Stanford CS224W: A General Perspective on Graph Neural Networks

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Recap: Deep Graph Encoders

Recap: Graph Neural Networks

Idea: Node's neighborhood defines a computation graph

 $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Determine node computation graph

Propagate and transform information

 $\overline{\overline{l}}$

aggregator

aqqreqator

Learn how to propagate information across the graph to compute node features

Recap: Aggregate from Neighbors

■ **Intuition:** Nodes aggregate information from their neighbors using neural networks

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

Recap: Aggregate Neighbors

Example 2 Intuition: Network neighborhood defines a computation graph

Stanford CS224W: A General Perspective on Graph Neural Networks

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

A General GNN Framework (1

A General GNN Framework (2

A General GNN Framework (3

INPUT GRAPH

B A Idea: Raw input graph ≠ computational grap

- **Graph feature augmentation**
- **A B** • **Graph structure augmentation**

(4) Graph augmentation

A General GNN Framework (4

A General GNN Framework (5

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Stanford CS224W: A Single Layer of a GNN

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

A GNN Layer

A Single GNN Layer

¡ **Idea of a GNN Layer:**

- § Compress a set of vectors into a single vector
- § **Two step process:**
	- § **(1) Message**
		- § **(2) Aggregation**

(2) Aggregation

(1) Message

Node

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

Message Computation

¡ **(1) Message computation**

- **Message function:** $\mathbf{m}_u^{(l)} = \text{MSG}^{(l)} \left(\mathbf{h}_u^{(l-1)} \right)$
	- **Intuition:** Each node will create a message, which will be sent to other nodes later
	- **Example:** A Linear layer $\mathbf{m}_{u}^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}$

• Multiply node features with weight matrix $W^{(l)}$

Message Aggregation

¡ **(2) Aggregation**

Intuition: Each node will aggregate the messages from node v 's neighbors

$$
\mathbf{h}_{\nu}^{(l)} = \text{AGG}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(\nu)\right\}\right)
$$

§ **Example:** Sum(⋅), Mean(⋅) or Max(⋅) aggregator

$$
\mathbf{h}_v^{(l)} = \text{Sum}(\{\mathbf{m}_u^{(l)}, u \in N(v)\})
$$

^{2/22/21} Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16

Message Aggregation: Issue

- **Example:** Information from node v itself could get lost
	- **Computation of** $\mathbf{h}_{v}^{(l)}$ **does not directly depend on** $\mathbf{h}_{v}^{(l-1)}$
- **Solution:** Include $\mathbf{h}_{v}^{(l-1)}$ when computing $\mathbf{h}_{v}^{(l)}$
	- § **(1) Message: compute message from node itself**
		- § Usually, a **different message computation** will be performed

 $\mathbf{m}_u^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)}$ $\mathbf{m}_v^{(l)} = \mathbf{B}^{(l)} \mathbf{h}_v^{(l-1)}$

- § **(2) Aggregation:** After aggregating from neighbors, we can **aggregate the message from node itself**
	- § Via **concatenation or summation**

$$
\mathbf{h}_{v}^{(l)} = \text{CONCAT}\left(\text{AGG}\left(\{\mathbf{m}_{u}^{(l)}, u \in N(v)\}\right)\mid \mathbf{m}_{v}^{(l)}\right)
$$

First aggregate from neighbors

A Single GNN Layer

¡ **Putting things together:**

- (1) Message: each node computes a message **,** $u \in \{N(v) \cup v\}$
- (2) Aggregation: aggregate messages from neighbors ${\bf h}_\nu^{(l)} = \text{AGG}^{(l)}\left(\left\{ {\bf m}_u^{(l)}, u \in N(\nu) \right\}, {\bf m}_\nu^{(l)} \right)$
- § **Nonlinearity (activation):** Adds expressiveness
	- Often written as $\sigma(\cdot)$: ReLU(\cdot), Sigmoid(\cdot), ...
	- § Can be added to **message or aggregation**

^{2/22/21} Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

T. Kipf, M. Welling. Semi-Supervised Classification with Graph Convolutional I

Classical GNN Layers: GCN $\mathbf (1)$

¡ **(1) Graph Convolutional Networks (GCN)**

$$
\mathbf{h}_{\nu}^{(l)} = \sigma \left(\mathbf{W}^{(l)} \sum_{u \in N(\nu)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(\nu)|} \right)
$$

¡ **How to write this as Message + Aggregation?**

Classical GNN Layers: GCN (2)

¡ **(1) Graph Convolutional Networks (GCN)**

$$
\mathbf{h}_{\nu}^{(l)} = \sigma \left(\sum_{u \in N(\nu)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(\nu)|} \right) \tag{2) Aggregation (1) Message}
$$

¡ **Message:**

Each Neighbor: $\mathbf{m}_{u}^{(l)} = \frac{1}{|N(l)|}$ $\frac{1}{N(\nu)}\mathbf{W}^{\left(l\right)}\mathbf{h}_u^{\left(l-1\right)}$

Normalized by node degree

(In the GCN paper they use a slightly different normalization)

Aggregation:

§ **Sum** over messages from neighbors, then apply activation

$$
\mathbf{h}_{\nu}^{(l)} = \sigma\left(\operatorname{Sum}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(\nu)\right\}\right)\right)
$$

Hamilton et al. Inductive Representation Learning on Large G

Classical GNN Layers: Graph

¡ **(2) GraphSAGE**

$$
\mathbf{h}_{v}^{(l)} = \sigma \bigg(\mathbf{W}^{(l)} \cdot \text{CONCAT} \bigg(\mathbf{h}_{v}^{(l-1)}, \text{AGG} \bigg(\bigg\{ \mathbf{h}_{u}^{(l-1)}, \forall u \in N \bigg(\bigg\{ \mathbf{h}_{u}^{(l-1)}, \forall u \in N \bigg(\bigg\} \bigg) \bigg\} \bigg)
$$

- ¡ **How to write this as Message + Aggregation?**
	- **Message** is computed within the $AGG(\cdot)$
	- § **Two-stage aggregation**
		- **Stage 1: Aggregate from node neighbors**

$$
\mathbf{h}_{N(v)}^{(l)} \leftarrow \text{AGG}\left(\left\{\mathbf{h}_{u}^{(l-1)}, \forall u \in N(v)\right\}\right)
$$

Stage 2: Further aggregate over the node itself

$$
\mathbf{h}_{v}^{(l)} \leftarrow \sigma\left(\mathbf{W}^{(l)} \cdot \text{CONCAT}(\mathbf{h}_{v}^{(l-1)}, \mathbf{h}_{N(v)}^{(l)})\right)
$$

GraphSAGE Neighbor Aggregation

Mean: Take a weighted average of neighbors

$$
AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_u^{(l-1)}}{|N(v)|}
$$
 Message computation

Pool: Transform neighbor vectors and apply symmetric vector function Mean (\cdot) or Max (\cdot)

$$
AGG = \boxed{\text{Mean}(\{\text{MLP}(\mathbf{h}_{u}^{(l-1)}), \forall u \in N(v)\})}
$$

Message computation Aggregation

LSTM: Apply LSTM to reshuffled of neighbors

$$
AGG = [LSTM([h_u^{(l-1)}, \forall u \in \pi(N(v))])
$$

Aggregation

GraphSAGE: L2 Normalization

■ ℓ ₂ Normalization:

• Optional: Apply ℓ_2 normalization to $\mathbf{h}_{v}^{(l)}$ at every layer

$$
\mathbf{h}_{v}^{(l)} \leftarrow \frac{\mathbf{h}_{v}^{(l)}}{\left\|\mathbf{h}_{v}^{(l)}\right\|_{2}} \ \forall v \in V \ \text{where} \ ||u||_{2} = \sqrt{\sum_{i} u_{i}^{2}} \ (\ell_{2} \text{-norm})
$$

- Without ℓ_2 normalization, the embedding vectors have different scales (ℓ_2 -norm) for vectors
- In some cases (not always), normalization of embedding results in performance improvement
- **•** After ℓ_2 normalization, all vectors will have the same ℓ_2 -norm

Classical GNN Layers: GAT (1)

¡ **(3) Graph Attention Networks**

$$
\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})
$$

Attention weights

- ¡ **In GCN / GraphSAGE**
	- $\alpha_{vu} = \frac{1}{|N|}$ $N(v)$ is the **weighting factor (importance)** of node u 's message to node v
	- $\bullet \Rightarrow \alpha_{\nu\mu}$ is defined **explicitly** based on the structural properties of the graph (node degree)
	- $\blacksquare \Longrightarrow$ All neighbors $u \in N(v)$ are equally important to node v

Classical GNN Layers: GAT (2)

¡ **(3) Graph Attention Networks**

$$
\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})
$$

Attention weights

Not all node's neighbors are equally important

- **Attention** is inspired by cognitive attention.
- **The attention** $\alpha_{\nu\mu}$ focuses on the important parts of the input data and fades out the rest.
	- **If Idea:** the NN should devote more computing power on that small but important part of the data.
	- § Which part of the data is more important depends on the context and is learned through training.

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

Graph Attention Networks

Can we do better than simple neighborhood aggregation?

Can we let weighting factors $\alpha_{\nu\mu}$ to be **learned?**

- ¡ **Goal:** Specify **arbitrary importance** to different neighbors of each node in the graph
- **Idea:** Compute embedding $h_v^{(l)}$ of each node in the graph following an **attention strategy:**
	- § Nodes attend over their neighborhoods' message
	- § Implicitly specifying different weights to different nodes in a neighborhood

Attention Mechanism (1)

- **Let** $\alpha_{\nu\mu}$ **be computed as a byproduct of an attention mechanism :**
	- \blacksquare (1) Let *a* compute **attention coefficients** $e_{\nu\mu}$ across pairs of nodes u , v based on their messages:

$$
e_{vu} = a(\mathbf{W}^{(l)}\mathbf{h}_u^{(l-1)}, \mathbf{W}^{(l)}\mathbf{h}_v^{(l-1)})
$$

 \bullet e_{vu} indicates the importance of u' s message to node v

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

Attention Mechanism (2)

- **Normalize** e_{vu} into the final attention weight a_{vu}
	- Use the **softmax** function, so that $\sum_{u \in N(v)} \alpha_{vu} = 1$: $\alpha_{vu} =$ $\exp(e_{vu})$ $\sum_{k\in N(v)} \exp(e_{vk})$
- § **Weighted sum** based on the **final attention weight** α_{vu}

$$
\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})
$$
\n
$$
\alpha_{AB} \cdots \mathbf{h}_{B}^{(l-1)}
$$

 α_{AD} .

 α_{AB} β

 α_{AC}

Weighted sum using α_{AB} , α_{AC} , α_{AD} : $\mathbf{h}_{A}^{(l)} = \sigma(\alpha_{AB} \mathbf{W}^{(l)} \mathbf{h}_{B}^{(l-1)} + \alpha_{AC} \mathbf{W}^{(l)} \mathbf{h}_{C}^{(l-1)} +$ $\alpha_{AD}\mathbf{W}^{(l)}\mathbf{h}_{D}^{(l-1)})$

 $\mathbf{h}_c^{(l-1)}$

Attention Mechanism (3)

¡ **What is the form of attention mechanism ?**

- The approach is agnostic to the choice of a
	- E.g., use a simple single-layer neural network
		- \blacksquare a have trainable parameters (weights in the Linear layer)

$$
\begin{bmatrix}\n\text{Concatenate} \\
\text{moment} \\
\text{moment} \\
\text{lower} \\
\text{lower} \\
\text{lower} \\
\text{lower} \\
\text{lower} \\
\text{lower} \\
\text{upper}\n\end{bmatrix}\n\begin{bmatrix}\n\text{Concatenate} \\
e_{AB} \\
e_{AB} \\
= a \left(\mathbf{W}^{(l)} \mathbf{h}_{A}^{(l-1)}, \mathbf{W}^{(l)} \mathbf{h}_{B}^{(l-1)} \right) \\
\text{Linear} \left(\text{Concat} \left(\mathbf{W}^{(l)} \mathbf{h}_{A}^{(l-1)}, \mathbf{W}^{(l)} \mathbf{h}_{B}^{(l-1)} \right) \right)\n\end{bmatrix}
$$

- \blacksquare Parameters of a are trained jointly:
	- **Learn the parameters together with weight matrices (i.e.,** other parameter of the neural net $\mathbf{W}^{(l)}$) in an end-to-end fashion

Attention Mechanism (4)

- **Multi-head attention:** Stabilizes the learning process of attention mechanism
	- **Create multiple attention scores** (each replica with a different set of parameters):

$$
\mathbf{h}_{v}^{(l)}[1] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^{1} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})
$$

$$
\mathbf{h}_{v}^{(l)}[2] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^{2} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})
$$

$$
\mathbf{h}_{v}^{(l)}[3] = \sigma(\sum_{u \in N(v)} \alpha_{vu}^{3} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})
$$

- § **Outputs are aggregated:**
	- **By concatenation or summation**
	- $\mathbf{h}_{v}^{(l)} = \text{AGG}(\mathbf{h}_{v}^{(l)}[1], \mathbf{h}_{v}^{(l)}[2], \mathbf{h}_{v}^{(l)}[3])$

Benefits of Attention Mechanism

Key benefit: Allows for (implicitly) specifying **different importance values** (α_{nn}) to different neighbors

¡ **Computationally efficient**:

- § Computation of attentional coefficients can be parallelized across all edges of the graph
- § Aggregation may be parallelized across all nodes

¡ **Storage efficient**:

- Sparse matrix operations do not require more than $O(V + E)$ entries to be stored
- Fixed number of parameters, irrespective of graph size

¡ **Localized**:

§ Only **attends over local network neighborhoods**

¡ **Inductive capability**:

- § It is a shared *edge-wise* mechanism
- It does not depend on the global graph structure

GAT Example: Cora Citation Net

In many cases, attention leads to performance gains

- ¡ **t-SNE plot of GAT-based node embeddings:**
	- § Node color: 7 publication classes
	- Edge thickness: Normalized attention coefficients between nodes i and j , across eight attention heads, $\sum_k(\alpha_{ij}^k+\alpha_{ji}^k)$

GNN Layer in Practice

- \blacksquare **In practice, these classic GNN layers are a great starting point**
	- We can often get better performance by considering a general GNN layer design
	- **Transformation** ■ Concretely, we can include modern deep learning modules that proved to be useful in many domains

GNN Layer in Practice

- **E** Many modern deep learning modules ca **incorporated into a GNN layer**
	- § **Batch Normalization:**
		- **Stabilize neural network training**
	- § **Dropout:**
		- **Prevent overfitting**
	- § **Attention/Gating:**
		- Control the importance of a message

§ **More:**

§ Any other useful deep learning modules

A suggested

Transformation

S. Loffe, C.Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covar

Batch Normalization

- **Goal:** Stabilize neural networks training
- **I** Idea: Given a batch of inputs (node embeddings)
	- Re-center the node embeddings into zero mean
	- § Re-scale the variance into unit variance

Input: $X \in \mathbb{R}^{N \times D}$ N node embeddings

Trainable Parameters: γ , $\beta \in \mathbb{R}^D$

Output: $Y \in \mathbb{R}^{N \times D}$ Normalized node embeddings **Step 1: Compute the mean and variance over** *N* embeddings

 $\mu_j =$

1

 $\frac{1}{N}$

 $Y_{i.. i} = \gamma_i \hat{X}$

 $i=1$

'

 $\boldsymbol{\lambda}$

 $\mathbf{X}_{i,}$

.

'

and variance

Step 2:

Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Ov

Dropout

- **Goal**: Regularize a neural net to prevent overfitt
- ¡ **Idea**:
	- **During training:** with some probability p , randomly set neurons to zero (turn off)
	- **During testing:** Use all the neurons for computation

Dropout for GNNs

- \blacksquare In GNN, Dropout is applied to **the linear layer in the message function**
	- **A simple message function with linear** layer: ${\bf m}_u^{(l)} = {\bf W}^{(l)}{\bf h}_u^{(l-1)}$

Visualization of a linear layer

Activation (Non-linearity)

Apply activation to -th dimension of embedding

- **Rectified linear unit (ReLU)**
	- $ReLU(\mathbf{x}_i) = max(\mathbf{x}_i, 0)$
	- Most commonly used

Sigmoid

$$
\sigma(\mathbf{x}_i) = \frac{1}{1 + e^{-\mathbf{x}_i}}
$$

- Used only when you want to restrict the range of your embeddings
- ¡ **Parametric ReLU**

 $PReLU(\mathbf{x}_i) = max(\mathbf{x}_i, 0) + a_i min(\mathbf{x}_i, 0)$

 a_i is a trainable parameter

Empirically performs better than ReLU

 $\overline{0}$

 $v = ax$

 χ

GNN Layer in Practice

- **E. Summary: Modern deep learning** modules can be inclu[ded into a G](https://github.com/snap-stanford/GraphGym)NN layer for better performance
- **Example 1 Designing novel GNN layers is still an active research frontier! Transformation**
- **Example 3 Suggested resources: You can** explore diverse GNN designs or try out your own ideas in **GraphGym**

Stanford CS224W: Stacking Layers of a GNN

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Stacking GNN Layers

Stacking GNN Layers

- How to construct a Graph Neural Network?
	- **The standard way: Stack GNN layers sequentially**
	- **Input:** Initial raw node feature \mathbf{x}_v
	- **Output:** Node embeddings $\mathbf{h}_{v}^{(L)}$ after L GNN layers

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

The Over-smoothing Problem

¡ **The Issue of stacking many GNN layers**

- § GNN suffers from **the over-smoothing problem**
- ¡ **The over-smoothing problem: all the node embeddings converge to the same value**
	- § This is bad because we **want to use node embeddings to differentiate nodes**
- ¡ **Why does the over-smoothing problem happen?**

Receptive Field of a GNN

- **Executive field:** the set of nodes that determine the embedding of a node of interest
	- In a K-layer GNN, each node has a receptive field of **-hop neighborhood**

^{2/22/21} Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

Receptive Field of a GNN

Example 1 Receptive field overlap for two nodes **• The shared neighbors quickly grows** when we increase the number of hops (num of GNN layers)

1-hop neighbor overlap Only 1 node

2-hop neighbor overlap About 20 nodes

3-hop neighbor overlap Almost all the nodes!

Receptive Field & Over-smoothing

- We can explain over-smoothing via the notion **of receptive field**
	- We knew the embedding of a node is determined **by its receptive field**
		- **If two nodes have highly-overlapped receptive fields, then their embeddings are highly similar**
	- Stack many GNN layers → nodes will have highly**overlapped receptive fields** \rightarrow **node embeddings** will be highly similar \rightarrow suffer from the over**smoothing problem**

■ **Next:** how do we overcome over-smoothing problem?

Design GNN Layer Connectivity

- ¡ **What do we learn from the over-smoothing problem?**
- ¡ **Lesson 1: Be cautious when adding GNN layers**
	- Unlike neural networks in other domains (CNN for image classification), **adding more GNN layers do not always help**
	- **Step 1: Analyze the necessary receptive field** to solve your problem. E.g., by computing the diameter of the graph
	- **Step 2:** Set number of GNN layers L to be a bit more than the receptive field we like. Do not set L to be unnecessarily **large**!
- **Question:** How to enhance the expressive power of a GNN, if the number of GNN layers is small?

Expressive Power for Shallow GNNs

- **How to make a shallow GNN more expressive?**
- ¡ **Solution 1:** Increase the expressive power **within each GNN layer**
	- In our previous examples, each transformation or aggregation function only include one linear layer
	- § We can **make aggregation / transformation become a deep neural network**!

Expressive Power for Shallow GNNs

- ¡ **How to make a shallow GNN more expressive?**
- **Solution 2:** Add layers that do not pass messages
	- § A GNN does not necessarily only contain GNN layers
		- E.g., we can add **MLP layers** (applied to each node) before and after GNN layers, as **pre-process layers** and **post-process layers**

Pre-processing layers: Important when encoding node features is necessary. E.g., when nodes represent images/text

Post-processing layers: Important when reasoning / transformation over node embeddings are needed E.g., graph classification, knowledge graphs

In practice, adding these layers works great!

He et al. Deep Residual Learning for Image Rec

Design GNN Layer Connectivi

- **EXTERF What if my problem still requires many GNN lattions**
- ¡ **Lesson 2: Add skip connections in GNNs**
	- **Observation from over-smoothing: Node embedding** earlier GNN layers can sometimes better differentiate
	- **Solution:** We can increase the impact of earlier layers final node embeddings, **by adding shortcuts in GNN**

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Idea of Skip Connections

¡ **Why do skip connections work?**

- **Intuition:** Skip connections create a mixture of mode
- N skip connections $\rightarrow 2^N$ possible paths
- Each path could have up to N modules
- § We [automatically get](https://arxiv.org/abs/1605.06431) **a mixture of shallow GNNs and deep GNNs**

Path 1: include this module

(a) Conventional 3-block residual network

 $2 * 2 * 2 = 2^3 = 8$

(b) Unraveled view of (a

Veit et al. Residual Networks Behave Like Ensembles of Relatively Shallow Networks, ArXiv

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

Example: GCN with Skip Connections

Xu et al. Representation learning on graphs with jumping knowledge ne

Other Options of Skip Connectio

- **E** Other options: Directly skip to the last layer
	- The final layer directly **aggregates from the all the node embeddings** in the previous layers

Stanford CS224W: Graph Manipulation in GNNs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

General GNN Framework

INPUT GRAPH

B A Idea: Raw input graph ≠ computational grap

- **Graph feature augmentation**
- **A B** • **Graph structure manipulation**

(4) Graph manipulation

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 55

Why Manipulate Graphs

Our assumption so far has been ¡ **Raw input graph** = **computational graph Reasons for breaking this assumption**

§ **Feature level:**

• The input graph lacks features \rightarrow feature augmentation

§ **Structure level:**

- **The graph is too sparse** \rightarrow **inefficient message passing**
- **The graph is too dense** \rightarrow **message passing is too costly**
- **The graph is too large** \rightarrow **cannot fit the computational** graph into a GPU
- It's just **unlikely that the input graph happens to be the optimal computation graph** for embeddings

Graph Manipulation Approaches

¡ **Graph Feature manipulation**

■ The input graph lacks features → feature **augmentation**

Example Structure manipulation

- The graph is **too sparse → Add virtual nodes / edges**
- The graph is **too dense → Sample neighbors when doing message passing**
- The graph is **too large → Sample subgraphs to compute embeddings**
	- Will cover later in lecture: Scaling up GNNs

Why do we need feature augmentation?

- ¡ **(1) Input graph does not have node features**
	- This is common when we only have the adj. matrix
- ¡ **Standard approaches:**
- a) Assign constant values to nodes

INPUT GRAPH

Why do we need feature augmentation?

- ¡ **(1) Input graph does not have node features**
	- This is common when we only have the adj. matrix
- ¡ **Standard approaches:**
- **b) Assign unique IDs to nodes**
	- § These IDs are converted into **one-hot vectors**

[0, 0, 0, 0, 1, 0] ID = 5 One-hot vector for node with ID=5

Total number of IDs = 6

¡ Feature augmentation: **constant** vs. **one-hot**

^{2/22/21} Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 60

Why do we need feature augmentation?

- (2) Certain structures are hard to learn by GNN
- **Example:** Cycle count feature
	- Can GNN learn the length of a cycle that v_1 resides in?
	- § **Unfortunately, no**

 v_1 **cannot differentiate which graph it resides in**

- Because all the nodes in the graph have degree of 2
- The computational graphs will be the same binary tree

 $v₁$ resides in a cycle with length 3

 v_1 resides in a cycle with length 4

 v_1 resides in a cycle with infinite length

The computational graphs for node are always the same

Why do we need feature augmentation?

- ¡ **(2) Certain structures are hard to learn by GNN** ¡ **Solution:**
	- We can use cycle count as augmented node features

We start from cycle with length 0

 v_1 resides in a cycle with length 3 v_1 resides in a cycle with length 4

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

Why do we need feature augmentation?

- (2) Certain structures are hard to learn by GNN
- Other commonly used augmented features:
	- Clustering coefficient
	- § **PageRank**
	- **Centrality**

§ **…**

Example 1 Any feature we have introduced in Lecture 2 can be used!

Add Virtual Nodes / Edges

- **Motivation:** Augment sparse graphs
- ¡ **(1) Add virtual edges**
	- **Common approach:** Connect 2-hop neighbors via virtual edges
	- **Intuition:** Instead of using adj. matrix A for GNN computation, use $A + A^2$
		- **A B C D E Authors Papers**
- **Use cases:** Bipartite graphs
	- **Author-to-papers (they authored)**
	- § 2-hop virtual edges make an author-author collaboration graph

Add Virtual Nodes / Edges

- **E** Motivation: Augment sparse graphs ¡ **(2) Add virtual nodes**
	- **The virtual node will connect to all the** nodes in the graph
		- Suppose in a sparse graph, two nodes have shortest path distance of 10
		- **Example 2 After adding the virtual node, all the nodes will have a distance of 2**
			- § **Node A – Virtual node – Node B**
	- § **Benefits:** Greatly **improves message passing in sparse graphs**

Hamilton et al. Inductive Representation Learning on Large G

Node Neighborhood Samplin

¡ **Previously:**

§ All the nodes are used for message passing

■ **New idea:** (Randomly) sample a node's neighborhood for message passing

Neighborhood Sampling Example

- ¡ **For example, we can randomly choose 2 neighbors to pass messages**
	- \blacksquare Only nodes B and D will pass message to A

Neighborhood Sampling Example

- ¡ **Next time when we compute the embeddings, we can sample different neighbors**
	- Only nodes C and D will pass message to A

Ying et al. Graph Convolutional Neural Networks for Web-Scale

Neighborhood Sampling Examp

- In expectation, we can get embeddings similarto the case where all the neighbors are us
	- § **Benefits:** greatly reduce computational cost
	- And in practice it works great!

2/22/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 70

Summary of the lecture

Recap: A general perspective for GNNs

§ **GNN Layer**:

- Transformation + Aggregation
- Classic GNN layers: GCN, GraphSAGE, GAT

§ **Layer connectivity**:

- § Deciding number of layers
- **Skip connections**

§ **Graph Manipulation:**

- Feature augmentation
- **Structure manipulation**

Next: GNN objectives, GNN in practice