Stanford CS224W: Graph as Matrix: PageRank, Random Walks and Embeddings

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Graph as Matrix

In this lecture, we investigate graph analysis and learning from a matrix perspective.

- Treating a graph as a matrix allows us to:
 - Determine node importance via random walk (PageRank)
 - Obtain node embeddings via matrix factorization (MF)
 - View other node embeddings (e.g. Node2Vec) as MF
- Random walk, matrix factorization and node embeddings are closely related!

Stanford CS224W: PageRank (aka the Google Algorithm)

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Example: The Web as a Graph

Q: What does the Web "look like" at a global level?

- Web as a graph:
 - Nodes = web pages
 - Edges = hyperlinks
 - Side issue: What is a node?
 - Dynamic pages created on the fly
 - "dark matter" inaccessible database generated pages

The Web as a Graph

I teach a class on Networks.

CS224W: Classes are in the Gates building

Computer Science Department at Stanford

Stanford University

The Web as a Graph

- In early days of the Web links were navigational
- Today many links are transactional (used not to navigate from page to page, but to post, comment, like, buy, ...)

The Web as a Directed Graph

Other Information Networks

Citations

References in an Encyclopedia

What Does the Web Look Like?

- How is the Web linked?
- What is the "map" of the Web?

Web as a <u>directed graph</u> [Broder et al. 2000]:

- Given node v, what nodes can v reach?
- What other nodes can reach v?

Ranking Nodes on the Graph

- All web pages are not equally "important" thispersondoesnotexist.com vs. www.stanford.edu
- There is large diversity in the web-graph node connectivity.
- So, let's rank the pages using the web graph link structure!

Link Analysis Algorithms

- We will cover the following Link Analysis approaches to compute the importance of nodes in a graph:
 - PageRank
 - Personalized PageRank (PPR)
 - Random Walk with Restarts

Links as Votes

- Idea: Links as votes
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- Think of in-links as votes:
 - www.stanford.edu has 23,400 in-links
 - thispersondoesnotexist.com has 1 in-link
- Are all in-links equal?
 - Links from important pages count more
 - Recursive question!

PageRank: The "Flow" Model

- A "vote" from an important page is worth more:
 - Each link's vote is proportional to the importance of its source page
 - If page i with importance r_i has d_i out-links, each link gets r_i / d_i votes
 - Page j's own importance r_j is the sum of the votes on its inlinks

PageRank: The "Flow" Model

- A page is important if it is pointed to by other important pages
- Define "rank" r_j for node j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 d_i ... out-degree of node i

You might wonder: Let's just use Gaussian elimination to solve this system of linear equations. Bad idea!

The web in 1839

"Flow" equations:

$$r_y = r_y/2 + r_a/2$$

 $r_a = r_y/2 + r_m$
 $r_m = r_a/2$

PageRank: Matrix Formulation

- Stochastic adjacency matrix M
 - Let page \boldsymbol{j} have $\boldsymbol{d_j}$ out-links
 - If $j \rightarrow i$, then $M_{ij} = \frac{1}{d_i}$
 - M is a column stochastic matrix
 - Columns sum to 1

- Rank vector r: An entry per page
 - $lackbox{r}_i$ is the importance score of page $oldsymbol{i}$
- The flow equations can be written

$$r = M \cdot r$$

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

Example: Flow Equations & M

	ry	r _a	r _m
ry	1/2	1/2	0
ra	1/2	0	1
r _m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Connection to Random Walk

Imagine a random web surfer:

- At any time t, surfer is on some page i
- At time t + 1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely

Let:

- p(t) ... vector whose i^{th} coordinate is the prob. that the surfer is at page i at time t
- lacksquare So, $oldsymbol{p}(oldsymbol{t})$ is a probability distribution over pages

The Stationary Distribution

- Where is the surfer at time *t*+1?
 - Follow a link uniformly at random $p(t+1) = M \cdot p(t)$

Suppose the random walk reaches a state

$$p(t+1) = M \cdot p(t) = p(t)$$

then p(t) is stationary distribution of a random walk

- Our original rank vector r satisfies $r = M \cdot r$
 - So, r is a stationary distribution for the random walk

Recall Eigenvector of A Matrix

Recall from lecture 2 (eigenvector centrality), let $A \in \{0, 1\}^{n \times n}$ be an adj. matrix of undir. graph:

- Eigenvector of adjacency matrix: vectors satisfying $\lambda c = Ac$
- c: eigenvector; λ : eigenvalue
- Note:
 - This is the definition of eigenvector centrality (for undirected graphs).
 - PageRank is defined for directed graphs

Eigenvector Formulation

The flow equation:

$$1 \cdot r = M \cdot r$$

$$\begin{vmatrix} r_y \\ r_a \\ r_m \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{vmatrix} \begin{vmatrix} r_y \\ r_a \\ r_m \end{vmatrix}$$

- So the rank vector r is an eigenvector of the stochastic ajd. matrix M (with eigenvalue 1)
 - Starting from any vector u, the limit M(M(...M(M u))) is the **long-term distribution** of the surfers.
 - PageRank = Limiting distribution = principal eigenvector of M
 - Note: If r is the limit of the product $MM \dots Mu$, then r satisfies the flow equation $1 \cdot r = Mr$
 - lacksquare So $m{r}$ is the **principal eigenvector** of $m{M}$ with eigenvalue $m{1}$
- We can now efficiently solve for r!
 - The method is called Power iteration

PageRank: Summary

PageRank:

- Measures importance of nodes in a graph using the link structure of the web
- Models a random web surfer using the stochastic adjacency matrix M
- PageRank solves r = Mr where r can be viewed as both the principle eigenvector of M and as the stationary distribution of a random walk over the graph

Stanford CS224W: PageRank: How to solve?

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University
http://cs224w.stanford.edu

PageRank: How to solve?

Given a graph with *n* nodes, we use an iterative procedure:

- Assign each node an initial page rank
- Repeat until convergence $(\sum_i |r_i^{t+1} r_i^t| < \epsilon)$
 - Calculate the page rank of each node

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

 d_i out-degree of node i

Power Iteration Method

- Given a web graph with N nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
 - Initialize: $r^0 = [1/N,, 1/N]^T$
 - Iterate: $r^{(t+1)} = M \cdot r^t$
 - Stop when $|\boldsymbol{r}^{(t+1)} \boldsymbol{r}^t|_1 < \varepsilon$

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$
.... out-degree of node

 d_i out-degree of node i

$$|x|_1 = \sum_1^N |x_1|$$
 is the **L**₁ norm
Can use any other vector norm, e.g., Euclidean

About 50 iterations is sufficient to estimate the limiting solution.

PageRank: How to solve?

Power Iteration:

- Set $r_j \leftarrow 1/N$
- 1: $r'_j \leftarrow \sum_{i \to j} \frac{r_i}{d_i}$
- **2:** If $|r r'| > \varepsilon$:
 - $r \leftarrow r'$
- **3:** go to **1**
- Example:

	у	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

 $r_a = r_y/2 + rm$
 $r_m = r_a/2$

PageRank: How to solve?

Power Iteration:

- Set $r_i \leftarrow 1/N$
- 1: $r'_j \leftarrow \sum_{i \rightarrow j} \frac{r_i}{d_i}$
- **2:** If $|r r'| > \varepsilon$:
 - $r \leftarrow r'$
- **3:** go to **1**

Example:

Iteration 0, 1, 2, ...

$$\begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \\ 1/6 \end{bmatrix} \begin{bmatrix} 1/3 \\ 5/12 \\ 1/3 \\ 1/6 \end{bmatrix} \begin{bmatrix} 9/24 \\ 11/24 \\ 1/6 \end{bmatrix} \dots$$

$$r_y = r_y/2 + r_a/2$$

 $r_a = r_y/2 + rm$
 $r_m = r_a/2$

6/15 6/15

PageRank: Three Questions

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$
 or equivalently $r = Mr$

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?

PageRank: Problems

Two problems:

- (1) Some pages are dead ends (have no out-links)
 - Such pages cause importance to "leak out"
- (2) Spider traps
 (all out-links are within the group)
 - Eventually spider traps absorb all importance

Does this converge?

The "Spider trap" problem:

Iteration: 0

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Example:

ittiation.	Ο,	Δ,	۷,	J
r _a _	1	0	0	0
r_b	0	0	1	1

Does it converge to what we want?

The "Dead end" problem:

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Example:

Iteration:	0,	1,	2,	3
^ a _	1	0	0	0
= _h	0	1	0	0

Solution to Spider Traps

- Solution for spider traps: At each time step, the random surfer has two options
 - With prob. β , follow a link at random
 - With prob. **1-** β , jump to a random page
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Solution to Dead Ends

- Teleports: Follow random teleport links with total probability 1.0 from dead-ends
 - Adjust matrix accordingly

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- Spider-traps are not a problem, but with traps
 PageRank scores are not what we want
 - Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a problem
 - The matrix is not column stochastic so our initial assumptions are not met
 - Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Solution: Random Teleports

- Google's solution that does it all:
 - At each step, random surfer has two options:
 - With probability β , follow a link at random
 - With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \to i} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

This formulation assumes that *M* has no dead ends. We can either preprocess matrix *M* to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

The Google Matrix

PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

The Google Matrix G:

 $[1/N]_{NxN}...N$ by N matrix where all entries are 1/N

$$G = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$

- We have a recursive problem: $r = G \cdot r$ And the Power method still works!
- What is β ?
 - In practice $\beta = 0.8, 0.9$ (make 5 steps on avg., jump)

Random Teleports ($\beta = 0.8$)

PageRank Example

Image credit: Wikipedia

Solving PageRank: Summary

- PageRank solves for r = Gr and can be efficiently computed by power iteration of the stochastic adjacency matrix (G)
- Adding random uniform teleportation solves issues of dead-ends and spider-traps

Stanford CS224W: Random Walk with Restarts and Personalized PageRank

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Example: Recommendation

Given:

A bipartite graph representing user and item interactions (e.g. purchase)

Bipartite User-Item Graph

- Goal: Proximity on graphs
 - What items should we recommend to a user who interacts with item Q?
 - Intuition: if items Q and P are interacted by similar users, recommend P when user interacts with Q

Bipartite User-to-Item Graph

Which is more related A,A' or B,B'?

Node proximity Measurements

Which is more related A,A', B,B' or C,C'?

Node proximity Measurements

Which is more related A,A', B,B' or C,C'?

Node proximity Measurements

Which is more related A,A', B,B' or C,C'?

Personalized Page Rank/Random Walk with Restarts

Proximity on Graphs

PageRank:

- Ranks nodes by "importance"
- Teleports with uniform probability to any node in the network
- Personalized PageRank:
 - lacksquare Ranks proximity of nodes to the teleport nodes $oldsymbol{\mathcal{S}}$
- Proximity on graphs:
 - Q: What is most related item to Item Q?
 - Random Walks with Restarts
 - lacktriangle Teleport back to the starting node: $m{S} = \{ m{Q} \}$

Idea: Random Walks

Idea

- Every node has some importance
- Importance gets evenly split among all edges and pushed to the neighbors:
- Given a set of QUERY_NODES, we simulate a random walk:
 - Make a step to a random neighbor and record the visit (visit count)
 - With probability ALPHA, restart the walk at one of the QUERY NODES
 - The nodes with the highest visit count have highest proximity to the QUERY_NODES

Random Walks

- Idea:
 - Every node has some importance

Bipartite Pineand Board graph

Given a set of QUERY NODES Q, simulate a random walk:

Random Walk Algorithm

Proximity to query node(s) Q:

```
BIPARTITE PIN ange(NETEPS):

BIPARTITE PIN ANGEL BY Weight()

for i in range(NETEPS):

tem = user.get_random_neighbox()

item.visit_count += 1

if random() < ALPHA:

item = QUERY_NODES.sample.by_weight()
```


Random Walk Algorithm

Proximity to query node(s) Q:

```
ALPHA = 0.5
                                 item = QUERY NODES.sample_by_weight( )
  QUERY_NODES =
                                for i in range( N_STEPS ):
                                    user = item.get_random_neighbor( )
                                    item = user.get_random_neighbor( )
                                    item.visit count += 1
Number of visits by
                                    if random( ) < ALPHA:</pre>
random walks starting at Q
                                        item = QUERY NODES.sample.by weight ()
                                  Query Item Q
                                           16
                                                         User 3
                User 1
                                     User 2
                                                                           User 4
```

Benefits

- Why is this a good solution?
- Because the "similarity" considers:
 - Multiple connections
 - Multiple paths
 - Direct and indirect connections
 - Degree of the node

Summary: Page Rank Variants

PageRank:

- Teleports to any node
- Nodes can have the same probability of the surfer landing:

- Topic-Specific PageRank aka Personalized PageRank:
 - Teleports to a specific set of nodes
 - Nodes can have different probabilities of the surfer landing there:

$$S = [0.1, 0, 0, 0.2, 0, 0, 0.5, 0, 0, 0.2]$$

- Random Walk with Restarts:
 - Topic-Specific PageRank where teleport is always to the same node:

$$S = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]$$

Summary

- A graph is naturally represented as a matrix
- We defined a random walk process over the graph
 - Random surfer moving across the links and with random teleportation
 - Stochastic adjacency matrix M
- PageRank = Limiting distribution of the surfer location represented node importance
 - Corresponds to the leading eigenvector of transformed adjacency matrix M.

Stanford CS224W: Matrix Factorization and Node Embeddings

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Embeddings & Matrix Factorization

Recall: encoder as an embedding lookup

Objective: maximize $\mathbf{z}_{v}^{\mathrm{T}}\mathbf{z}_{u}$ for node pairs (u, v) that are similar

Connection to Matrix Factorization

- Simplest **node similarity**: Nodes u, v are similar if they are connected by an edge
- This means: $\mathbf{z}_{v}^{\mathrm{T}}\mathbf{z}_{u} = A_{u,v}$ which is the (u,v) entry of the graph adjacency matrix A
- Therefore, $\mathbf{Z}^T \mathbf{Z} = A$

Matrix Factorization

- The embedding dimension d (number of rows in Z) is much smaller than number of nodes n.
- Exact factorization $A = Z^T Z$ is generally not possible
- However, we can learn Z approximately
- Objective: $\min_{\mathbf{Z}} \| \mathbf{A} \mathbf{Z}^T \mathbf{Z} \|_2$
 - We optimize Z such that it minimizes the L2 norm (Frobenius norm) of $A Z^T Z$
 - Note in lecture 3 we used softmax instead of L2. But the goal to approximate \mathbf{A} with $\mathbf{Z}^T \mathbf{Z}$ is the same.
- Conclusion: inner product decoder with node similarity defined by edge connectivity is equivalent to matrix factorization of A

Random Walk-based Similarity

- DeepWalk and node2vec have a more complex node similarity definition based on random walks
- DeepWalk is equivalent to matrix factorization of the following complex matrix expression:

$$\log\left(vol(G)\left(\frac{1}{T}\sum_{r=1}^{T}(D^{-1}A)^{r}\right)D^{-1}\right) - \log b$$

Explanation in next slide

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec, WSDM 18

Random Walk-based Similarity

Volume of graph

- Node2vec can also be formulated as a matrix factorization (albeit a more complex matrix)
- Refer to the paper for more detailed proofs.

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec, WSDM 18

Limitations (1)

Limitations of node embeddings via matrix factorization and random walks

Cannot obtain embeddings for nodes not in the training set

Training set

A newly added node 5 at test time (e.g. new user in a social network)

Cannot compute its embedding with DeepWalk / node2vec. Need to recompute all node embeddings.

Limitation (2)

Cannot capture structural similarity:

- Node 1 and 11 are structurally similar part of one triangle, degree 2
- However, they have very different embeddings
 - It's unlikely that a random walk will reach node 11 from node 1
- DeepWalk and node2vec do not capture structural similarity

Limitations (3)

Cannot utilize node, edge and graph features

Feature vector

(e.g. protein properties in a protein-protein interaction graph)

DeepWalk / node2vec embeddings do not incorporate such node features

Solution to these limitations: Deep Representation Learning and Graph Neural Networks

(To be covered in depth next week)

Summary

PageRank

- Measures importance of nodes in graph
- Can be efficiently computed by power iteration of adjacency matrix
- Personalized PageRank (PPR)
 - Measures importance of nodes with respect to a particular node or set of nodes
 - Can be efficiently computed by random walk
- Node embeddings based on random walks can be expressed as matrix factorization
- Viewing graphs as matrices plays a key role in all above algorithms!