
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Intuition: Map nodes to 𝑑-dimensional
embeddings such that similar nodes in the
graph are embedded close together

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 2

f ()=
Input graph 2D node embeddings

How to learn mapping function 𝒇?

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 3

Goal:

Need to define!

Input network d-dimensional
embedding space

similarity 𝑢, 𝑣 ≈ 𝐳!"𝐳#

¡ Encoder: maps each node to a low-dimensional
vector

¡ Similarity function: specifies how the
relationships in vector space map to the
relationships in the original network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

Similarity of 𝑢 and 𝑣 in
the original network

dot product between node
embeddings

2/22/21

Decoder

ENC 𝑣 = 𝐳!

similarity 𝑢, 𝑣 ≈ 𝐳!"𝐳#

node in the input graph

d-dimensional
embedding

Simplest encoding approach: encoder is just an
embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

Dimension/size
of embeddings

one column per node

embedding
matrix

embedding vector for a
specific node

2/22/21

𝐙 =

¡ Limitations of shallow embedding methods:
§ 𝑶(|𝑽|) parameters are needed:

§ No sharing of parameters between nodes
§ Every node has its own unique embedding

§ Inherently “transductive”:
§ Cannot generate embeddings for nodes that are not seen

during training

§ Do not incorporate node features:
§ Many graphs have features that we can and should

leverage

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

¡ Today: We will now discuss deep methods
based on graph neural networks (GNNs):

¡ Note: All these deep encoders can be
combined with node similarity functions
defined in the lecture 3

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7

multiple layers of
non-linear transformations
based on graph structure

ENC 𝑣 =

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

…

Output: Node embeddings.
Also, we can embed subgraphs,
graphs

Tasks we will be able to solve:
¡ Node classification
§ Predict a type of a given node

¡ Link prediction
§ Predict whether two nodes are linked

¡ Community detection
§ Identify densely linked clusters of nodes

¡ Network similarity
§ How similar are two (sub)networks

9Jure Leskovec, Stanford University

10Jure Leskovec, Stanford University

Images

Text/Speech

Modern deep learning toolbox is designed
for simple sequences & grids

But networks are far more complex!
§ Arbitrary size and complex topological structure (i.e.,

no spatial locality like grids)

§ No fixed node ordering or reference point
§ Often dynamic and have multimodal features

11

vs.

Networks Images

Text

Jure Leskovec, Stanford University

1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks and
GraphSAGE

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Supervised learning: we are given input 𝒙,
and the goal is to predict label 𝒚

¡ Input 𝒙 can be:
§ Vectors of real numbers
§ Sequences (natural language)
§ Matrices (images)
§ Graphs (potentially with node and edge features)

¡ We formulate the task as an optimization
problem

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

¡ Formulate the task as an optimization problem:
min
!
ℒ(𝒚, 𝑓 𝒙)

¡ Θ: a set of parameters we optimize
§ Could contain one or more scalars, vectors, matrices …
§ E.g. Θ = {𝑍} in the shallow encoder (the embedding lookup)

¡ ℒ: loss function. Example: L2 loss
ℒ 𝒚, 𝑓 𝒙 = 𝑦 − 𝑓 𝑥 '

§ Other common loss functions:
§ L1 loss, huber loss, max margin (hinge loss), cross entropy …
§ See https://pytorch.org/docs/stable/nn.html#loss-functions

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

Objective function

https://pytorch.org/docs/stable/nn.html

¡ One common loss for classification: cross entropy (CE)
¡ Label 𝒚 is a categorical vector (one-hot encoding)

§ e.g. 𝒚 =
¡ 𝑓 𝒙 = Softmax 𝑔 𝒙

§ Recall from lecture 3: 𝑓 𝒙 ! =
"!(#)%

∑&'(
) "!(#)&

,

where 𝐶 is the number of classes.
§ e.g. 𝑓 𝒙 =

¡ CE 𝒚, 𝑓 𝒙 = −∑!"#$ (𝑦! log 𝑓(𝑥)!)
§ 𝑦!, 𝑓(𝑥)! are the actual and predicted value of the 𝑖-th class.
§ Intuition: the lower the loss, the closer the prediction is to one-hot

¡ Total loss over all training examples:
§ ℒ = ∑ 𝒙,𝒚 ∈𝒯 CE 𝒚, 𝑓 𝒙
§ 𝒯: training set containing all pairs of data and labels 𝒙, 𝒚

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16

0 0 1 0 0

0.1 0.3 0.4 0.1 0.1

𝑦 is of class “3”

𝑔 𝑥 ! denotes 𝑖-th
coordinate of the vector
output of func. 𝑔 𝑥

¡ How to optimize the objective function?
¡ Gradient vector: Direction and rate of fastest

increase

∇!ℒ = (
𝜕ℒ
𝜕Θ0

,
𝜕ℒ
𝜕Θ'

, …)

§ Θ#, Θ%… : components of Θ
¡ Recall directional derivative

of a multi-variable function (e.g. ℒ) along a given
vector represents the instantaneous rate of
change of the function along the vector.

¡ Gradient is the directional derivative in the
direction of largest increase

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

https://en.wikipedia.org/wiki/Gradient

Partial derivative

https://en.wikipedia.org/wiki/Gradient

¡ Iterative algorithm: repeatedly update weights in the
(opposite) direction of gradients until convergence

¡ Training: Optimize Θ iteratively
§ Iteration: 1 step of gradient descent

¡ Learning rate (LR) 𝜼:
§ Hyperparameter that controls the size of gradient step
§ Can vary over the course of training (LR scheduling)

¡ Ideal termination condition: 0 gradient
§ In practice, we stop training if it no longer improves

performance on validation set (part of dataset we hold out
from training)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

Θ ← Θ − 𝜂∇-ℒ

¡ Problem with gradient descent:
§ Exact gradient requires computing ∇-ℒ(𝒚, 𝑓 𝒙),

where 𝒙 is the entire dataset!
§ This means summing gradient contributions over all the

points in the dataset
§ Modern datasets often contain billions of data points
§ Extremely expensive for every gradient descent step

¡ Solution: Stochastic gradient descent (SGD)
§ At every step, pick a different minibatch 𝓑 containing

a subset of the dataset, use it as input 𝒙

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 19

¡ Concepts:
§ Batch size: the number of data points in a minibatch

§ E.g. number of nodes for node classification task
§ Iteration: 1 step of SGD on a minibatch
§ Epoch: one full pass over the dataset (# iterations is

equal to ratio of dataset size and batch size)

¡ SGD is unbiased estimator of full gradient:
§ But there is no guarantee on the rate of convergence
§ In practice often requires tuning of learning rate

¡ Common optimizer that improves over SGD:
§ Adam, Adagrad, Adadelta, RMSprop …

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20

¡ Objective: min
$
ℒ(𝒚, 𝑓 𝒙)

¡ In deep learning, the function 𝑓 can be very
complex

¡ To start simple, consider linear function
𝑓 𝒙 = 𝑊 ⋅ 𝒙, Θ = {W}

¡ If 𝑓 returns a scalar, then 𝑊 is a learnable vector

∇%𝑓 = (
𝜕𝑓
𝜕𝑤&

,
𝜕𝑓
𝜕𝑤'

,
𝜕𝑓
𝜕𝑤(

…)

¡ If 𝑓 returns a vector, then 𝑊 is the weight matrix
∇%𝑓 = 𝑊)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

Jacobian matrix of 𝑓

¡ How about a more complex function:
𝑓 𝒙 = 𝑊𝟐 𝑊&𝒙 , Θ = {W&,W'}

¡ Recall chain rule:

¡ E.g. ∇𝒙𝑓 =
,-

,(%&𝒙)
B ,(%&𝒙)

,𝒙

¡ Back-propagation: Use of chain rule to
propagate gradients of intermediate steps, and
finally obtain gradient of ℒ w.r.t. Θ

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

01
02
= 01
03
B 03
02

In other words:
𝑓 𝒙 = 𝑊𝟐 𝑊.𝒙
ℎ(𝑥) = 𝑊.𝒙
g 𝑧 = 𝑊/𝑧

¡ Example: Simple 2-layer linear network
¡ 𝑓 𝒙 = 𝑔 ℎ 𝑥 = 𝑊𝟐 𝑊&𝒙

¡ ℒ = ∑ 𝒙,𝒚 ∈𝓑 𝒚,−𝑓 𝒙
𝟐

sums the L2 loss in

a minibatch 𝓑
¡ Hidden layer: intermediate representation for

input 𝒙
§ Here we use ℎ(𝑥) = 𝑊.𝒙 to denote the hidden layer
§ 𝑓 𝒙 = 𝑊/ℎ(𝑥)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 23

𝑥!

𝑥"

𝑊𝟐
𝑊𝟏

𝑓(𝒙)

¡ Note that in 𝑓 𝒙 = 𝑊𝟐 𝑊&𝒙 , 𝑊𝟐𝑊& is
another matrix (vector, if we do binary classification)

¡ Hence 𝑓 𝒙 is still linear w.r.t. 𝒙 no matter
how many weight matrices we compose

¡ Introduce non-linearity:
§ Rectified linear unit (ReLU)
𝑅𝑒𝐿𝑈 𝑥 = max(𝑥, 0)

§ Sigmoid

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 24

𝑥

𝑦

0

𝑥

𝑦

0

1𝜎 𝑥 =
1

1 + 𝑒01

¡ Each layer of MLP combines linear transformation and
non-linearity:

§ where 𝑊$ is weight matrix that transforms hidden representation at
layer 𝑙 to layer 𝑙 + 1

§ 𝑏$ is bias at layer 𝑙, and is added to the linear transformation of 𝒙
§ 𝜎 is non-linearity function (e.g., sigmod)

¡ Suppose 𝒙 is 2-dimensional, with entries 𝑥# and 𝑥%

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25

𝒙(89.) = 𝜎(𝑊8𝒙 8 + 𝑏8)

𝑥!

𝑥"
1-dimensional
output

Every layer:
Linear transformation +
non-linearity

3-dimensional hidden
representation

¡ Objective function:
min
$
ℒ(𝒚, 𝑓 𝒙)

¡ 𝑓 can be a simple linear layer, an MLP, or
other neural networks (e.g., a GNN later)

¡ Sample a minibatch of input 𝒙
¡ Forward propagation: compute ℒ given 𝒙
¡ Back-propagation: obtain gradient ∇$ℒ using

a chain rule
¡ Use stochastic gradient descent (SGD) to

optimize for Θ over many iterations
12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks and
GraphSAGE

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Local network neighborhoods:
§ Describe aggregation strategies
§ Define computation graphs

¡ Stacking multiple layers:
§ Describe the model, parameters, training
§ How to fit the model?
§ Simple example for unsupervised and

supervised training

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

¡ Assume we have a graph 𝑮:
§ 𝑉 is the vertex set
§ 𝑨 is the adjacency matrix (assume binary)
§ 𝑿 ∈ ℝ:×|=| is a matrix of node features
§ 𝑣: a node in 𝑉; 𝑁 𝑣 : the set of neighbors of 𝑣.
§ Node features:

§ Social networks: User profile, User image
§ Biological networks: Gene expression profiles, gene

functional information
§ When there is no node feature in the graph dataset:

§ Indicator vectors (one-hot encoding of a node)
§ Vector of constant 1: [1, 1, …, 1]

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

¡ Join adjacency matrix and features
¡ Feed them into a deep neural net:

¡ Issues with this idea:
¡ Issues with this idea:
§ 𝑂(|𝑉|) parameters
§ Not applicable to graphs of different sizes
§ Sensitive to node ordering

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31
End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E
A
B
C
D
E

0 1 1 1 0 1 0
1 0 0 1 1 0 0
1 0 0 1 0 0 1
1 1 1 0 1 1 1
0 1 0 1 0 1 0

Feat

A naïve approach

8

• Take adjacency matrix and feature matrix

• Concatenate them

• Feed them into deep (fully connected) neural net

• Done?

Problems:

• Huge number of parameters
• No inductive learning possible

?A

C

B

D

E

[A,X]

12/6/18

CNN on an image:

Jure Leskovec, Stanford University 32

Goal is to generalize convolutions beyond simple lattices
Leverage node features/attributes (e.g., text, images)

But our graphs look like this:

Jure Leskovec, Stanford University 33

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

or this:

§ There is no fixed notion of locality or sliding
window on the graph

§ Graph is permutation invariant

Single Convolutional neural network (CNN) layer
with 3x3 filter:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph

12/6/18

Idea: transform information at the neighbors and combine it:
§ Transform “messages” ℎ$ from neighbors: 𝑊$ ℎ$
§ Add them up: ∑$𝑊$ ℎ$

Idea: Node’s neighborhood defines a
computation graph

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

Determine node
computation graph

𝑖

Propagate and
transform information

𝑖

Learn how to propagate information across the
graph to compute node features

[Kipf and Welling, ICLR 2017]

¡ Key idea: Generate node embeddings based
on local network neighborhoods

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

¡ Intuition: Nodes aggregate information from
their neighbors using neural networks

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Neural networks

¡ Intuition: Network neighborhood defines a
computation graph

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 38

Every node defines a computation
graph based on its neighborhood!

¡ Model can be of arbitrary depth:
§ Nodes have embeddings at each layer
§ Layer-0 embedding of node 𝑢 is its input feature, 𝑥𝑢
§ Layer-𝑘 embedding gets information from nodes that

are K hops away

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

xA

xB

xC

xE
xF

xA

xA

Layer-2

Layer-1
Layer-0

¡ Neighborhood aggregation: Key distinctions
are in how different approaches aggregate
information across the layers

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

?

?

?

?

What is in the box?

¡ Basic approach: Average information from
neighbors and apply a neural network

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(1) average messages
from neighbors

(2) apply neural network

¡ Basic approach: Average neighbor messages
and apply a neural network

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

Average of neighbor’s
previous layer embeddings

Total number
of layers

Initial 0-th layer embeddings are
equal to node features

Embedding after L
layers of neighborhood

aggregation

Non-linearity
(e.g., ReLU)

embedding of
𝑣 at layer 𝑙h>? = x>

z> = h>
(@)

h>
(89.) = 𝜎(W8 I

A∈C(>)

hA
(8)

N(𝑣)
+ B8h>

(8)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

𝒛D

How do we train the model to
generate embeddings?

Need to define a loss function on the embeddings
12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

We can feed these embeddings into any loss function
and run SGD to train the weight parameters

ℎ!" : the hidden representation of node 𝑣 at layer 𝑙
¡ 𝑊#: weight matrix for neighborhood aggregation
¡ 𝐵#: weight matrix for transforming hidden vector of

self
12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

Trainable weight matrices
(i.e., what we learn)

Final node embedding

h1
(3) = x1

z1 = h1
(5)

h1
(670) = 𝜎(W6 8

8∈:(1)

h8
(6)

N(𝑣) + B6h1
(6)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

¡ Many aggregations can be performed
efficiently by (sparse) matrix operations

¡ Let
¡ Then: ∑*∈,% ℎ*

(-) = A!,:H(-)

¡ Let 𝐷 be diagonal matrix where
𝐷!,! = Deg 𝑣 = |𝑁 𝑣 |
§ The inverse of 𝐷: 𝐷%& is also diagonal:
𝐷','%& = 1/|𝑁 𝑣 |

¡ Therefore,

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

Matrix of hidden embeddings 𝐻%&!

𝒉'%&!

𝐻(-) = [ℎ2
(-)…ℎ|4|

(-)]5

𝐻(89.) = 𝐷0.𝐴𝐻(8);
0∈1(2)

ℎ0
(345)

|𝑁(𝑣)|

¡ Re-writing update function in matrix form:

§ Red: neighborhood aggregation
§ Blue: self transformation

¡ In practice, this implies that efficient sparse
matrix multiplication can be used (J𝐴 is sparse)

¡ Note: not all GNNs can be expressed in matrix form, when
aggregation function is complex

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

𝐻(89.) = 𝜎(U𝐴𝐻(8)𝑊8
I +𝐻 8 𝐵8I)

where U𝐴 = 𝐷0.𝐴
𝐻($) = [ℎ&

($)…ℎ|,|
($)]-

¡ Node embedding 𝒛1 is a function of input graph
¡ Supervised setting: we want to minimize the loss
ℒ (see also slide 15):

min
$
ℒ(𝒚, 𝑓 𝒛!)

§ 𝒚: node label
§ ℒ could be L2 if 𝒚 is real number, or cross entropy

if 𝒚 is categorical
¡ Unsupervised setting:
§ No node label available
§ Use the graph structure as the supervision!

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

¡ “Similar” nodes have similar embeddings
ℒ = 7

6&,6%

CE(𝑦*,!, DEC 𝑧*, 𝑧!)

§ Where 𝑦A,> = 1 when node 𝑢 and 𝑣 are similar
§ CE is the cross entropy (slide 16)
§ DEC is the decoder such as inner product (lecture 4)

¡ Node similarity can be anything from lecture
3, e.g., a loss based on:
§ Random walks (node2vec, DeepWalk, struc2vec)
§ Matrix factorization
§ Node proximity in the graph

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

Directly train the model for a supervised task
(e.g., node classification)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

Safe or toxic
drug?

Safe or toxic
drug?

E.g., a drug-drug
interaction network

Directly train the model for a supervised task
(e.g., node classification)
¡ Use cross entropy loss (slide 16)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

Encoder output:
node embedding

Classification
weights

Node class
label

Safe or toxic drug?

ℒ = 8
1∈@

𝑦1log(𝜎(z1A𝜃)) + 1 − 𝑦1 log(1 − 𝜎 z1A𝜃)

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

(1) Define a neighborhood
aggregation function

(2) Define a loss function on the
embeddings

𝒛8

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52

(3) Train on a set of nodes, i.e.,
a batch of compute graphs

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 53

(4) Generate embeddings
for nodes as needed

Even for nodes we never
trained on!

¡ The same aggregation parameters are shared
for all nodes:
§ The number of model parameters is sublinear in
|𝑉| and we can generalize to unseen nodes!

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 54

INPUT GRAPH

B

D
E

F

CA

Compute graph for node A Compute graph for node B

shared parameters

shared parameters

𝑊9 𝐵9

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 55

Inductive node embedding Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate
embeddings on newly collected data about organism B

Train on one graph Generalize to new graph

z<

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 56

Train with snapshot New node arrives
Generate embedding

for new node

¡ Many application settings constantly encounter
previously unseen nodes:

§ E.g., Reddit, YouTube, Google Scholar
¡ Need to generate new embeddings “on the fly”

z<

¡ Recap: Generate node embeddings by
aggregating neighborhood information
§ We saw a basic variant of this idea
§ Key distinctions are in how different approaches

aggregate information across the layers

¡ Next: Describe GraphSAGE graph neural
network architecture

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 57

1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks and
GraphSAGE

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 58

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

So far we have aggregated the neighbor
messages by taking their (weighted) average

Can we do better?

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 60

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

?

?

?

?

[Hamilton et al., NIPS 2017]

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Any differentiable function that
maps set of vectors in 𝑁(𝑢) to

a single vector

h1
(670) = 𝜎([W6 K AGG h8

(6), ∀𝑢 ∈ 𝑁 𝑣 , B6h1
(6)])

How does this message passing architecture differ?

¡ ℓ' Normalization:

§ ℎ*+ ←
,67

,67 8
∀𝑣 ∈ 𝑉 where 𝑢 % = ∑! 𝑢!% (ℓ%-norm)

§ Without ℓ% normalization, the embedding vectors have
different scales (ℓ%-norm) for vectors

§ In some cases (not always), normalization of embedding
results in performance improvement

§ After ℓ% normalization, all vectors will have the same ℓ%-
norm

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

Optional: Apply L2 normalization to h(
(*+!) embedding at every layer

h1
(670) = 𝜎([W6 K AGG h8

(6), ∀𝑢 ∈ 𝑁 𝑣 , B6h1
(6)])

¡ Simple neighborhood aggregation:

¡ GraphSAGE:

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

Concatenate neighbor embedding
and self embedding

Flexible aggregation function
instead of mean

h!
(9:&) = 𝜎(W9 Q

#∈;(!)

h#
(9)

𝑁(𝑣)
+ B9h!

(9))

h1
(670) = 𝜎([W6 K AGG h8

(6), ∀𝑢 ∈ 𝑁 𝑣 , B6h1
(6)])

¡ Mean: Take a weighted average of neighbors

¡ Pool: Transform neighbor vectors and apply
symmetric vector function

¡ LSTM: Apply LSTM to reshuffled of neighbors

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 64

Element-wise mean/max

AGG = Q
#∈;(!)

h#
(9)

𝑁(𝑣)

AGG = 𝛾({MLP(h8
(6)), ∀𝑢 ∈ 𝑁(𝑣)})

AGG = LSTM([h8
(6), ∀𝑢 ∈ 𝜋 𝑁 𝑣])

𝑣 𝑣

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 65

Key idea: Generate node embeddings based on
local neighborhoods

§ Nodes aggregate “messages” from their neighbors
using neural networks

¡ Graph convolutional networks:
§ Basic variant: Average neighborhood information and

stack neural networks
¡ GraphSAGE:

§ Generalized neighborhood aggregation

¡ In this lecture, we introduced
§ Basics of neural networks

§ Loss, Optimization, Gradient, SGD, non-linearity, MLP

§ Idea for Deep Learning for Graphs
§ Multiple layers of embedding transformation
§ At every layer, use the embedding at previous layer as

the input
§ Aggregation of neighbors and self embeddings

§ Graph Convolutional Network
§ Mean aggregation; can be expressed in matrix form

§ GraphSAGE: more flexible aggregation
12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 66

