
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2

…

Output: Node embeddings.
Also, we can embed subgraphs,
graphs

Idea: Node’s neighborhood defines a
computation graph

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

Determine node
computation graph

𝑖

Propagate and
transform information

𝑖

Learn how to propagate information across the
graph to compute node features

¡ Intuition: Nodes aggregate information from
their neighbors using neural networks

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Neural networks

¡ Intuition: Network neighborhood defines a
computation graph

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

Every node defines a computation
graph based on its neighborhood!

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 1

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …

https://arxiv.org/pdf/2011.08843.pdf

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

GNN Layer 1

GNN Layer 2

(3) Layer
connectivity

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Connect GNN layers into a GNN
• Stack layers sequentially
• Ways of adding skip connections

https://arxiv.org/pdf/2011.08843.pdf

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 9

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(4) Graph augmentation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure augmentation

https://arxiv.org/pdf/2011.08843.pdf

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

How do we train a GNN
• Supervised/Unsupervised

objectives
• Node/Edge/Graph level

objectives

https://arxiv.org/pdf/2011.08843.pdf

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 11

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

¡ Idea of a GNN Layer:
§ Compress a set of vectors into a single vector
§ Two step process:

§ (1) Message
§ (2) Aggregation

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

Input node embedding 𝐡!
"#$, 𝐡%∈'(!)

"#$

(from node itself + neighboring nodes)

𝒍-th GNN Layer

Output node embedding 𝐡!
"

(2) Aggregation

(1) Message

Node 𝒗

¡ (1) Message computation
§ Message function:

§ Intuition: Each node will create a message, which will be
sent to other nodes later

§ Example: A Linear layer 𝐦#
(%) = 𝐖 % 𝐡#

%'(

§ Multiply node features with weight matrix 𝐖 !

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

(2) Aggregation

(1) Message

Node 𝒗

𝐦"
($) = MSG $ 𝐡"

$&'

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

¡ (2) Aggregation
§ Intuition: Each node will aggregate the messages from

node 𝑣’s neighbors

§ Example: Sum(⋅), Mean(⋅) or Max(⋅) aggregator

§𝐡)
% = Sum({𝐦#

% , 𝑢 ∈ 𝑁(𝑣)})

𝐡!
(#) = AGG # 𝐦"

$, 𝑢 ∈ 𝑁 𝑣

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16

(2) Aggregation

(1) Message

Node 𝒗

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

𝐡)
% = CONCAT AGG 𝐦#

% , 𝑢 ∈ 𝑁 𝑣 ,𝐦)
%

¡ Issue: Information from node 𝑣 itself could get lost
§ Computation of 𝐡)

(%) does not directly depend on 𝐡)
(%'()

¡ Solution: Include 𝐡(
($&') when computing 𝐡(

($)

§ (1) Message: compute message from node 𝒗 itself
§ Usually, a different message computation will be performed

§ (2) Aggregation: After aggregating from neighbors, we can
aggregate the message from node 𝒗 itself
§ Via concatenation or summation

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

𝐦"
(!) = 𝐁 ! 𝐡"

!%&𝐦'
(!) = 𝐖 ! 𝐡'

!%&

First aggregate from neighbors

Then aggregate from node itself

(2) Aggregation

(1) Message

¡ Putting things together:
§ (1) Message: each node computes a message

§ (2) Aggregation: aggregate messages from neighbors

§ Nonlinearity (activation): Adds expressiveness
§ Often written as 𝜎(⋅): ReLU(⋅), Sigmoid(⋅) , …
§ Can be added to message or aggregation

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

𝐦"
($) = MSG $ 𝐡"

$&' , 𝑢 ∈ {𝑁 𝑣 ∪ 𝑣}

𝐡!
(#) = AGG # 𝐦%

, 𝑢 ∈ 𝑁 𝑣 ,𝐦!
#

¡ (1) Graph Convolutional Networks (GCN)

¡ How to write this as Message + Aggregation?

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 19

𝐡)
(%) = 𝜎 𝐖 % G

#∈+)

𝐡#
%'(

𝑁 𝑣

𝐡)
(%) = 𝜎 G

#∈+)

𝐖 % 𝐡#
%'(

𝑁 𝑣

Aggregation

Message

T. Kipf, M. Welling. Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

(2) Aggregation

(1) Message

https://arxiv.org/pdf/1609.02907.pdf

¡ (1) Graph Convolutional Networks (GCN)

¡ Message:

§ Each Neighbor: 𝐦#
(%) = (

+)
𝐖 % 𝐡#

%'(

¡ Aggregation:
§ Sum over messages from neighbors, then apply activation

§ 𝐡)
% = 𝜎 Sum 𝐦#

% , 𝑢 ∈ 𝑁 𝑣

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20

Normalized by node degree
(In the GCN paper they use a slightly
different normalization)

𝐡)
(%) = 𝜎 G

#∈+)

𝐖 % 𝐡#
%'(

𝑁 𝑣
(2) Aggregation

(1) Message

¡ (2) GraphSAGE

¡ How to write this as Message + Aggregation?
§ Message is computed within the AGG ⋅
§ Two-stage aggregation

§ Stage 1: Aggregate from node neighbors

§ Stage 2: Further aggregate over the node itself

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

𝐡)
(%) = 𝜎 𝐖(%) H CONCAT 𝐡)

%'(, AGG 𝐡#
%'(, ∀𝑢 ∈ 𝑁 𝑣

𝐡((")
(!) ← AGG 𝐡'

(!%&), ∀𝑢 ∈ 𝑁 𝑣

𝐡"
(!) ← 𝜎 𝐖(!) ⋅ CONCAT(𝐡"

!%& , 𝐡((")
(!))

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf

¡ Mean: Take a weighted average of neighbors

¡ Pool: Transform neighbor vectors and apply
symmetric vector function Mean(⋅) or Max(⋅)

¡ LSTM: Apply LSTM to reshuffled of neighbors

AGG = 7
"∈<(()

𝐡"
($&')

𝑁(𝑣)

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

AGG = Mean({MLP(𝐡"
($&')), ∀𝑢 ∈ 𝑁(𝑣)})

AGG = LSTM([𝐡"
($&'), ∀𝑢 ∈ 𝜋 𝑁 𝑣])

Message computation

Message computation

Aggregation

Aggregation

Aggregation

¡ ℓ! Normalization:
§ Optional: Apply ℓ, normalization to 𝐡)

(%) at every layer

§ 𝐡!
(#) ← 𝐡#

(%)

𝐡#
(%)

'

∀𝑣 ∈ 𝑉 where 𝑢 ' = ∑(𝑢(' (ℓ'-norm)

§ Without ℓ' normalization, the embedding vectors have
different scales (ℓ'-norm) for vectors

§ In some cases (not always), normalization of embedding
results in performance improvement

§ After ℓ' normalization, all vectors will have the same
ℓ'-norm

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 23

¡ (3) Graph Attention Networks

¡ In GCN / GraphSAGE

§ 𝛼(" =
'

< (
is the weighting factor (importance)

of node 𝑢’s message to node 𝑣
§ ⟹ 𝛼(" is defined explicitly based on the

structural properties of the graph (node degree)
§ ⟹ All neighbors 𝑢 ∈ 𝑁(𝑣) are equally important

to node 𝑣

𝐡(
($) = 𝜎(∑"∈< (𝛼("𝐖($)𝐡"

($&'))

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 24

Attention weights

¡ (3) Graph Attention Networks

Not all node’s neighbors are equally important
§ Attention is inspired by cognitive attention.
§ The attention 𝜶𝒗𝒖 focuses on the important parts of

the input data and fades out the rest.
§ Idea: the NN should devote more computing power on that

small but important part of the data.
§ Which part of the data is more important depends on the

context and is learned through training.

𝐡(
($) = 𝜎(∑"∈< (𝛼("𝐖($)𝐡"

($&'))

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25

Attention weights

Can we do better than simple
neighborhood aggregation?

Can we let weighting factors 𝜶𝒗𝒖 to be
learned?

¡ Goal: Specify arbitrary importance to different
neighbors of each node in the graph

¡ Idea: Compute embedding 𝒉#
(%) of each node in the

graph following an attention strategy:
§ Nodes attend over their neighborhoods’ message
§ Implicitly specifying different weights to different nodes

in a neighborhood

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

¡ Let 𝛼"# be computed as a byproduct of an
attention mechanism 𝒂:
§ (1) Let 𝑎 compute attention coefficients 𝒆𝒗𝒖 across

pairs of nodes 𝑢, 𝑣 based on their messages:
𝑒(" = 𝑎(𝐖($)𝐡"

($&'),𝐖($)𝒉(
($&'))

§ 𝒆𝒗𝒖 indicates the importance of 𝒖/𝐬message to node 𝒗

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

𝐡*
("#$)

𝐡+
("#$)

𝑒*+

𝑒12 = 𝑎(𝐖(%)𝐡1
(%'(),𝐖(%)𝐡2

(%'())

§ Normalize 𝑒(" into the final attention weight 𝜶𝒗𝒖
§ Use the softmax function, so that ∑#∈+) 𝛼)# = 1:

𝛼!% =
exp(𝑒!%)

∑)∈+ ! exp(𝑒!))

§ Weighted sum based on the final attention weight
𝜶𝒗𝒖

𝐡!
(#) = 𝜎(∑%∈+ ! 𝛼!%𝐖(%)𝐡%

(#,-))

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

𝛼*+
Weighted sum using 𝛼12, 𝛼14, 𝛼15:
𝐡)
(!) = 𝜎(𝛼)*𝐖(!)𝐡*

(!%&)+𝛼)+𝐖(!)𝐡+
(!%&)+

𝛼),𝐖(!)𝐡,
(!%&))

𝐡+
("#$)

𝐡,
("#$)

𝛼*,

𝛼*-

¡ What is the form of attention mechanism 𝒂?
§ The approach is agnostic to the choice of 𝑎

§ E.g., use a simple single-layer neural network
§ 𝑎 have trainable parameters (weights in the Linear layer)

§ Parameters of 𝑎 are trained jointly:
§ Learn the parameters together with weight matrices (i.e.,

other parameter of the neural net 𝐖(%)) in an end-to-end
fashion

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

𝑒)* = 𝑎 𝐖(!)𝐡)
(!%&),𝐖(!)𝐡*

(!%&)

= Linear Concat 𝐖(!)𝐡)
(!%&),𝐖(!)𝐡*

(!%&)
𝐡*
("#$) 𝐡+

("#$)

Concatenate Linear
𝑒)*

¡ Multi-head attention: Stabilizes the learning
process of attention mechanism
§ Create multiple attention scores (each replica

with a different set of parameters):

§ Outputs are aggregated:
§ By concatenation or summation

§ 𝐡)
(%) = AGG(𝐡)

(%) 1 , 𝐡)
(%) 2 , 𝐡)

(%) 3)

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

𝐡!
(#)[1] = 𝜎(∑%∈+ ! 𝛼!%- 𝐖(#)𝐡%

(#,-))

𝐡!
(#)[2] = 𝜎(∑%∈+ ! 𝛼!%' 𝐖(#)𝐡%

(#,-))

𝐡!
(#)[3] = 𝜎(∑%∈+ ! 𝛼!%. 𝐖(#)𝐡%

(#,-))

¡ Key benefit: Allows for (implicitly) specifying different
importance values (𝜶𝒗𝒖) to different neighbors

¡ Computationally efficient:
§ Computation of attentional coefficients can be parallelized

across all edges of the graph
§ Aggregation may be parallelized across all nodes

¡ Storage efficient:
§ Sparse matrix operations do not require more than
𝑂(𝑉 + 𝐸) entries to be stored

§ Fixed number of parameters, irrespective of graph size
¡ Localized:

§ Only attends over local network neighborhoods
¡ Inductive capability:

§ It is a shared edge-wise mechanism
§ It does not depend on the global graph structure

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

¡ t-SNE plot of GAT-based node embeddings:
§ Node color: 7 publication classes
§ Edge thickness: Normalized attention coefficients between

nodes 𝑖 and 𝑗, across eight attention heads, ∑6(𝛼786 + 𝛼876)
2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32

Attention mechanism can be used
with many different graph neural
network models

In many cases, attention leads to
performance gains

¡ In practice, these classic GNN
layers are a great starting point
§ We can often get better

performance by considering a
general GNN layer design

§ Concretely, we can include
modern deep learning modules
that proved to be useful in many
domains

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer

https://arxiv.org/pdf/2011.08843.pdf

¡ Many modern deep learning modules can be
incorporated into a GNN layer
§ Batch Normalization:

§ Stabilize neural network training

§ Dropout:
§ Prevent overfitting

§ Attention/Gating:
§ Control the importance of a message

§ More:
§ Any other useful deep learning modules

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer

https://arxiv.org/pdf/2011.08843.pdf

¡ Goal: Stabilize neural networks training
¡ Idea: Given a batch of inputs (node embeddings)

§ Re-center the node embeddings into zero mean
§ Re-scale the variance into unit variance

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

𝛍. =
1
𝑁=

/0$

'

𝐗/,.Input: 𝐗 ∈ ℝ+×5
𝑁 node embeddings

Trainable Parameters:
𝛄, 𝛃 ∈ ℝ5

Output: 𝐘 ∈ ℝ+×5
Normalized node embeddings

𝛔.2 =
1
𝑁=

/0$

'

𝐗/,. − 𝛍.
2

B𝐗/,. =
𝐗/,. − 𝛍.

𝛔.2 + 𝜖

𝐘/,. = 𝛄.B𝐗/,. + 𝛃.

Step 1:
Compute the
mean and variance
over 𝑵 embeddings

Step 2:
Normalize the feature
using computed mean
and variance

S. Loffe, C.Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, ICML 2015

https://arxiv.org/pdf/1502.03167.pdf

¡ Goal: Regularize a neural net to prevent overfitting.
¡ Idea:

§ During training: with some probability 𝑝, randomly set
neurons to zero (turn off)

§ During testing: Use all the neurons for computation

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR 2014

Removed neurons

Dropout

https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_campaign=buffer&utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com

¡ In GNN, Dropout is applied to the
linear layer in the message function
§ A simple message function with linear

layer: 𝐦"
($) = 𝐖 $ 𝐡"

$&'

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

Dropout
𝐡#
%'(𝐦#

(%)

𝐖 %

Visualization of a linear layer

(2) Aggregation

(1) Message

Apply activation to 𝒊-th dimension of
embedding 𝐱
¡ Rectified linear unit (ReLU)

ReLU 𝐱7 = max(𝐱7, 0)
§ Most commonly used

¡ Sigmoid

𝜎 𝐱7 =
1

1 + 𝑒'𝐱!
§ Used only when you want to restrict the

range of your embeddings
¡ Parametric ReLU
PReLU 𝐱7 = max 𝐱7, 0 + 𝑎7min(𝐱7, 0)

𝑎7 is a trainable parameter
§ Empirically performs better than ReLU

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 38

𝑥

𝑦

0
𝑥

𝑦

0

1

𝑥

𝑦

0
𝑦 = 𝑎𝑥

𝑦 = 𝑥

𝑦 = 𝑥

𝑦 =
1

1 + 𝑒!"

¡ Summary: Modern deep learning
modules can be included into a GNN
layer for better performance

¡ Designing novel GNN layers is still
an active research frontier!

¡ Suggested resources: You can
explore diverse GNN designs or try
out your own ideas in GraphGym

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

A GNN Layer

https://github.com/snap-stanford/GraphGym

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

GNN Layer 1

GNN Layer 2

(3) Layer
connectivity

How to connect GNN layers into a GNN?
• Stack layers sequentially
• Ways of adding skip connections

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

¡ How to construct a Graph Neural Network?
§ The standard way: Stack GNN layers sequentially
§ Input: Initial raw node feature 𝐱(
§ Output: Node embeddings 𝐡(

(M) after 𝐿 GNN layers

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

𝐡"
(-) = 𝐱"

𝐡"
(&)

𝐡"
(.)

𝐡"
(/)

¡ The Issue of stacking many GNN layers
§ GNN suffers from the over-smoothing problem

¡ The over-smoothing problem: all the node
embeddings converge to the same value
§ This is bad because we want to use node

embeddings to differentiate nodes
¡ Why does the over-smoothing problem

happen?

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

¡ Receptive field: the set of nodes that determine
the embedding of a node of interest
§ In a 𝑲-layer GNN, each node has a receptive field of
𝑲-hop neighborhood

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

Receptive field for
1-layer GNN

Receptive field for
2-layer GNN

Receptive field for
3-layer GNN

¡ Receptive field overlap for two nodes
§ The shared neighbors quickly grows when we

increase the number of hops (num of GNN layers)

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

1-hop neighbor overlap
Only 1 node

2-hop neighbor overlap
About 20 nodes

3-hop neighbor overlap
Almost all the nodes!

¡ We can explain over-smoothing via the notion
of receptive field
§ We knew the embedding of a node is determined

by its receptive field
§ If two nodes have highly-overlapped receptive fields, then

their embeddings are highly similar

§ Stack many GNN layers à nodes will have highly-
overlapped receptive fields à node embeddings
will be highly similar à suffer from the over-
smoothing problem

¡ Next: how do we overcome over-smoothing problem?

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

¡ What do we learn from the over-smoothing problem?
¡ Lesson 1: Be cautious when adding GNN layers

§ Unlike neural networks in other domains (CNN for image
classification), adding more GNN layers do not always help

§ Step 1: Analyze the necessary receptive field to solve your
problem. E.g., by computing the diameter of the graph

§ Step 2: Set number of GNN layers 𝐿 to be a bit more than the
receptive field we like. Do not set 𝑳 to be unnecessarily
large!

¡ Question: How to enhance the expressive power of a
GNN, if the number of GNN layers is small?

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

¡ How to make a shallow GNN more expressive?
¡ Solution 1: Increase the expressive power within

each GNN layer
§ In our previous examples, each transformation or

aggregation function only include one linear layer
§ We can make aggregation / transformation become a

deep neural network!

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

(2) Aggregation

(1) Transformation

If needed, each box could
include a 3-layer MLP

¡ How to make a shallow GNN more expressive?
¡ Solution 2: Add layers that do not pass messages

§ A GNN does not necessarily only contain GNN layers
§ E.g., we can add MLP layers (applied to each node) before and after

GNN layers, as pre-process layers and post-process layers

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

Pre-processing layers: Important when
encoding node features is necessary.
E.g., when nodes represent images/text

Post-processing layers: Important when
reasoning / transformation over node
embeddings are needed
E.g., graph classification, knowledge graphs

In practice, adding these layers works great!

¡ What if my problem still requires many GNN layers?
¡ Lesson 2: Add skip connections in GNNs

§ Observation from over-smoothing: Node embeddings in
earlier GNN layers can sometimes better differentiate nodes

§ Solution: We can increase the impact of earlier layers on the
final node embeddings, by adding shortcuts in GNN

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

Idea of skip connections:
Before adding shortcuts:

𝑭 𝐱
After adding shortcuts:

𝑭 𝐱 + 𝐱

Duplicate
into two
branches

Sum two
branches

He et al. Deep Residual Learning for Image Recognition, CVPR 2015

https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

¡ Why do skip connections work?
§ Intuition: Skip connections create a mixture of models
§ 𝑁 skip connections à 2+ possible paths
§ Each path could have up to 𝑁 modules

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

Veit et al. Residual Networks Behave Like Ensembles of Relatively Shallow Networks, ArXiv 2016

Path 1: include this module

Path 2: skip this module

All the possible paths:
2 ∗ 2 ∗ 2 = 23 = 8

§ We automatically get a mixture
of shallow GNNs and deep GNNs

https://arxiv.org/abs/1605.06431

¡ A standard GCN layer

¡ 𝐡)
(%) = 𝜎 ∑#∈+) 𝐖 % 𝐡*

+,-

+)

¡ A GCN layer with skip connection

¡ 𝐡)
(%) = 𝜎 ∑#∈+) 𝐖 % 𝐡*

+,-

+)
+ 𝐡)

(%'()

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52

This is our 𝑭 𝐱

𝑭(𝐱) + 𝐱

¡ Other options: Directly
skip to the last layer
§ The final layer directly

aggregates from the all the
node embeddings in the
previous layers

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 53

Xu et al. Representation learning on graphs with jumping knowledge networks, ICML 2018

𝐡!
(#)

𝐡!
(%)

𝐡!
(&)

Input: 𝐡!
(')

Output: 𝐡!
(()*+,)

https://arxiv.org/abs/1806.03536

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 55

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(4) Graph manipulation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure manipulation

https://arxiv.org/pdf/2011.08843.pdf

Our assumption so far has been
¡ Raw input graph = computational graph
Reasons for breaking this assumption
§ Feature level:

§ The input graph lacks features à feature augmentation
§ Structure level:

§ The graph is too sparse à inefficient message passing
§ The graph is too dense à message passing is too costly
§ The graph is too large à cannot fit the computational

graph into a GPU
§ It’s just unlikely that the input graph happens to be

the optimal computation graph for embeddings
2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 56

¡ Graph Feature manipulation
§ The input graph lacks features à feature

augmentation
¡ Graph Structure manipulation
§ The graph is too sparse à Add virtual nodes / edges
§ The graph is too dense à Sample neighbors when

doing message passing
§ The graph is too large à Sample subgraphs to

compute embeddings
§ Will cover later in lecture: Scaling up GNNs

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 57

Why do we need feature augmentation?
¡ (1) Input graph does not have node features
§ This is common when we only have the adj. matrix

¡ Standard approaches:
¡ a) Assign constant values to nodes

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 58

1

1

1

1

1

1

Why do we need feature augmentation?
¡ (1) Input graph does not have node features
§ This is common when we only have the adj. matrix

¡ Standard approaches:
¡ b) Assign unique IDs to nodes
§ These IDs are converted into one-hot vectors

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59

1

4

2

3

6

5

[0, 0, 0, 0, 1, 0]

Total number of IDs = 6

ID = 5
One-hot vector for node with ID=5

¡ Feature augmentation: constant vs. one-hot

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 60

Constant node feature One-hot node feature

Expressive power Medium. All the nodes are
identical, but GNN can still learn
from the graph structure

High. Each node has a unique ID,
so node-specific information can
be stored

Inductive learning
(Generalize to
unseen nodes)

High. Simple to generalize to new
nodes: we assign constant
feature to them, then apply our
GNN

Low. Cannot generalize to new
nodes: new nodes introduce new
IDs, GNN doesn’t know how to
embed unseen IDs

Computational
cost

Low. Only 1 dimensional feature High. 𝑂 𝑉 dimensional feature,
cannot apply to large graphs

Use cases Any graph, inductive settings
(generalize to new nodes)

Small graph, transductive settings
(no new nodes)

1

4

2

3

6

5

1

1

1

1

1

1

Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Example: Cycle count feature
§ Can GNN learn the length of a cycle that 𝑣' resides in?
§ Unfortunately, no

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

𝑣# 𝑣#

𝑣$ resides in a cycle with length 3 𝑣$ resides in a cycle with length 4

¡ 𝒗𝟏 cannot differentiate which graph it resides in
§ Because all the nodes in the graph have degree of 2
§ The computational graphs will be the same binary tree

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

𝑣# 𝑣%

𝑣$ resides in a cycle
with length 3

𝑣$ resides in a cycle
with length 4

𝑣#

𝑣$ resides in a cycle with infinite length

… …

…

!!

The computational
graphs for node 𝒗𝟏
are always the same

Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Solution:
§ We can use cycle count as augmented node features

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

𝑣# 𝑣#

𝑣$ resides in a cycle with length 3 𝑣$ resides in a cycle with length 4

[0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 1, 0]
We start
from cycle
with length 0

Augmented node feature for 𝒗𝟏 Augmented node feature for 𝒗𝟏

Why do we need feature augmentation?
¡ (2) Certain structures are hard to learn by GNN
¡ Other commonly used augmented features:
§ Clustering coefficient
§ PageRank
§ Centrality
§ …

¡ Any feature we have introduced in
Lecture 2 can be used!

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 64

¡ Motivation: Augment sparse graphs
¡ (1) Add virtual edges
§ Common approach: Connect 2-hop neighbors via

virtual edges
§ Intuition: Instead of using adj. matrix 𝐴 for GNN

computation, use 𝐴 + 𝐴Q

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 65

A

B

C

D

E

Authors Papers

§ Use cases: Bipartite graphs
§ Author-to-papers (they authored)
§ 2-hop virtual edges make an author-author

collaboration graph

¡ Motivation: Augment sparse graphs
¡ (2) Add virtual nodes
§ The virtual node will connect to all the

nodes in the graph
§ Suppose in a sparse graph, two nodes have

shortest path distance of 10
§ After adding the virtual node, all the nodes

will have a distance of 2
§ Node A – Virtual node – Node B

§ Benefits: Greatly improves message
passing in sparse graphs

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 66

The virtual
node

¡ Previously:
§ All the nodes are used for message passing

¡ New idea: (Randomly) sample a node’s
neighborhood for message passing

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 67

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf

¡ For example, we can randomly choose 2
neighbors to pass messages
§ Only nodes 𝐵 and 𝐷 will pass message to 𝐴

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 68

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

¡ Next time when we compute the embeddings,
we can sample different neighbors
§ Only nodes 𝐶 and 𝐷 will pass message to 𝐴

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 69

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

¡ In expectation, we can get embeddings similar
to the case where all the neighbors are used
§ Benefits: greatly reduce computational cost
§ And in practice it works great!

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 70

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

https://dl.acm.org/doi/abs/10.1145/3219819.3219890?casa_token=VNpSwK1pq_0AAAAA:OARlBJdJIGnQMyGUJfULBgPhtEF0yu2vgyHjHgemNaalHPVUUKCDN4Vors3g194zfxBOCG1OvnBjnA

¡ Recap: A general perspective for GNNs
§ GNN Layer:

§ Transformation + Aggregation
§ Classic GNN layers: GCN, GraphSAGE, GAT

§ Layer connectivity:
§ Deciding number of layers
§ Skip connections

§ Graph Manipulation:
§ Feature augmentation
§ Structure manipulation

¡ Next: GNN objectives, GNN in practice
2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 71

