Stanford CS224W: Graph Neural Networks

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Recap: Node Embeddings

 Intuition: Map nodes to *d*-dimensional embeddings such that similar nodes in the graph are embedded close together

How to <u>learn</u> mapping function *f*?

Recap: Node Embeddings

Recap: Two Key Components

- Encoder: maps each node to a low-dimensional vector d-dimensional ENC(v) = z_v embedding node in the input graph
- Similarity function: specifies how the relationships in vector space map to the relationships in the original network similarity $(u, v) \approx \mathbf{z}_v^T \mathbf{z}_u$ Decoder

Similarity of u and v in the original network

dot product between node embeddings

Recap: "Shallow" Encoding

Simplest encoding approach: **encoder is just an embedding-lookup**

Recap: Shallow Encoders

- Limitations of shallow embedding methods:
 - O(|V|) parameters are needed:
 - No sharing of parameters between nodes
 - Every node has its own unique embedding
 - Inherently "transductive":
 - Cannot generate embeddings for nodes that are not seen during training
 - Do not incorporate node features:
 - Many graphs have features that we can and should leverage

Today: Deep Graph Encoders

Today: We will now discuss deep methods based on graph neural networks (GNNs):

$ENC(v) = \begin{array}{c} multiple \ layers \ of \\ non-linear \ transformations \\ based \ on \ graph \ structure \end{array}$

 Note: All these deep encoders can be combined with node similarity functions defined in the lecture 3

Deep Graph Encoders

Tasks on Networks

Tasks we will be able to solve:

- Node classification
 - Predict a type of a given node
- Link prediction
 - Predict whether two nodes are linked
- Community detection
 - Identify densely linked clusters of nodes
- Network similarity
 - How similar are two (sub)networks

Modern ML Toolbox

Modern deep learning toolbox is designed for simple sequences & grids

Why is it Hard?

But networks are far more complex!

 Arbitrary size and complex topological structure (i.e., no spatial locality like grids)

- No fixed node ordering or reference point
- Often dynamic and have multimodal features

Outline of Today's Lecture

1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks and GraphSAGE

Stanford CS224W: Basics of Deep Learning

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Machine Learning as Optimization

- Supervised learning: we are given input x, and the goal is to predict label y
- Input x can be:
 - Vectors of real numbers
 - Sequences (natural language)
 - Matrices (images)
 - Graphs (potentially with node and edge features)
- We formulate the task as an optimization problem

Machine Learning as Optimization

- Formulate the task as an optimization problem: $\min_{\Theta} \mathcal{L}(\mathbf{y}, f(\mathbf{x}))$
- ⊖: a set of **parameters** we optimize
 - Could contain one or more scalars, vectors, matrices ...
 - E.g. $\Theta = \{Z\}$ in the shallow encoder (the embedding lookup)
- \mathcal{L} : loss function. Example: L2 loss $\mathcal{L}(\mathbf{y}, f(\mathbf{x})) = ||\mathbf{y} - f(\mathbf{x})||_2$
 - Other common loss functions:
 - L1 loss, huber loss, max margin (hinge loss), cross entropy ...
 - See <u>https://pytorch.org/docs/stable/nn.html#loss-functions</u>

Objective function

Loss Function Example

- One common loss for classification: cross entropy (CE)
 Label wis a categorical vector (one bet encoding)
- Label y is a categorical vector (one-hot encoding)

• e.g.
$$y = o o 1 o d$$

 $f(x) = \operatorname{Softmax}(g(x))$

• Recall from lecture 3:
$$f(\mathbf{x})_i = \frac{e^{g(x)_i}}{\sum_{i=1}^{C} e^{g(x)_i}}$$

y is of class "3"

 $g(x)_i$ denotes *i*-th coordinate of the vector output of func. g(x)

where C is the number of classes.

• e.g.
$$f(x) =$$
 0.1 0.3 0.4 0.1 0.1

•
$$\operatorname{CE}(y, f(x)) = -\sum_{i=1}^{C} (y_i \log f(x)_i)$$

- y_i , $f(x)_i$ are the **actual** and **predicted** value of the *i*-th class.
- Intuition: the lower the loss, the closer the prediction is to one-hot
- Total loss over all training examples:

•
$$\mathcal{L} = \sum_{(x,y)\in\mathcal{T}} \operatorname{CE}(y,f(x))$$

T: training set containing all pairs of data and labels (*x*, *y*)

Machine Learning as Optimization

- How to optimize the objective function?
- Gradient vector: Direction and rate of fastest Partial derivative

$$\nabla_{\Theta} \mathcal{L} = \left(\frac{\partial \mathcal{L}}{\partial \Theta_1}, \frac{\partial \mathcal{L}}{\partial \Theta_2}, \dots\right)$$

Θ₁, Θ₂ ... : components of Θ
 Recall directional derivative

https://en.wikipedia.org/wiki/Gradient

- of a multi-variable function (e.g. \mathcal{L}) along a given vector represents the instantaneous rate of change of the function along the vector.
- Gradient is the directional derivative in the direction of largest increase

Gradient Descent

- Iterative algorithm: repeatedly update weights in the (opposite) direction of gradients until convergence
- Training: Optimize iteratively
 - Iteration: 1 step of gradient descent
- Learning rate (LR) η:
 - Hyperparameter that controls the size of gradient step
 - Can vary over the course of training (LR scheduling)
- Ideal termination condition: 0 gradient
 - In practice, we stop training if it no longer improves performance on validation set (part of dataset we hold out from training)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

$$\Theta \leftarrow \Theta - \eta \nabla_{\Theta} \mathcal{L}$$

Stochastic Gradient Descent (SGD)

Problem with gradient descent:

- Exact gradient requires computing $\nabla_{\Theta} \mathcal{L}(\mathbf{y}, f(\mathbf{x}))$, where \mathbf{x} is the **entire** dataset!
 - This means summing gradient contributions over all the points in the dataset
 - Modern datasets often contain billions of data points
 - Extremely expensive for every gradient descent step

Solution: Stochastic gradient descent (SGD)

 At every step, pick a different minibatch B containing a subset of the dataset, use it as input x

Minibatch SGD

Concepts:

- Batch size: the number of data points in a minibatch
 E.g. number of nodes for node classification task
- Iteration: 1 step of SGD on a minibatch
- Epoch: one full pass over the dataset (# iterations is equal to ratio of dataset size and batch size)
- SGD is unbiased estimator of full gradient:
 - But there is no guarantee on the rate of convergence
 - In practice often requires tuning of learning rate
- Common optimizer that improves over SGD:
 - Adam, Adagrad, Adadelta, RMSprop ...

Neural Network Function

- Objective: $\min_{\Theta} \mathcal{L}(\mathbf{y}, f(\mathbf{x}))$
- In deep learning, the function f can be very complex

To start simple, consider linear function

f(x) = W · x,
G = {W}

If *f* returns a scalar, then *W* is a learnable vector

$$\nabla_W f = \left(\frac{\partial f}{\partial w_1}, \frac{\partial f}{\partial w_2}, \frac{\partial f}{\partial w_3} \dots\right)$$

• If f returns a vector, then W is the weight matrix $\nabla_W f = W^T$ Jacobian matrix of f

Back-propagation

How about a more complex function:

$$f(\mathbf{x}) = W_2(W_1\mathbf{x}), \quad \Theta = \{W_1, W_2\}$$

Recall chain rule:

$$\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\mathrm{d}z}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x}$$

• E.g. $\nabla_x f = \frac{\partial f}{\partial (W_1 x)} \cdot \frac{\partial (W_1 x)}{\partial x}$

In other words: $f(\mathbf{x}) = W_2(W_1\mathbf{x})$ $h(\mathbf{x}) = W_1\mathbf{x}$ $g(z) = W_2z$

Back-propagation: Use of chain rule to propagate gradients of intermediate steps, and finally obtain gradient of *L* w.r.t.

Back-propagation Example (1)

Example: Simple 2-layer linear network

• $f(\mathbf{x}) = g(h(\mathbf{x})) = W_2(W_1\mathbf{x})$

• $\mathcal{L} = \sum_{(x,y)\in\mathcal{B}} \left\| (y, -f(x)) \right\|_2$ sums the L2 loss in a minibatch \mathcal{B}

- Hidden layer: intermediate representation for input x
 - Here we use $h(x) = W_1 x$ to denote the hidden layer

 $\bullet f(\mathbf{x}) = W_2 h(\mathbf{x})$

Non-linearity

- Note that in $f(x) = W_2(W_1x)$, W_2W_1 is another matrix (vector, if we do binary classification)
- Hence f(x) is still linear w.r.t. x no matter how many weight matrices we compose
- Introduce non-linearity:
 - Rectified linear unit (ReLU) ReLU(x) = max(x, 0)
 - Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Multi-layer Perceptron (MLP)

 Each layer of MLP combines linear transformation and non-linearity:

 $\boldsymbol{x}^{(l+1)} = \sigma(W_l \boldsymbol{x}^{(l)} + b^l)$

- where W_l is weight matrix that transforms hidden representation at layer l to layer l + 1
- b^l is bias at layer l, and is added to the linear transformation of x
- σ is non-linearity function (e.g., sigmod)
- Suppose x is 2-dimensional, with entries x_1 and x_2

Summary

Objective function:

 $\min_{\Theta} \mathcal{L}(\mathbf{y}, f(\mathbf{x}))$

- f can be a simple linear layer, an MLP, or other neural networks (e.g., a GNN later)
- Sample a minibatch of input x
- Forward propagation: compute L given x
- Back-propagation: obtain gradient ∇_ΘL using a chain rule
- Use stochastic gradient descent (SGD) to optimize for ^O over many iterations

Outline of Today's Lecture

- **1. Basics of deep learning**
- 2. Deep learning for graphs

3. Graph Convolutional Networks and GraphSAGE

Stanford CS224W: Deep Learning for Graphs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Content

Local network neighborhoods:

- Describe aggregation strategies
- Define computation graphs

Stacking multiple layers:

- Describe the model, parameters, training
- How to fit the model?
- Simple example for unsupervised and supervised training

Setup

Assume we have a graph G:

- V is the vertex set
- A is the adjacency matrix (assume binary)
- $X \in \mathbb{R}^{m \times |V|}$ is a matrix of **node features**
- v: a node in V; N(v): the set of neighbors of v.

Node features:

- Social networks: User profile, User image
- Biological networks: Gene expression profiles, gene functional information
- When there is no node feature in the graph dataset:
 - Indicator vectors (one-hot encoding of a node)
 - Vector of constant 1: [1, 1, ..., 1]

A Naïve Approach

Join adjacency matrix and features Feed them into a deep neural net:

Issues with this idea:

- **Problems:** O(|V|) parameters
- Huge number of parameters $\mathcal{O}(N)$ Not applicable to graphs of different sizes No inductive learning possible Sensitive to node ordering

Idea: Convolutional Networks

CNN on an image:

Goal is to generalize convolutions beyond simple lattices Leverage node features/attributes (e.g., text, images)

Jure Leskovec, Stanford University

Real-World Graphs

- There is no fixed notion of locality or sliding window on the graph
- Graph is permutation invariant

From Images to Graphs

Single Convolutional neural network (CNN) layer with 3x3 filter:

Image

Graph

Idea: transform information at the neighbors and combine it:

- Transform "messages" h_i from neighbors: $W_i h_i$
- Add them up: $\sum_i W_i h_i$

[Kipf and Welling, ICLR 2017] Graph Convolutional Networks

Idea: Node's neighborhood defines a computation graph

 $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Determine node computation graph Propagate and transform information

aggregator

aggregator

Learn how to propagate information across the graph to compute node features

Idea: Aggregate Neighbors

Key idea: Generate node embeddings based on local network neighborhoods

Idea: Aggregate Neighbors

Intuition: Nodes aggregate information from their neighbors using neural networks

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Idea: Aggregate Neighbors

 Intuition: Network neighborhood defines a computation graph

Deep Model: Many Layers

- Model can be of arbitrary depth:
 - Nodes have embeddings at each layer
 - Layer-0 embedding of node u is its input feature, x_u
 - Layer-k embedding gets information from nodes that are K hops away

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Neighborhood Aggregation

 Neighborhood aggregation: Key distinctions are in how different approaches aggregate information across the layers

Neighborhood Aggregation

 Basic approach: Average information from neighbors and apply a neural network

The Math: Deep Encoder

Basic approach: Average neighbor messages and apply a neural network

Training the Model

Need to define a loss function on the embeddings

Model Parameters

We can feed these **embeddings into any loss function** and run SGD to **train the weight parameters**

h^l_v: the hidden representation of node *v* at layer *l W*_k: weight matrix for neighborhood aggregation *B*_k: weight matrix for transforming hidden vector of self

Matrix Formulation (1)

- Many aggregations can be performed efficiently by (sparse) matrix operations
- Let $H^{(l)} = [h_{1_{l}}^{(l)} \dots h_{|V|}^{(l)}]^{\mathrm{T}}$ Then: $\sum_{u \in N_{v}} h_{u}^{(l)} = A_{v,:} \mathrm{H}^{(l)}$
- Let D be diagonal matrix where $D_{v,v} = \text{Deg}(v) = |N(v)|$
 - The inverse of $D: D^{-1}$ is also diagonal: $D_{v,v}^{-1} = 1/|N(v)|$

Matrix of hidden embeddings H^{k-1}

Therefore,

Matrix Formulation (2)

Re-writing update function in matrix form:

 $H^{(l+1)} = \sigma(\tilde{A}H^{(l)}W_l^{T} + H^{(l)}B_l^{T})$ where $\tilde{A} = D^{-1}A$

- Red: neighborhood aggregation
- Blue: self transformation
- In practice, this implies that efficient sparse matrix multiplication can be used (\tilde{A} is sparse)
- Note: not all GNNs can be expressed in matrix form, when aggregation function is complex

 $H^{(l)} = [h_1^{(l)} \dots h_{|V|}^{(l)}]^T$

How to train a GNN

- Node embedding z_v is a function of input graph
- Supervised setting: we want to minimize the loss
 L (see also slide 15):

$$\min_{\Theta} \mathcal{L}(\mathbf{y}, f(\mathbf{z}_v))$$

- y: node label
- L could be L2 if y is real number, or cross entropy if y is categorical
- Unsupervised setting:
 - No node label available
 - Use the graph structure as the supervision!

Unsupervised Training

"Similar" nodes have similar embeddings

$$\mathcal{L} = \sum_{z_u, z_v} \operatorname{CE}(y_{u,v}, \operatorname{DEC}(z_u, z_v))$$

• Where $y_{u,v} = 1$ when node u and v are similar

CE is the cross entropy (slide 16)

DEC is the decoder such as inner product (lecture 4)

- Node similarity can be anything from lecture
 3, e.g., a loss based on:
 - Random walks (node2vec, DeepWalk, struc2vec)
 - Matrix factorization
 - Node proximity in the graph

Supervised Training

Directly train the model for a supervised task (e.g., node classification)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Supervised Training

Directly train the model for a supervised task (e.g., node classification)

Use cross entropy loss (slide 16)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Model Design: Overview

Model Design: Overview

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Model Design: Overview

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Inductive Capability

The same aggregation parameters are shared for all nodes:

The number of model parameters is sublinear in |V| and we can generalize to unseen nodes!

Inductive Capability: <u>New Graphs</u>

Inductive node embedding \rightarrow Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate embeddings on newly collected data about organism B

12/6/18

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Inductive Capability: <u>New Nodes</u>

- Many application settings constantly encounter previously unseen nodes:
- E.g., Reddit, YouTube, Google Scholar
 Need to generate new embeddings "on the fly"

Summary

- Recap: Generate node embeddings by aggregating neighborhood information
 - We saw a basic variant of this idea
 - Key distinctions are in how different approaches aggregate information across the layers
- Next: Describe GraphSAGE graph neural network architecture

Outline of Today's Lecture

- **1. Basics of deep learning**
- 2. Deep learning for graphs
- Graph Convolutional Networks and GraphSAGE

Stanford CS224W: Graph Convolutional Networks and GraphSAGE

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

GraphSAGE Idea

So far we have aggregated the neighbor messages by taking their (weighted) average Can we do better?

GraphSAGE Idea (1)

How does this message passing architecture differ?

GraphSAGE Idea (2)

$$\mathbf{h}_{v}^{(l+1)} = \sigma([\mathbf{W}_{l} \cdot \mathbf{AGG}\left(\left\{\mathbf{h}_{u}^{(l)}, \forall u \in N(v)\right\}\right), \mathbf{B}_{l}\mathbf{h}_{v}^{(l)}])$$

Optional: Apply L2 normalization to $\mathbf{h}_{\nu}^{(l+1)}$ embedding at every layer

• ℓ_2 Normalization:

•
$$h_{v}^{k} \leftarrow \frac{h_{v}^{k}}{\|h_{v}^{k}\|_{2}} \quad \forall v \in V \text{ where } \|u\|_{2} = \sqrt{\sum_{i} u_{i}^{2}} \quad (\ell_{2}\text{-norm})$$

- Without ℓ_2 normalization, the embedding vectors have different scales (ℓ_2 -norm) for vectors
- In some cases (not always), normalization of embedding results in performance improvement
- After ℓ_2 normalization, all vectors will have the same ℓ_2 -norm

Neighborhood Aggregation

Simple neighborhood aggregation:

$$h_{v}^{(l+1)} = \sigma(W_{l} \sum_{u \in N(v)} \frac{h_{u}^{(l)}}{|N(v)|} + B_{l}h_{v}^{(l)})$$

 GraphSAGE: Concatenate neighbor embedding and self embedding

$$\mathbf{h}_{v}^{(l+1)} = \sigma([\mathbf{W}_{l} \cdot \mathsf{AGG}\left(\left\{\mathbf{h}_{u}^{(l)}, \forall u \in N(v)\right\}\right), \mathbf{B}_{l}\mathbf{h}_{v}^{(l)}])$$

Flexible aggregation function instead of mean

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Neighbor Aggregation: Variants

Mean: Take a weighted average of neighbors

$$AGG = \sum_{u \in N(v)} \frac{h_u^{(l)}}{|N(v)|}$$

Pool: Transform neighbor vectors and apply symmetric vector function

Element-wise mean/max

$$AGG = \gamma(\{MLP(h_u^{(l)}), \forall u \in N(v)\})$$

LSTM: Apply LSTM to reshuffled of neighbors AGG = LSTM($[h_u^{(l)}, \forall u \in \pi(N(v))]$)

Recap: GCN, GraphSAGE

Key idea: Generate node embeddings based on local neighborhoods

- Nodes aggregate "messages" from their neighbors using neural networks
- Graph convolutional networks:
 - Basic variant: Average neighborhood information and stack neural networks
- GraphSAGE:
 - Generalized neighborhood aggregation

Summary

In this lecture, we introduced

- Basics of neural networks
 - Loss, Optimization, Gradient, SGD, non-linearity, MLP
- Idea for Deep Learning for Graphs
 - Multiple layers of embedding transformation
 - At every layer, use the embedding at previous layer as the input
 - Aggregation of neighbors and self embeddings
- Graph Convolutional Network
 - Mean aggregation; can be expressed in matrix form
- GraphSAGE: more flexible aggregation