Stanford CS224W:
Graph as Matrix: PageRank,
Random Walks and Embeddings



Graph as Matrix

In this lecture, we investigate graph analysis and
learning from a matrix perspective.

Treating a graph as a matrix allows us to:
Determine node importance via random walk (PageRank)
Obtain node embeddings via matrix factorization (MF)
View other node embeddings (e.g. Node2Vec) as MF

Random walk, matrix factorization and node

embeddings are closely related!
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Stanford CS224W:
PageRank
(aka the Google Algorithm)



Example: The Web as a Graph

Q: What does the Web “look like” at
a global level? .
Web as a graph: -

Nodes = web pages g e

Edges = hyperlinks

Side issue: What is a node? s
Dynamic pages created on the fly o

“dark matter” —inaccessible
database generated pages

2/14/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4



The Web as a Graph
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The Web as a Graph
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In early days of the Web links were navigational
Today many links are transactional (used not to navigate
from page to page, but to post, comment, like, buy, ...)
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The Web as a Directed Graph

I'm applying to
coliege

I'm a student
at Univ. of X

USNews
College
Rankings
| teach at
Univ. of X

USNews

Featured
Colleges

Networks
class blog

Blog post about
college rankings
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Other Information Networ

Kossinets-
Watts 2006

Burt 2004

Burt 2000

Granovetter
1 985

Feld 1981

Granovener

1973

Conspiracy
Y Theories
Travers- Daws 1963
Milgram 1969

Mllgram Cartwnght Lazarsfeld
1 967 Harary 1956 Menon 1954

Citations References in an Encyclopedia
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What Does the Web Look Like?

How is the Web linked?
What is the “map” of the Web?

Web as a directed graph [Broder et al. 2000]:

Given node v, what nodes can v reach?

What other nodes can reach v?

E

B F
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Ranking Nodes on the Graph

All web pages are not equally “important”

thispersondoesnotexist.com vs. www.stanford.edu

There is large diversity
in the web-graph

node connectivity.

So, let’s rank the pages
using the web graph
link structure!
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Link Analysis Algorithms

We will cover the following Link Analysis
approaches to compute the importance of
nodes in a graph:

PageRank
Personalized PageRank (PPR)

Random Walk with Restarts
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Links as Votes

Idea: Links as votes
Page is more important if it has more links

In-coming links? Out-going links?
Think of in-links as votes:
www.stanford.edu has 23,400 in-links

thispersondoesnotexist.com has 1 in-link

Are all in-links equal?

Links from important pages count more
Recursive question!
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PageRank: The “"Flow"” Model

2/14/21

A “vote” from an important
page is worth more:
Each link’s vote is proportional
to the importance of its source
page

ri/3
If page i with importance r; has />\ ./
d; out-links, each link gets r;/ d;

votes ri=r/3+nr/4

Page j's own importance r; is
the sum of the votes on its in-
links
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PageRank: The “"Flow"” Model

A page is important if it is
pointed to by other important r./2
pages

Define “rank” r; for node j

2.
'r'. — —
J di

-]

d; ... out-degree of node i “Flow” equations:
ry =r/2+r,/2
r, =r, /2 +r,

You might wonder: Let’s just use Gaussian elimination rm=1r,/2
to solve this system of linear equations. Bad idea!
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PageRank: Matrix Formulation

: : : J
Stochastic adjacency matrix M
Let page j have d; out-links ; L
1
Ifj - i,then M;; = — /
J ’ U d]- //D
M is a column stochastic matrix T,
Columns sum to 1 1/3 — [H
Rank vector r: An entry per page M
r; is the importance score of page i
uir; =1

The flow equations can be written

M- 7r zd

[—]
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Example: Flow Equations & M

r, r, r,

ryl 2| 21 0

r,| 2| 0 | 1

r,| 0 % |0
r, =r,/2+r,/2 r,| |2 72 0] 1
r, =r,/2+r, r,| =72 0 1j1
ro=r, /2 .| |0 % 0],
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Connection to Random Walk

2/14/21

Imagine a random web surfer:
At any time t, surfer is on some page i

At time t + 1, the surfer follows an
out-link from i uniformly at random - Z
J

Ends up on some page j linked from i ]

Process repeats indefinitely
Let:

p(t) ... vector whose i coordinate is the
prob. that the surfer is at page i attime ¢t

So, p(t) is a probability distribution over pages
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The Stationary Distribution

Where is the surfer at time #+1?
Follow a link uniformly at random
p(t+1)= M- p(t) p(t+1)=M- p(t)
Suppose the random walk reaches a state
p(t+1)= M- p(t) = p(t)
then p(t) is stationary distribution of a random walk
Our original rank vector r satisfies r = M - r

So, 1 is a stationary distribution for
the random walk
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Recall Eigenvector of A Matrix

2/14/21

Recall from lecture 2 (eigenvector centrality), let
A € {0, 1}™™ be an adj. matrix of undir. graph:

O 1 0 1
O 0 1

1 O

Eigenvector of adjacency matrix:
vectors satisfying Ac = Ac

C: eigenvector; A: eigenvalue

Note:

This is the definition of eigenvector centrality (for undirected graphs).
PageRank is defined for directed graphs
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Eigenvector Formulation

o Vv v 0l r
The flow equation: Ty 2 y
a r,|=|%2 0 1]} r,

1.-r =M - r

-

ml [0 2 0|1,
r M r

So the rank vector 7 is an eigenvector of the
stochastic ajd. matrix M (with eigenvalue 1)
Starting from any vector u, the limit M(M(... M(M u)))
is the long-term distribution of the surfers.
PageRank = Limiting distribution = principal eigenvector of M

Note: If is the limit of the product MM ... Mu, then r satisfies
the flow equation 1 -r = Mr

So 1 is the principal eigenvector of M with eigenvalue 1
We can now efficiently solve for r!

The method is called Power iteration
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PageRank: Summary

2/14/21

PageRank:

Measures importance of nodes in a graph using
the link structure of the web

Models a random web surfer using the stochastic
adjacency matrix M

PageRank solves ¥ = Mr where r can be viewed

as both the principle eigenvector of M and as the
stationary distribution of a random walk over the

graph
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Stanford CS224W:
PageRank: How to solve?



PageRank: How to solve?

Given a graph with n nodes, we use an
iterative procedure:
Assigh each node an initial page rank

Repeat until convergence (X;|r/ " —r!| < ¢)

Calculate the page rank of each node

t
r(t+1) _ z 7}'( )
J d;

1—]

d; .... out-degree of node i
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Power Iteration Method

Given a web graph with N nodes, where the
nodes are pages and edges are hyperlinks
Power iteration: a simple iterative scheme
Initialize: r° = [1/N, ...., 1/N]T “
cn(t+1) — R (t+1) e
Iterate: r M- r T _Z]: 0

(t+1) _ ..t
Stop when |1‘ r |1 < &€ d; .... out-degree of node i

lx]; = XY |x¢]| is the L1 norm
Can use any other vector norm, e.g., Euclidean

About 50 iterations is sufficient to estimate the limiting solution.
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PageRank: How to solve?

Power lteration:
Setr; « 1/N

1:7; (_Zl_)J di

2:If |r—71'| > €
rer
3:go0to 1
Example:
ry 1/3
1/3

M 1/3
lteration O, 1, 2, ...

ﬂ
Q
]
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m| O %3 0
r,/2 + 1r,/2

r,/2 + rm
T, /2
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PageRank: How to solve?

Power lteration:

Setr; « 1/N

1 T' < Zl_)J di

2:If |r—71'| > €

rer

3:go0to 1
Example:
r,’ 1/3]  [1/3
r.|= 13 |36
IS 13 |1/6

5/12)

1/3

312

lteration O, 1, 2, ...
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9/24
11/24| ...

116

y a m
y| Vs 0
al 0 1
m| O %! 0
r, =r,/2 +1,/2
r, =1,/2 +rm
r, = 7q/2
r N
6/15
6/15
3/15,
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PageRank: Three Questions

e ®
+1) _ E i
7/]" o d: equi:arlently r = Mr
l

1—]
Does this converge?

Does it converge to what we want?

Are results reasonable?
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PageRank: Problems

Two problems:
(1) Some pages are
dead ends (have no out-links)

Such pages cause
importance to “leak out”

(2) Spider traps

(all out-links are within the group)

Eventually spider traps absorb all importance
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Does this converge?

The “Spider trap” problem:

(£)
0—0- -
j d;

1—]

Example:
Iteration: O, 1, 2,
1

3...
r, _ 1 0O 0 ' 0
r, 0 1 1
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Does it converge to what we want?

The “Dead end” problem:

()
6—0 )Y
J d,

=]

Example:
Iteration: O, 1, 2, 3...
o _ 1 0 0 0
' 0 1 0 O
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Solution to Spider Traps

Solution for spider traps: At each time step, the
random surfer has two options

With prob. g, follow a link at random

With prob. 1-£, jump to a random page

Common values for # are in the range 0.8 to 0.9
Surfer will teleport out of spider trap within a
few time steps

ﬁ& :>Zp\6>
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Solution to Dead Ends

Teleports: Follow random teleport links with
total probability 1.0 from dead-ends

Adjust matrix accordingly

o >£&

y a m y a m
yl 2| %2 | O y| %2 | 2 | %
ol 0 | 0 | 0 |
m| 0 | %2 | O m| 0 | 2 | '
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Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem
and why do teleports solve the problem?
Spider-traps are not a problem, but with traps
PageRank scores are not what we want
Solution: Never get stuck in a spider trap by
teleporting out of it in a finite number of steps
Dead-ends are a problem

The matrix is hot column stochastic so our initial
assumptions are not met

Solution: Make matrix column stochastic by always
teleporting when there is nowhere else to go
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Solution: Random Teleports

Google’s solution that does it all:
At each step, random surfer has two options:

With probability g, follow a link at random
With probability I-f, jump to some random page

PageRank equation [Brin-Page, 98]

d; ... out-degree

_ z ri 1 1 of node |

1—]

This formulation assumes that M has no dead ends. We can either
preprocess matrix M to remove all dead ends or explicitly follow random
teleport links with probability 1.0 from dead-ends.
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The Google Matrix

2/1

4/21

PageRank equation [Brin-Page, ’98]

i= Y Bt A-B)y

l—>]
The Google Matrix G: [1/NJay-..N by N matrix

1 where all entries are 1/N
G=pM+0-p)|
N NXN

We have a recursive problem:r =G - r
And the Power method still works!
What is 8?

In practlce ,B =(0.8,0.9 (make 5 steps on avg., jump)
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M

1/21/2 0
172 0 0

0 172 1

+ 0.2

0.33 0.24
0.20 0.20
0.46 0.52

ure Leskovec, Stanford CS224W: Machine Learni

Random Teleports (3 = 0.8)

[1/N]nxn

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

y |7/15 715 1/15
a [7/15 1/15 1/15
m|1/15 7/15 13/15

0.26
0.18
0.56

G

7/33
5/33
21/33
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PageRank Example

Wikipedia
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Solving PageRank: Summary

2/1

4/21

PageRank solves for r = G1 and can be
efficiently computed by power iteration of the

stochastic adjacency matrix (G)
Adding random uniform teleportation solves

issues of dead-ends and spider-traps



Stanford CS224W:
Random Walk with Restarts
and Personalized PageRank



Example: Recommendation

Given:
A bipartite graph representing user and item
interactions (e.g. purchase)

i

?T?C WC
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Bipartite User-ltem Graph

Goal: Proximity on graphs

What items should we recommend to a user who
interacts with item Q?

Intuition: if items Q and P are interacted by similar
users, recommend P when user interacts with Q

TTC.WQQ

v
224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Bipartite User-to-ltem Graph

Which is more related A,A’ or B,B’?

TG

FQ

gt

s



Node proximity Measurements

Which is more related A,A’, B,B’ or C,C’?
LY 17

Shortest path




Node proximity Measurements

Which is more related A,A’, B,B’ or C,C’?
? ? T T B M C C,

Shortest path

Common Neighbors



Node proximity Measurements

Which is more related A,A’, B,B’ or C,C’?

?“?T HT

SEENKEX

Personalized Page Rank/Random Walk with Restarts




Proximity on Graphs

PageRank:
Ranks nodes by “importance”

Teleports with uniform probability to any node in
the network

Personalized PageRank:

Ranks proximity of nodes to the teleport nodes S
Proximity on graphs:

Q: What is most related item to Item Q?

Random Walks with Restarts
Teleport back to the starting node: § = {Q}
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ldea: Random Walks

Idea
Every node has some importance

Importance gets evenly split among all edges and
pushed to the neighbors:
Given a set of QUERY_NODES, we simulate a

random walk:
Make a step to a random neighbor and record the visit
(visit count)
With probability ALPHA, restart the walk at one of the
QUERY_NODES

The nodes with the highest visit count have highest
proximity to the QUERY_NODES
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Random Walks

Idea:
Every node has some importance

Importance gets evenly split among all edges and
pushed to the neighbors

Given a set of QUERY NODES Q, simulate a
random walk:

T
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Random Walk Algorithm

Proximity to query node(s) Q:

R { Q } item = QUERY_NODES.sample_by_weight( )
- foriinrange( N_STEPS):
user = item.get_random_neighbor( )
item = user.get_random_neighbor( )
item.visit_count += 1
if random( ) < ALPHA:
item = QUERY_NODES.sample.by weight ()

® .QWQ@? 0000000

2/14/21 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 49




Random Walk Algorithm

Proximity to query node(s) Q:

R { Q } item = QUERY_NODES.sample_by_weight( )
- foriinrange( N_STEPS):
user = item.get_random_neighbor( )
item = user.get_random_neighbor( )
item.visit_count += 1
Number of visits by if random( ) < ALPHA:
random walks starting at Q item = QUERY_NODES.sample.by_weight ()

/

5)(5)(5)(5)(5)(5)14) (9 16)(7)(8)(8)(8)(8) 1)@ @
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Why is this a good solution?
Because the “similarity” considers:

Multiple connections

Multiple paths

Direct and indirect connections
Degree of the node

?HW ﬂ f

2/14/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51




Summary: Page Rank Variants

PageRank:

Teleports to any node

Nodes can have the same probability of the surfer landing:
S =1[0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1, 0.1}
Topic-Specific PageRank aka Personalized PageRank:

Teleports to a specific set of nodes

Nodes can have different probabilities of the surfer landing
there:
S =10.14,0,0,0.2,0,0,0.5,0,0,0.2]
Random Walk with Restarts:

Topic-Specific PageRank where teleport is always to the same
node:

S =10,0,0,0,1,0,0,0,0,0,0]
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A graph is naturally represented as a matrix
We defined a random walk process over the
graph
Random surfer moving across the links and with
random teleportation
Stochastic adjacency matrix M
PageRank = Limiting distribution of the surfer
location represented node importance

Corresponds to the leading eigenvector of
transformed adjacency matrix M.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu
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Stanford CS224W:
Matrix Factorization and
Node Embeddings



Embeddings & Matrix Factorization

embedding vector for a
embedding specific node
matrix C

Dimension/size
of embeddings

7 =

one column per node

Objective: maximize z. z,, for node pairs (u, v) that are similar
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Connection to Matrix Factorization

Simplest node similarity: Nodes u, v are

similar if they are connected by an edge

This means: z,Z,, = A,

which is the (u, v) entry of the graph
adjacency matrix A
Therefore, Z'Z = A

=

_—0 = O
—_ 0 O =
-0 O O
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Matrix Factorization

2/14/21

The embedding dimension d (number of rows in Z)
is much smaller than number of nodes n.

Exact factorization A = Z'Z is generally not possible
However, we can learn Z approximately
Objective:mzin lA—-Z"Z |,

We optimize Z such that it minimizes the L2 norm
(Frobenius norm) of A — Z'Z

Note in lecture 3 we used softmax instead of L2. But the
goal to approximate A with Z” Z is the same.

Conclusion: inner product decoder with node
similarity defined by edge connectivity is
equivalent to matrix factorization of 4
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Random Walk-based Similarity

DeepWalk and node2vec have a more
complex node similarity definition based on
random walks

DeepWalk is equivalent to matrix
factorization of the following complex matrix
expression:

1 T
l 1(G) | = D71A)")D1) —logh
a i) (357 r)) -
Explanation in next slide

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE. and node2vec, WSDM 18
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Random Walk-based Similarity

Volume of graph

vol(G) = Z Z A; j Diagonal matrix D
L

\ Du,u = deg(u)

log (vol(G) (% Z;l(D‘lA)’”) D‘l) —logh

" S

context window size Number of
See Lec 3 slide 30: negative samples
T = |NR(u)|

Node2vec can also be formulated as a matrix
factorization (albeit a more complex matrix)
Refer to the paper for more detailed proofs.

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec, WSDM 18
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Limitations (1)

Cannot obtain embeddings for nodes not in the
training set

§~~
-

Training set A newly added node 5 at test time
(e.g. new user in a social network)

Cannot compute its embedding
with DeepWalk / node2vec. Need to
recompute all node embeddings.
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Limitation (2)

Cannot capture structural similarity:

Node 1 and 11 are structurally similar — part of one
triangle, degree 2
However, they have very different embeddings

It’s unlikely that a random walk will reach
node 11 from node 1

DeepWalk and node2vec do not capture structural
similarity
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Limitations (3)

Cannot utilize node, edge and graph features

Feature vector
(e.g. protein properties in a
I / protein-protein interaction graph)

I DeepWalk / node2vec
I embeddings do not incorporate
such node features

Solution to these limitations: Deep Representation Learning
and Graph Neural Networks
(To be covered in depth next week)
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Summary

PageRank
Measures importance of nodes in graph

Can be efficiently computed by power iteration of
adjacency matrix

Personalized PageRank (PPR)

Measures importance of nodes with respect to a
particular node or set of nodes

Can be efficiently computed by random walk
Node embeddings based on random walks can
be expressed as matrix factorization

Viewing graphs as matrices plays a key role in all
above algorithms!
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