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In this lecture, we investigate graph analysis and 
learning from a matrix perspective.
¡ Treating a graph as a matrix allows us to:

§ Determine node importance via random walk (PageRank)
§ Obtain node embeddings via matrix factorization (MF)
§ View other node embeddings (e.g. Node2Vec) as MF

¡ Random walk, matrix factorization and node 
embeddings are closely related!
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Q: What does the Web “look like” at 
a global level?
¡ Web as a graph:
§ Nodes = web pages
§ Edges = hyperlinks

§ Side issue: What is a node?
§ Dynamic pages created on the fly
§ “dark matter” – inaccessible 

database generated pages
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¡ In early days of the Web links were navigational
¡ Today many links are transactional (used not to navigate 

from page to page, but to post, comment, like, buy, …)
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¡ How is the Web linked?
¡ What is the “map” of the Web?

Web as a directed graph [Broder et al. 2000]:
§ Given node v, what nodes can v reach? 
§ What other nodes can reach v?
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¡ All web pages are not equally “important”
thispersondoesnotexist.com vs. www.stanford.edu

¡ There is large diversity 
in the web-graph 
node connectivity.

¡ So, let’s rank the pages 
using the web graph
link structure!

2/14/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

https://thispersondoesnotexist.com/
http://www.stanford.edu/


¡ We will cover the following Link Analysis 
approaches to compute the importance of 
nodes in a graph:
§ PageRank
§ Personalized PageRank (PPR)
§ Random Walk with Restarts
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¡ Idea: Links as votes
§ Page is more important if it has more links

§ In-coming links? Out-going links?
¡ Think of in-links as votes:
§ www.stanford.edu has 23,400 in-links
§ thispersondoesnotexist.com has 1 in-link

¡ Are all in-links equal?
§ Links from important pages count more
§ Recursive question! 
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¡ A “vote” from an important 
page is worth more:
§ Each link’s vote is proportional 

to the importance of its source 
page

§ If page i with importance ri has 
di out-links, each link gets ri / di
votes

§ Page j’s own importance rj is 
the sum of the votes on its in-
links

rj = ri/3 + rk/4

j

ki

rj / 3

rj / 3rj / 3

ri / 3 rk / 4
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¡ A page is important if it is 
pointed to by other important 
pages

¡ Define “rank” rj for node j
y

ma
ra/2

ry/2
ra/2

rm

ry/2

The web in 1839

“Flow” equations:
ry = ry /2 + ra /2
ra = ry /2 + rm
rm = ra /2

𝒅𝒊 … out-degree of node 𝒊
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¡ Stochastic adjacency matrix 𝑴
§ Let page 𝒋 have 𝒅𝒋 out-links

§ If 𝒋 → 𝒊, then  𝑴𝒊𝒋 =
𝟏
𝒅𝒋

§ 𝑴 is a column stochastic matrix
§ Columns sum to 1

¡ Rank vector 𝒓: An entry per page
§ 𝒓𝒊 is the importance score of page 𝒊
§ ∑𝒊 𝒓𝒊 = 𝟏

¡ The flow equations can be written 
𝒓 = 𝑴 ⋅ 𝒓

i

j

M

1/3
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y

a m

ry ra rm
ry ½ ½ 0
ra ½ 0 1
rm 0 ½ 0

ry = ry /2 + ra /2
ra = ry /2 + rm
rm = ra /2

ry ½    ½    0     ry
ra =  ½     0    1     ra
rm 0    ½    0    rm

𝒓 𝒓𝑴



¡ Imagine a random web surfer:
§ At any time 𝒕, surfer is on some page 𝑖
§ At time 𝒕 + 𝟏, the surfer follows an 

out-link from 𝒊 uniformly at random
§ Ends up on some page 𝒋 linked from 𝒊
§ Process repeats indefinitely

¡ Let:
¡ 𝒑(𝒕) … vector whose 𝑖th coordinate is the 

prob. that the surfer is at page 𝑖 at time 𝑡
§ So, 𝒑(𝒕) is a probability distribution over pages

å
®

=
ji

i
j

rr
(i)dout

j

i1 i2 i3
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¡ Where is the surfer at time t+1?
§ Follow a link uniformly at random
𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕)

¡ Suppose the random walk reaches a state 
𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕) = 𝒑(𝒕)
then 𝒑(𝑡) is stationary distribution of a random walk

¡ Our original rank vector 𝒓 satisfies  𝒓 = 𝑴 ⋅ 𝒓
§ So, 𝒓 is a stationary distribution for 

the random walk

)(M)1( tptp ×=+
j

i1 i2 i3
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¡ Recall from lecture 2 (eigenvector centrality), let 
𝑨 ∈ 𝟎, 𝟏 𝒏×𝒏 be an adj. matrix of undir. graph:

¡ Eigenvector of adjacency matrix:
vectors satisfying

¡ 𝒄: eigenvector; 𝜆: eigenvalue

¡ Note: 
§ This is the definition of eigenvector centrality (for undirected graphs).
§ PageRank is defined for directed graphs
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¡ The flow equation:
1 " 𝒓 = 𝑴 " 𝒓

¡ So the rank vector 𝒓 is an eigenvector of the 
stochastic ajd. matrix 𝑴 (with eigenvalue 1)
§ Starting from any vector 𝒖, the limit 𝑴(𝑴(…𝑴(𝑴 𝒖)))

is the long-term distribution of the surfers.
§ PageRank = Limiting distribution = principal eigenvector of 𝑀
§ Note: If 𝒓 is the limit of the product 𝑴𝑴…𝑴𝒖, then 𝒓 satisfies 

the flow equation 1 ' 𝒓 = 𝑴𝒓
§ So 𝒓 is the principal eigenvector of 𝑴 with eigenvalue 1

¡ We can now efficiently solve for r!
§ The method is called Power iteration
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ra =  ½     0    1     ra
rm 0    ½    0    rm
𝒓 𝒓𝑴



¡ PageRank:
§ Measures importance of nodes in a graph using 

the link structure of the web
§ Models a random web surfer using the stochastic 

adjacency matrix𝑴
§ PageRank solves 𝒓 = 𝑴𝒓 where 𝒓 can be viewed 

as both the principle eigenvector of 𝑴 and as the 
stationary distribution of a random walk over the 
graph
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Given a graph with n nodes, we use an 
iterative procedure:
¡ Assign each node an initial page rank
¡ Repeat until convergence (∑" 𝑟"()* − 𝑟"( < 𝜖)
§ Calculate the page rank of each node

𝒅𝒊 …. out-degree of node 𝒊
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¡ Given a web graph with N nodes, where the 
nodes are pages and edges are hyperlinks

¡ Power iteration: a simple iterative scheme
§ Initialize: 𝒓" = [1/𝑁,… . , 1/𝑁]𝑇

§ Iterate: 𝒓(𝒕%𝟏) = 𝑴 5 𝒓(

§ Stop when |𝒓 𝒕%𝟏 – 𝒓(|1 < e
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𝑑𝑖 …. out-degree of node 𝑖

𝑥 " = ∑"# |𝑥"| is the L1 norm 
Can use any other vector norm, e.g., Euclidean

About 50 iterations is sufficient to estimate the limiting solution. 
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¡ Power Iteration:
§ Set 𝑟- ← 1/N

§ 1: 𝑟′- ← ∑.→-
0!
1!

§ 2: If |𝑟 − 𝑟’| > 𝜀:
§ 𝑟 ← 𝑟′

§ 3: go to 1
¡ Example:

ry 1/3 1/3 5/12 9/24 6/15
ra = 1/3 3/6 1/3 11/24 … 6/15
rm 1/3 1/6 3/12 1/6 3/15

y

a m

y a m
y ½ ½ 0
a ½ 0 1
m 0 ½ 0

Iteration 0, 1, 2, …

𝒓𝒚 = 𝒓𝒚 /𝟐 + 𝒓𝒂 /𝟐
𝒓𝒂 = 𝒓𝒚 /𝟐 + 𝒓𝒎
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¡ Power Iteration:
§ Set 𝑟- ← 1/N

§ 1: 𝑟′- ← ∑.→-
0!
1!

§ 2: If |𝑟 − 𝑟’| > 𝜀:
§ 𝑟 ← 𝑟′

§ 3: go to 1
¡ Example:

ry 1/3 1/3 5/12 9/24 6/15
ra = 1/3 3/6 1/3 11/24 … 6/15
rm 1/3 1/6 3/12 1/6 3/15

y

a m

y a m
y ½ ½ 0
a ½ 0 1
m 0 ½ 0

Iteration 0, 1, 2, …
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¡ Does this converge?

¡ Does it converge to what we want?

¡ Are results reasonable?

or
equivalently
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Two problems:
¡ (1) Some pages are 

dead ends (have no out-links)
§ Such pages cause 

importance to “leak out”

¡ (2) Spider traps
(all out-links are within the group)
§ Eventually spider traps absorb all importance
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¡ The “Spider trap” problem:

¡ Example:

ra 1 0 0 0
rb 0 1 1 1=

ba

Iteration:  0,        1,        2,        3…
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¡ The “Dead end” problem:

¡ Example:

ra 1 0 0 0
rb 0 1 0 0=

ba

Iteration:  0,        1,        2,        3…
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¡ Solution for spider traps: At each time step, the 
random surfer has two options
§ With prob. b, follow a link at random
§ With prob. 1-b, jump to a random page
§ Common values for b are in the range 0.8 to 0.9

¡ Surfer will teleport out of spider trap within a 
few time steps

y

a m

y

a m
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¡ Teleports: Follow random teleport links with 
total probability 1.0 from dead-ends
§ Adjust matrix accordingly

y

a m
y a m

y ½ ½ ⅓
a ½ 0 ⅓
m 0 ½ ⅓

y a m
y ½ ½ 0
a ½ 0 0
m 0 ½ 0

y

a m
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Why are dead-ends and spider traps a problem 
and why do teleports solve the problem?
¡ Spider-traps are not a problem, but with traps 

PageRank scores are not what we want
§ Solution: Never get stuck in a spider trap by 

teleporting out of it in a finite number of steps
¡ Dead-ends are a problem
§ The matrix is not column stochastic so our initial 

assumptions are not met
§ Solution: Make matrix column stochastic by always 

teleporting when there is nowhere else to go
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¡ Google’s solution that does it all:
At each step, random surfer has two options:
§ With probability b,  follow a link at random
§ With probability 1-b, jump to some random page

¡ PageRank equation [Brin-Page, 98]

𝑟! ='
"→!

𝛽
𝑟"
𝑑"
+ (1 − 𝛽)

1
𝑁
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di … out-degree 
of node i

This formulation assumes that 𝑴 has no dead ends.  We can either 
preprocess matrix 𝑴 to remove all dead ends or explicitly follow random 

teleport links with probability 1.0 from dead-ends.



¡ PageRank equation [Brin-Page, ‘98]

𝑟! =#
"→!

𝛽
𝑟"
𝑑"
+ (1 − 𝛽)

1
𝑁

¡ The Google Matrix G:

𝐺 = 𝛽 𝑀 + 1 − 𝛽
1
𝑁 -×-

¡ We have a recursive problem: 𝒓 = 𝑮 ⋅ 𝒓
And the Power method still works!

¡ What is b ?
§ In practice b =0.8,0.9 (make 5 steps on avg., jump)
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[1/N]NxN…N by N matrix
where all entries are 1/N



y
a    =
m

1/3
1/3
1/3

0.33
0.20
0.46

0.24
0.20
0.52

0.26
0.18
0.56

7/33
5/33

21/33
. . .
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y

a m

7/
15

7/15

1/15

13/15

1/151/15

1/15

7/15
7/

15
1/2 1/2   0
1/2   0    0
0   1/2   1

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

y   7/15  7/15   1/15
a   7/15  1/15   1/15
m  1/15  7/15  13/15

0.8 + 0.2

M [1/N]NxN

G
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Image credit: Wikipedia

https://en.wikipedia.org/wiki/PageRank


¡ PageRank solves for 𝒓 = 𝑮𝒓 and can be 
efficiently computed by power iteration of the 
stochastic adjacency matrix (𝑮) 

¡ Adding random uniform teleportation solves 
issues of dead-ends and spider-traps
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¡ Given: 
A bipartite graph representing user and item 
interactions (e.g. purchase) 
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¡ Goal: Proximity on graphs
§ What items should we recommend to a user who 

interacts with item Q?
§ Intuition: if items Q and P are interacted by similar 

users, recommend P when user interacts with Q

…

Item Q

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



¡ Which is more related A,A’ or B,B’?



¡ Which is more related A,A’, B,B’ or C,C’?

Shortest path



¡ Which is more related A,A’, B,B’ or C,C’?

Shortest path Common Neighbors



¡ Which is more related A,A’, B,B’ or C,C’?

D D’

Personalized Page Rank/Random Walk with Restarts



¡ PageRank:
§ Ranks nodes by “importance”
§ Teleports with uniform probability to any node in 

the network
¡ Personalized PageRank:
§ Ranks proximity of nodes to the teleport nodes 𝑺

¡ Proximity on graphs:
§ Q: What is most related item to Item Q?
§ Random Walks with Restarts

§ Teleport back to the starting node: 𝑺 = {𝑸}
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¡ Idea
§ Every node has some importance
§ Importance gets evenly split among all edges and 

pushed to the neighbors:
¡ Given a set of QUERY_NODES, we simulate a 

random walk:
§ Make a step to a random neighbor and record the visit 

(visit count)
§ With probability ALPHA, restart the walk at one of the 

QUERY_NODES
§ The nodes with the highest visit count have highest 

proximity to the QUERY_NODES
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¡ Idea:
§ Every node has some importance
§ Importance gets evenly split among all edges and 

pushed to the neighbors
¡ Given a set of QUERY NODES Q, simulate a 

random walk:
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Bipartite Pin and Board graph

Q



¡ Proximity to query node(s) Q:

Bipartite Pin and Board graph
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Q item = QUERY_NODES.sample_by_weight( )
for i in range( N_STEPS ):

user = item.get_random_neighbor( )
item = user.get_random_neighbor( ) 
item.visit_count += 1
if random( ) < ALPHA:

item = QUERY_NODES.sample.by_weight ( )        

Q



¡ Proximity to query node(s) Q:Pixie Random Walk

5 5 5 5 5 5 14 9 16 7 8 8 8 8 1 1 1

Strawberries SmoothiesYummm Smoothie Madness!•!•!•!

Q
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Number of visits by 
random walks starting at Q

User 1 User 2 User 3 User 4

Query Item Q

Q item = QUERY_NODES.sample_by_weight( )
for i in range( N_STEPS ):

user = item.get_random_neighbor( )
item = user.get_random_neighbor( ) 
item.visit_count += 1
if random( ) < ALPHA:

item = QUERY_NODES.sample.by_weight ( )        



¡ Why is this a good solution?
¡ Because the “similarity” considers:
§ Multiple connections
§ Multiple paths
§ Direct and indirect connections
§ Degree of the node
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¡ PageRank:
§ Teleports to any node
§ Nodes can have the same probability of the surfer landing:

𝑺 = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
¡ Topic-Specific PageRank aka Personalized PageRank:

§ Teleports to a specific set of nodes
§ Nodes can have different probabilities of the surfer landing 

there:
𝑺 = [0.1, 0, 0, 0.2, 0, 0, 0.5, 0, 0, 0.2]

¡ Random Walk with Restarts:
§ Topic-Specific PageRank where teleport is always to the same 

node:
𝑺 = [0, 0, 0, 0, 𝟏, 0, 0, 0, 0, 0, 0]
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¡ A graph is naturally represented as a matrix
¡ We defined a random walk process over the 

graph
§ Random surfer moving across the links and with 

random teleportation
§ Stochastic adjacency matrix M

¡ PageRank = Limiting distribution of the surfer 
location represented node importance
§ Corresponds to the leading eigenvector of 

transformed adjacency matrix M.
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¡ Recall: encoder as an embedding lookup
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Dimension/size 
of embeddings

one column per node

embedding 
matrix

embedding vector for a 
specific node

𝐙 =

Objective: maximize 𝐳-.𝐳/ for node pairs (𝑢, 𝑣) that are similar



¡ Simplest node similarity: Nodes 𝑢, 𝑣 are 
similar if they are connected by an edge

¡ This means: 𝐳./𝐳0 = 𝐴0,.
which is the (𝑢, 𝑣) entry of the graph 
adjacency matrix 𝐴

¡ Therefore, 𝒁2𝒁 = 𝐴
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¡ The embedding dimension 𝑑 (number of rows in 𝒁) 
is much smaller than number of nodes 𝑛.

¡ Exact factorization 𝐴 = 𝑍)𝑍 is generally not possible 
¡ However, we can learn 𝒁 approximately
¡ Objective:min

*
∥ A − 𝒁)𝒁 ∥+

§ We optimize 𝒁 such that it minimizes the L2 norm 
(Frobenius norm) of A − 𝒁%𝒁

§ Note in lecture 3 we used softmax instead of L2. But the 
goal to approximate A with 𝒁%𝒁 is the same.

¡ Conclusion: inner product decoder with node 
similarity defined by edge connectivity is 
equivalent to matrix factorization of 𝑨
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¡ DeepWalk and node2vec have a more 
complex node similarity definition based on 
random walks

¡ DeepWalk is equivalent to matrix 
factorization of the following complex matrix 
expression:

¡ Explanation in next slide
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𝑙𝑜𝑔 𝑣𝑜𝑙(𝐺)
1
𝑇
$

12)

0
(𝐷3)𝐴)1 𝐷3) − log 𝑏

https://keg.cs.tsinghua.edu.cn/jietang/publications/WSDM18-Qiu-et-al-NetMF-network-embedding.pdf


¡ Node2vec can also be formulated as a matrix 
factorization (albeit a more complex matrix)

¡ Refer to the paper for more detailed proofs.
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Power of normalized
adjacency matrix

context window size
See Lec 3 slide 30: 
𝑇 = |𝑁% 𝑢 |

Number of 
negative samples

Diagonal matrix 𝐷
𝐷&,& = deg(𝑢)

log 𝑣𝑜𝑙(𝐺)
1
𝑇
A

%&"

'
(𝐷("𝐴)% 𝐷(" − log 𝑏

Volume of graph

𝑣𝑜𝑙 𝐺 =A
(

A
)

𝐴(,)



Limitations of node embeddings via matrix 
factorization and random walks
§ Cannot obtain embeddings for nodes not in the 

training set
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1

4
3

2
5

Training set A newly added node 5 at test time 
(e.g. new user in a social network)

Cannot compute its embedding 
with DeepWalk / node2vec. Need to 
recompute all node embeddings.



¡ Cannot capture structural similarity:

¡ Node 1 and 11 are structurally similar – part of one 
triangle, degree 2

¡ However, they have very different embeddings
§ It’s unlikely that a random walk will reach 

node 11 from node 1

¡ DeepWalk and node2vec do not capture structural 
similarity 
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¡ Cannot utilize node, edge and graph features
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1

4
3

2
5

Feature vector
(e.g. protein properties in a 
protein-protein interaction graph)

DeepWalk / node2vec 
embeddings do not incorporate 
such node features

Solution to these limitations: Deep Representation Learning 
and Graph Neural Networks
(To be covered in depth next week)



¡ PageRank
§ Measures importance of nodes in graph
§ Can be efficiently computed by power iteration of 

adjacency matrix
¡ Personalized PageRank (PPR)

§ Measures importance of nodes with respect to a 
particular node or set of nodes

§ Can be efficiently computed by random walk
¡ Node embeddings based on random walks can 

be expressed as matrix factorization
¡ Viewing graphs as matrices plays a key role in all 

above algorithms!
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