSAGE: L2 Normalization

• ℓ_2 Normalization:

• Optional: Apply ℓ_2 normalization to $\mathbf{h}_{v}^{(l)}$ at every layer

•
$$\mathbf{h}_{v}^{(l)} \leftarrow \frac{\mathbf{h}_{v}^{(l)}}{\|\mathbf{h}_{v}^{(l)}\|_{2}} \quad \forall v \in V \text{ where } \|u\|_{2} = \sqrt{\sum_{i} u_{i}^{2}} \quad (\ell_{2}\text{-norm})$$

- Without ℓ_2 normalization, the embedding vectors have different scales (ℓ_2 -norm) for vectors
- In some cases (not always), normalization of embedding results in performance improvement
- After ℓ_2 normalization, all vectors will have the same ℓ_2 -norm

Classical GNN Layers: GAT (1)

(3) Graph Attention Networks

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

Attention weights

- In GCN / GraphSAGE
 - $\alpha_{vu} = \frac{1}{|N(v)|}$ is the weighting factor (importance) of node *u*'s message to node *v*
 - $\Rightarrow \alpha_{vu}$ is defined **explicitly** based on the structural properties of the graph (node degree)
 - ⇒ All neighbors $u \in N(v)$ are equally important to node v

Classical GNN Layers: GAT (2)

(3) Graph Attention Networks

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

Attention weights

Not all node's neighbors are equally important

- Attention is inspired by cognitive attention.
- The attention α_{vu} focuses on the important parts of the input data and fades out the rest.
 - Idea: the NN should devote more computing power on that small but important part of the data.
 - Which part of the data is more important depends on the context and is learned through training.

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

Graph Attention Networks

Can we do better than simple neighborhood aggregation?

Can we let weighting factors α_{m} to be learned?

- **Goal:** Specify **arbitrary importance** to different
- neighbors of each node in the graph
 Idea: Compute embedding h^(l)_v of each node in the graph following an attention strategy:
 - Nodes attend over their neighborhoods' message
 - Implicitly specifying different weights to different nodes in a neighborhood

Attention Mechanism (1)

- Let $\alpha_{\nu\nu}$ be computed as a byproduct of an attention mechanism a:
 - (1) Let a compute attention coefficients e_{vu} across pairs of nodes u, v based on their messages:

$$\boldsymbol{e_{vu}} = \boldsymbol{a}(\mathbf{W}^{(l)}\mathbf{h}_{u}^{(l-1)}, \mathbf{W}^{(l)}\boldsymbol{h}_{v}^{(l-1)})$$

• e_{vu} indicates the importance of u's message to node v

Machine Learning with Graphs, http://cs224w.stanford.edu

Attention Mechanism (2)

- Normalize e_{vu} into the final attention weight α_{vu}
 - Use the **softmax** function, so that $\sum_{u \in N(v)} \alpha_{vu} = 1$: $\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}$
- Weighted sum based on the final attention weight *α*_{νu}

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

Weighted sum using α_{AB} , α_{AC} , α_{AD} : $\mathbf{h}_{A}^{(l)} = \sigma(\alpha_{AB}\mathbf{W}^{(l)}\mathbf{h}_{B}^{(l-1)} + \alpha_{AC}\mathbf{W}^{(l)}\mathbf{h}_{C}^{(l-1)} + \alpha_{AD}\mathbf{W}^{(l)}\mathbf{h}_{D}^{(l-1)})$

Attention Mechanism (3)

• What is the form of attention mechanism *a*?

- The approach is agnostic to the choice of a
 - E.g., use a simple single-layer neural network
 - a have trainable parameters (weights in the Linear layer)

$$\begin{array}{c|c} & & \text{Concatenate} \\ & & \text{Linear} \\ & & \text{h}_{A}^{(l-1)} & \mathbf{h}_{B}^{(l-1)} \end{array} \end{array} \begin{array}{c} & \text{Linear} \\ & & \text{Linear} \\ & & \text{Linear} \end{array} \begin{array}{c} e_{AB} \\ & & e_{AB} \end{array} = a \left(\mathbf{W}^{(l)} \mathbf{h}_{A}^{(l-1)}, \mathbf{W}^{(l)} \mathbf{h}_{B}^{(l-1)} \right) \\ & & = \text{Linear} \left(\text{Concat} \left(\mathbf{W}^{(l)} \mathbf{h}_{A}^{(l-1)}, \mathbf{W}^{(l)} \mathbf{h}_{B}^{(l-1)} \right) \right) \end{array}$$

- Parameters of a are trained jointly:
 - Learn the parameters together with weight matrices (i.e., other parameter of the neural net W^(l)) in an end-to-end fashion

Attention Mechanism (4)

- Multi-head attention: Stabilizes the learning process of attention mechanism
 - Create multiple attention scores (each replica with a different set of parameters):

$$\begin{split} \mathbf{h}_{v}^{(l)}[1] &= \sigma(\sum_{u \in N(v)} \alpha_{vu}^{1} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}) \\ \mathbf{h}_{v}^{(l)}[2] &= \sigma(\sum_{u \in N(v)} \alpha_{vu}^{2} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}) \\ \mathbf{h}_{v}^{(l)}[3] &= \sigma(\sum_{u \in N(v)} \alpha_{vu}^{3} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}) \end{split}$$

- Outputs are aggregated:
 - By concatenation or summation
 - $\mathbf{h}_{v}^{(l)} = AGG(\mathbf{h}_{v}^{(l)}[1], \mathbf{h}_{v}^{(l)}[2], \mathbf{h}_{v}^{(l)}[3])$

Benefits of Attention Mechanism

 Key benefit: Allows for (implicitly) specifying different importance values (α_{vu}) to different neighbors

Computationally efficient:

- Computation of attentional coefficients can be parallelized across all edges of the graph
- Aggregation may be parallelized across all nodes

Storage efficient:

• Sparse matrix operations do not require more than O(V + E) entries to be stored

Fixed number of parameters, irrespective of graph size
 Localized:

- Only attends over local network neighborhoods
 Inductive capability:
 - It is a shared *edge-wise* mechanism
 - It does not depend on the global graph structure

GAT Example: Cora Citation Net

Method	Cora
MLP	55.1%
ManiReg (Belkin et al., 2006)	59.5%
SemiEmb (Weston et al., 2012)	59.0%
LP (Zhu et al., 2003)	68.0%
DeepWalk (Perozzi et al., 2014)	67.2%
ICA (Lu & Getoor, 2003)	75.1%
Planetoid (Yang et al., 2016)	75.7%
Chebyshev (Defferrard et al., 2016)	81.2%
GCN (Kipf & Welling, 2017)	81.5%
GAT	83.3%
improvement w.r.t GCN	1.8%
Attention mechanism can be used with many different graph neural network models	
In many cases, attention lea	ads to

performance gains

t-SNE plot of GAT-based node embeddings:

- Node color: 7 publication classes
- Edge thickness: Normalized attention coefficients between nodes *i* and *j*, across eight attention heads, $\sum_k (\alpha_{ij}^k + \alpha_{ii}^k)$

GNN Layer in Practice

- In practice, these classic GNN layers are a great starting point
 - We can often get better performance by considering a general GNN layer design
 - Concretely, we can include modern deep learning modules that proved to be useful in many domains

GNN Layer in Practice

- Many modern deep learning modules can be incorporated into a GNN layer
 - Batch Normalization:
 - Stabilize neural network training
 - Dropout:
 - Prevent overfitting
 - Attention/Gating:
 - Control the importance of a message

More:

Any other useful deep learning modules

A suggested GNN Layer

Batch Normalization

- Goal: Stabilize neural networks training
- Idea: Given a batch of inputs (node embeddings)
 - Re-center the node embeddings into zero mean
 - Re-scale the variance into unit variance

Input: $\mathbf{X} \in \mathbb{R}^{N \times D}$ *N* node embeddings

Trainable Parameters: $\gamma, \beta \in \mathbb{R}^D$

Output: $\mathbf{Y} \in \mathbb{R}^{N \times D}$ Normalized node embeddings Step 1: Compute the mean and variance over N embeddings

Step 2: Normalize the feature using computed mean and variance

Dropout

- Goal: Regularize a neural net to prevent overfitting.
 Idea:
 - During training: with some probability p, randomly set neurons to zero (turn off)
 - During testing: Use all the neurons for computation

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Dropout for GNNs

- In GNN, Dropout is applied to the <u>linear layer in the message function</u>
 - A simple message function with linear layer: $\mathbf{m}_{u}^{(l)} = \mathbf{W}^{(l)}\mathbf{h}_{u}^{(l-1)}$

Activation (Non-linearity)

Apply activation to *i*-th dimension of embedding **x**

- Rectified linear unit (ReLU)
 - $\text{ReLU}(\mathbf{x}_i) = \max(\mathbf{x}_i, 0)$
 - Most commonly used

Sigmoid

$$\sigma(\mathbf{x}_i) = \frac{1}{1 + e^{-\mathbf{x}_i}}$$

- Used only when you want to restrict the range of your embeddings
- Parametric ReLU

 $PReLU(\mathbf{x}_i) = \max(\mathbf{x}_i, 0) + \frac{a_i}{\min(\mathbf{x}_i, 0)}$

 a_i is a trainable parameter

Empirically performs better than ReLU

GNN Layer in Practice

- Summary: Modern deep learning modules can be included into a GNN layer for better performance
- Designing novel GNN layers is still an active research frontier! Tr
- Suggested resources: You can explore diverse GNN designs or try out your own ideas in <u>GraphGym</u>

Stanford CS224W: Stacking Layers of a GNN

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Stacking GNN Layers

Stacking GNN Layers

How to construct a Graph Neural Network?

- The standard way: Stack GNN layers sequentially
- Input: Initial raw node feature x_v
- **Output:** Node embeddings $\mathbf{h}_{v}^{(L)}$ after *L* GNN layers

The Over-smoothing Problem

The Issue of stacking many GNN layers

- GNN suffers from the over-smoothing problem
- The over-smoothing problem: all the node embeddings converge to the same value
 - This is bad because we want to use node embeddings to differentiate nodes
- Why does the over-smoothing problem happen?

Receptive Field of a GNN

- Receptive field: the set of nodes that determine the embedding of a node of interest
 - In a K-layer GNN, each node has a receptive field of K-hop neighborhood

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Receptive Field of a GNN

Receptive field overlap for two nodes
 The shared neighbors quickly grows when we increase the number of hops (num of GNN layers)

1-hop neighbor overlap Only 1 node

2-hop neighbor overlap About 20 nodes

3-hop neighbor overlap Almost all the nodes!

Receptive Field & Over-smoothing

- We can explain over-smoothing via the notion of receptive field
 - We knew the embedding of a node is determined by its receptive field
 - If two nodes have highly-overlapped receptive fields, then their embeddings are highly similar
 - Stack many GNN layers → nodes will have highlyoverlapped receptive fields → node embeddings will be highly similar → suffer from the oversmoothing problem

Next: how do we overcome over-smoothing problem?

Design GNN Layer Connectivity

- What do we learn from the over-smoothing problem?
 Lesson 1: Be cautious when adding GNN layers
 - Unlike neural networks in other domains (CNN for image classification), adding more GNN layers do not always help
 - Step 1: Analyze the necessary receptive field to solve your problem. E.g., by computing the diameter of the graph
 - Step 2: Set number of GNN layers L to be a bit more than the receptive field we like. Do not set L to be unnecessarily large!
- Question: How to enhance the expressive power of a GNN, if the number of GNN layers is small?

Expressive Power for Shallow GNNs

- How to make a shallow GNN more expressive?
- Solution 1: Increase the expressive power within each GNN layer
 - In our previous examples, each transformation or aggregation function only include one linear layer
 - We can make aggregation / transformation become a deep neural network!

Expressive Power for Shallow GNNs

- How to make a shallow GNN more expressive?
- Solution 2: Add layers that do not pass messages
 - A GNN does not necessarily only contain GNN layers
 - E.g., we can add MLP layers (applied to each node) before and after GNN layers, as pre-process layers and post-process layers

Pre-processing layers: Important when encoding node features is necessary.E.g., when nodes represent images/text

Post-processing layers: Important when reasoning / transformation over node embeddings are needed E.g., graph classification, knowledge graphs

In practice, adding these layers works great!

Design GNN Layer Connectivity

- What if my problem still requires many GNN layers?
 Lesson 2: Add skip connections in GNNs
 - Observation from over-smoothing: Node embeddings in earlier GNN layers can sometimes better differentiate nodes
 - Solution: We can increase the impact of earlier layers on the final node embeddings, by adding shortcuts in GNN

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Idea of Skip Connections

Why do skip connections work?

- Intuition: Skip connections create a mixture of models
- N skip connections $\rightarrow 2^N$ possible paths
- Each path could have up to N modules
- We automatically get a mixture of shallow GNNs and deep GNNs

(b) Unraveled view of (a)

Veit et al. Residual Networks Behave Like Ensembles of Relatively Shallow Networks, ArXiv 2016

Path 1: include this module

(a) Conventional 3-block residual network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Example: GCN with Skip Connections

Other Options of Skip Connections

 Other options: Directly skip to the last layer
 The final layer directly aggregates from the all the node embeddings in the previous layers

Stanford CS224W: Graph Manipulation in GNNs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

General GNN Framework

Why Manipulate Graphs

Our assumption so far has been
Raw input graph = computational graph
Reasons for breaking this assumption

Feature level:

- The input graph lacks features \rightarrow feature augmentation
- Structure level:
 - The graph is too sparse \rightarrow inefficient message passing
 - The graph is **too dense** \rightarrow message passing is too costly
- It's just unlikely that the input graph happens to be the optimal computation graph for embeddings

Graph Manipulation Approaches

Graph Feature manipulation

 The input graph lacks features -> feature augmentation

Graph Structure manipulation

- The graph is **too sparse** → Add virtual nodes / edges
- The graph is too dense -> Sample neighbors when doing message passing
- The graph is too large → Sample subgraphs to compute embeddings
 - Will cover later in lecture: Scaling up GNNs

Why do we need feature augmentation?

- (1) Input graph does not have node features
 - This is common when we only have the adj. matrix
- Standard approaches:
- a) Assign constant values to nodes

INPUT GRAPH

Why do we need feature augmentation?

- (1) Input graph does not have node features
 - This is common when we only have the adj. matrix
- Standard approaches:
- b) Assign unique IDs to nodes
 - These IDs are converted into one-hot vectors

One-hot vector for node with ID=5 ID = 5 ↓ [0, 0, 0, 0, 0, 1, 0]

Total number of IDs = 6

Feature augmentation: constant vs. one-hot

	Constant node feature	One-hot node feature
Expressive power	Medium. All the nodes are identical, but GNN can still learn from the graph structure	High . Each node has a unique ID, so node-specific information can be stored
Inductive learning (Generalize to unseen nodes)	High . Simple to generalize to new nodes: we assign constant feature to them, then apply our GNN	Low. Cannot generalize to new nodes: new nodes introduce new IDs, GNN doesn't know how to embed unseen IDs
Computational cost	Low. Only 1 dimensional feature	High . $O(V)$ dimensional feature, cannot apply to large graphs
Use cases	Any graph, inductive settings (generalize to new nodes)	Small graph, transductive settings (no new nodes)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Why do we need feature augmentation?

- (2) Certain structures are hard to learn by GNN
- Example: Cycle count feature
 - Can GNN learn the length of a cycle that v_1 resides in?
 - Unfortunately, no

• v_1 cannot differentiate which graph it resides in

- Because all the nodes in the graph have degree of 2
- The computational graphs will be the same binary tree

 v_1 resides in a cycle with length 3

 v_1 resides in a cycle with length 4

 v_1 resides in a cycle with infinite length

The computational graphs for node v_1 are always the same

Why do we need feature augmentation?

- (2) Certain structures are hard to learn by GNN
 Solution:
 - We can use cycle count as augmented node features

We start from cycle with length 0

Augmented node feature for v_1 [0, 0, 0, 0, 1, 0]

 v_1 resides in a cycle with length 4

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Why do we need feature augmentation?

- (2) Certain structures are hard to learn by GNN
- Other commonly used augmented features:
 - Clustering coefficient
 - PageRank
 - Centrality
- Any feature we have introduced in Lecture 2 can be used!

Add Virtual Nodes / Edges

- Motivation: Augment sparse graphs
- (1) Add virtual edges
 - Common approach: Connect 2-hop neighbors via virtual edges
 - Intuition: Instead of using adj. matrix A for GNN computation, use $A + A^2$

- Author-to-papers (they authored)
- 2-hop virtual edges make an author-author collaboration graph

Papers

Authors

Add Virtual Nodes / Edges

- Motivation: Augment sparse graphs
 (2) Add virtual nodes
 - The virtual node will connect to all the nodes in the graph
 - Suppose in a sparse graph, two nodes have shortest path distance of 10
 - After adding the virtual node, all the nodes will have a distance of 2
 - Node A Virtual node Node B
 - Benefits: Greatly improves message passing in sparse graphs

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

Node Neighborhood Sampling

Previously:

All the nodes are used for message passing

New idea: (Randomly) sample a node's neighborhood for message passing

Neighborhood Sampling Example

- For example, we can randomly choose 2 neighbors to pass messages
 - Only nodes B and D will pass message to A

Neighborhood Sampling Example

- Next time when we compute the embeddings, we can sample different neighbors
 - Only nodes C and D will pass message to A

Neighborhood Sampling Example

- In expectation, we can get embeddings similar to the case where all the neighbors are used
 - Benefits: greatly reduce computational cost
 - And in practice it works great!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Summary of the lecture

Recap: A general perspective for GNNs

GNN Layer:

- Transformation + Aggregation
- Classic GNN layers: GCN, GraphSAGE, GAT

Layer connectivity:

- Deciding number of layers
- Skip connections

Graph Manipulation:

- Feature augmentation
- Structure manipulation

Next: GNN objectives, GNN in practice