Stanford CS224W: Node Embeddings

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Recap: Traditional ML for Graphs

Given an input graph, extract node, link and graph-level features, learn a model (SVM, neural network, etc.) that maps features to labels.

Graph Representation Learning alleviates the need to do feature engineering every single time.

Graph Representation Learning

Goal: Efficient task-independent feature learning for machine learning with graphs!

Why Embedding?

¡ **Task: map nodes into an embedding space**

- Similarity of embeddings between nodes indicates their similarity in the network. For example:
	- Both nodes are close to each other (connected by an edge)
- Encode network information
- § Potentially used for many downstream predictions

Example Node Embedding

¡ **2D embedding of nodes of the Zachary's** Karate Club network: $\overline{}$

Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. *KDD 2014.*

2/14/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

Stanford CS224W: Node Embeddings: **Encoder and Decoder**

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

¡ **Assume we have a graph** G**:**

- \blacksquare V is the vertex set.
- A is the adjacency matrix (assume binary).
- § **For simplicity: no node features or extra information is used**

Embedding Nodes

• Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the graph

Embedding Nodes

Learning Node Embeddings

- **1. Encoder** maps from nodes to embeddings
- **2. Define a node similarity function** (i.e., a measure of similarity in the original network)
- **3. Decoder DEC** maps from embeddings to the similarity score
- **4. Optimize the parameters of the encoder so that:**

 $DEC(\mathbf{z}_{v}^{\text{T}}\mathbf{z}_{u})$

similarity $(u, v) \approx \mathbf{z}_{v}^{\mathrm{T}} \mathbf{z}_{u}$

in the original network Similarity of the embedding

Two Key Components

- **Encoder:** maps each node to a low-dimensional vector $ENC(v) = z_v$ embedding node in the input graph d-dimensional
- **Example 7 Instrument Specifies how the** relationships in vector space map to the relationships in the original network **Decoder** similarity (u,v) \approx $\mathbf{z}_{v}^{\text{T}}\mathbf{z}_{u}$

Similarity of u and v in

"Shallow" Encoding

Simplest encoding approach: **Encoder is just an embedding-lookup**

$$
ENC(v) = \mathbf{z}_v = \mathbf{Z} \cdot v
$$

matrix, each column is a node embedding [what we learn / optimize] indicator vector, all zeroes except a one in column indicating node *v* $Z \in \mathbb{R}^{d \times |\mathcal{V}|}$ $v \in \mathbb{I}^{|\mathcal{V}|}$

"Shallow" Encoding

Simplest encoding approach: **encoder is just an embedding-lookup**

"Shallow" Encoding

Simplest encoding approach: **Encoder is just an embedding-lookup**

Each node is assigned a unique embedding vector (i.e., we directly optimize the embedding of each node)

Many methods: DeepWalk, node2vec

Framework Summary

¡ **Encoder + Decoder Framework**

- Shallow encoder: embedding lookup
- \blacksquare Parameters to optimize: $\mathbb Z$ which contains node embeddings \mathbf{z}_n for all nodes $u \in V$
- We will cover deep encoders (GNNs) in Lecture 6
- **Decoder:** based on node similarity.
- **Objective:** maximize $\mathbf{z}_v^T \mathbf{z}_u$ for node pairs (u, v) that are **similar**

How to Define Node Similarity?

- ¡ Key choice of methods is **how they define node similarity.**
- Should two nodes have a similar embedding if they…
	- are linked?
	- § share neighbors?
	- § have similar "structural roles"?
- ¡ We will now learn node similarity definition that uses **random walks**, and how to optimize embeddings for such a similarity measure.

Note on Node Embeddings

- ¡ This is **unsupervised/self-supervised** way of learning node embeddings
	- We are **not** utilizing node labels
	- We are **not** utilizing node features
	- The goal is to directly estimate a set of coordinates (i.e., the embedding) of a node so that some aspect of the network structure (captured by DEC) is preserved
- ¡ These embeddings are **task independent**
	- They are not trained for a specific task but can be used for any task.

Stanford CS224W: Random Walk Approaches for Node Embeddings

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Notation

- **Vector** \mathbf{z}_u :
	- **The embedding of node** u **(what we aim to find).**
- **Probability** $P(v|\mathbf{z}_u): \iff$ Our model prediction based on \mathbf{z}_u
	- **The (predicted) probability** of visiting node ν on random walks starting from node u .

Non-linear functions used to produce predicted **probabilities**

- ¡ **Softmax** function
	- **Turns vector of K real values (model predictions) into** K probabilities that sum to 1: $\sigma(z)_i =$ e^{2i} $\frac{\epsilon}{\sum_{j=1}^K e^{Z_j}}$
- ¡ **Sigmoid** function:
	- S-shaped function that turns real values into the range of (0, 1). Written as $S(x) = \frac{1}{1+e^{-x}}$.

Random Walk

probability that u and ^v co-occur on a random walk over the graph $\mathbf{z}_u^{\text{T}} \mathbf{z}_v \approx$

Random-Walk Embeddings

1. Estimate probability of visiting node on a random walk starting from node *u* **using some random walk strategy**

2. Optimize embeddings to encode these random walk statistics: \mathbf{Z}_i

Similarity in embedding space (Here: dot product= $cos(\theta)$) encodes random walk "similarity" $P_R(v|u)$

 $\propto P_R(v|u)$

 θ

 \mathbf{Z}_i

Why Random Walks?

- **1. Expressivity:** Flexible stochastic definition of node similarity that incorporates both local and higher-order neighborhood information **Idea:** if random walk starting from node u visits v with high probability, u and v are similar (high-order multi-hop information)
- **2. Efficiency:** Do not need to consider all node pairs when training; only need to consider pairs that co-occur on random walks
- **Intuition: Find embedding of nodes in** d -dimensional space that preserves similarity
- **I** Idea: Learn node embedding such that nearby nodes are close together in the network
- **Given a node** u **, how do we define nearby** nodes?
	- $N_R(u)$... neighbourhood of u obtained by some random walk strategy R

Feature Learning as Optimization

Given
$$
G = (V, E)
$$
,

- Our goal is to learn a mapping $f: u \to \mathbb{R}^d$: $f(u) = \mathbf{Z}_{u}$
- **Log-likelihood objective:** max $\int\limits_f$ iax \sum $u \in V$ $\log P(N_R(u) | \mathbf{z}_u)$
	- $N_R(u)$ is the neighborhood of node u by strategy R
- **Given node** u **, we want to learn feature** representations that are predictive of the nodes in its random walk neighborhood $N_R(u)$

- 1. Run **short fixed-length random walks** starting from each node u in the graph using some random walk strategy ^R
- 2. For each node u collect $N_R(u)$, the multiset^{*} of nodes visited on random walks starting from u
- 3. Optimize embeddings according to: Given node u , predict its neighbors $N_R(u)$

2/14/21

$\max_{f} \sum_{\nu} \log P(N_R(u)) | \mathbf{z}_u)$ $u \in V$ $M_R(u)$ can have repeat elements since nodes can be visited multiple times on random walks
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu Maximum likelihood objective

Equivalently,

$$
\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))
$$

- **Intuition:** Optimize embeddings Z_{11} to maximize the likelihood of random walk co-occurrences
- **Parameterize** $P(v | \mathbf{z}_n)$ using softmax:

$$
P(v|\mathbf{z}_u) = \frac{\exp(\mathbf{z}_u^{\mathrm{T}} \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^{\mathrm{T}} \mathbf{z}_n)}
$$

Why softmax? We want node ν to be most similar to node u (out of all nodes n). **Intuition:** $\sum_i \exp(x_i) \approx$ $\max_i \exp(x_i)$

Putting it all together:

Optimizing random walk embeddings =

Finding embeddings \mathbf{z}_n , that minimize \mathcal{L}

But doing this naively is too expensive!

But doing this naively is too expensive!

$$
\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(\frac{\exp(\mathbf{z}_u^T \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^T \mathbf{z}_n)})
$$

The normalization term from the softmax is the culprit… can we approximate it?

Negative Sampling

East Solution: Negative sampling

Why is the approximation Technically, this is a differ Negative Sampling is a form Contrastive Estimation (N maximizes the log probab

New formulation corresponds logistic regression (sigmo distinguish the target node sampled from background

More at https://arxiv.org/pdf

 $\approx \log\left(\sigma(\mathbf{z}_u^{\mathrm{T}}\mathbf{z}_v)\right) - \sum_{i=1}^k \log\left(\sigma(\mathbf{z}_u^{\mathrm{T}}\mathbf{z}_{n_i})\right)$, $n_i \sim P_V$

)

sigmoid function (makes each term a "probability"

 $\log(\frac{\exp(\mathbf{z}_u^{\mathrm{T}} \mathbf{z}_v)}{\sqrt{T}})$

 $\Sigma_{n\in V} \exp(\mathbf{z}_u^{\mathrm{T}} \mathbf{z}_n$

between 0 and 1)

random distribution over nodes

Instead of normalizing w.r.t. all nodes, just normalize against *k* random "**negative sam**

Negative Sampling

$$
\log\left(\frac{\exp(\mathbf{z}_{u}^{T}\mathbf{z}_{v})}{\sum_{n\in V}\exp(\mathbf{z}_{u}^{T}\mathbf{z}_{n})}\right)
$$
\n
$$
\approx \log\left(\sigma(\mathbf{z}_{u}^{T}\mathbf{z}_{v})\right) - \sum_{i=1}^{k} \log\left(\sigma(\mathbf{z}_{u}^{T}\mathbf{z}_{n_{i}})\right), n_{i} \sim P_{V}
$$

- Sample k negative nodes each with prob. proportional to its degree
- **Two considerations for k (# negative samples):**
	- 1. Higher k gives more robust estimates
	- 2. Higher k corresponds to higher bias on negative events

In practice $k = 5-20$

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

Stochastic Gradient Descent

■ After we obtained the objective function, how do we optimize (minimize) it?

$$
\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))
$$

■ Gradient Descent: a simple way to minimize L :

- **•** Initialize z_i at some randomized value for all i.
- Iterate until convergence.
	- For all *i*, compute the derivative $\frac{\partial \mathcal{L}}{\partial z}$ ∂z_i . η : learning rate
	- For all *i*, make a step towards the direction of derivative: $z_i \leftarrow z_i \eta \frac{\partial \mathcal{L}}{\partial z_i}$ ∂z_i

.

Stochastic Gradient Descent

- § **Stochastic Gradient Descent**: Instead of evaluating gradients over all examples, evaluate it for each **individual** training example.
	- Initialize z_i at some randomized value for all i.
	- **•** Iterate until convergence: $\mathcal{L}^{(u)} =$ \sum ■ Sample a node *i*, for all *j* calculate the derivative $\frac{\partial \mathcal{L}^{(i)}}{\partial z}$ ∂z_j . ■ For all j, update: $z_j \leftarrow z_j - \eta$ $\partial \mathcal{L}^{(i)}$ ∂z_j . $v{\in}N_R(u)$ $-\text{log}(P(v|\mathbf{z}_u))$

Random Walks: Summary

- 1. Run **short fixed-length** random walks starting from each node on the graph
- 2. For each node u collect $N_R(u)$, the multiset of nodes visited on random walks starting from u
- 3. Optimize embeddings using Stochastic Gradient Descent:

$$
\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))
$$

We can efficiently approximate this using negative sampling!

How should we randomly wa

- **S[o far we have described how t](https://arxiv.org/abs/1403.6652)o optimize** embeddings given a random walk strategy
- **E** What strategies should we use to run the **random walks[?](https://arxiv.org/pdf/1403.6652.pdf)**
	- § Simplest idea: **Just run fixed-length, unbiased random walks starting from each node** (i.e., DeepWalk from Perozzi et al., 2013)
		- The issue is that such notion of similarity is too constr
- ¡ **How can we generalize this?**

Reference: Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations.

Overview of nodezvec

- **Goal:** Embed nodes with similar network neighborhoods close in the feature space.
- We frame this goal as a maximum likelihood optimization pr[oblem, independent to the](https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf) downstream prediction task.
- **Example 1 Key observation:** Flexible notion of network neighborhood $N_R(u)$ of node u leads to rich embeddings
- **Develop biased 2nd order random walk R to** generate network neighborhood $N_R(u)$ of n

Reference: Grover et al. 2016. node2vec: Scalable Feature Learning for Networks.

node2vec: Biased Walks

Idea: use flexible, biased random walks that trade off between local and **global** views of the trade of the University Contrade network (Grover and Leskovec, 2016). iteen leed and grew

Dinged W t. Diascu wa

Two classic strategies to define a neighborhood $N_R(u)$ of a given node u :

Walk of length 3 $(N_R(u)$ of size 3): Here we propose *node2vec*, an algorithmic framework for learning feature representations for nodes in networks. In *node2vec*, we

> $N_{BFS}(u) = \{s_1, s_2, s_3\}$ Local microscopic view $S(\cdot)$ ($T(\cdot)$ $T(\$

$$
N_{DFS}(u) = \{ \text{ } S_4, S_5, S_6 \}
$$
 Global macroscopic view
\n_{14/21} _{14/21}

BFS vs. DFS

BFS: Micro-view of neighbourhood

Interpolating BFS and DFS

Biased fixed-length random walk R that given a node *u* generates neighborhood $N_R(u)$

- Two parameters:
	- § **Return parameter :**
		- **Return back to the previous node**
	- § **In-out parameter :**
		- § Moving outwards (DFS) vs. inwards (BFS)
		- **Intuitively,** q **is the "ratio" of BFS vs. DFS**

Biased Random Walks

Biased 2nd-order random walks explore network neighborhoods:

- **Rnd. walk just traversed edge** (s_1, w) **and is now at w**
- **Insight:** Neighbors of w can only be:

Idea: Remember where the walk came from

Biased Random Walks

• Walker came over edge (s_1, w) and is at w . **Where to go next?**

 $1/p, 1/q, 1$ are unnormalized probabilities

- \blacksquare p , q model transition probabilities
	- \boldsymbol{p} ... return parameter
	- \blacksquare q ... "walk away" parameter

Biased Random Walks

 \blacksquare Walker came over edge (s_1, w) and is at w . **Where to go next?**

BFS-like walk: Low value of p

Unnormalized transition prob. segmented based on distance from $s₁$

DFS-like walk: Low value of q

 $N_R(u)$ are the nodes visited by the biased walk

nodezvec algorithm

- **1) Compute random walk probabilities**
- \blacksquare **2)** Simulate r random walks of length *l* starting from each node u
- 3) Optimize the node2vec objective using Stochastic Gradient Descent
- **Linear-time** complexity
- All 3 steps are individually parallelizable

Other Random Walk Ideas

¡ **Different kinds of biased random walks:**

- Based on nod[e attributes \(Dong et al., 2017\).](https://arxiv.org/pdf/1704.03165.pdf)
- [Based on learned weights \(Abu-El-Haija et al., 2017\)](https://arxiv.org/abs/1706.07845)

¡ **Alternative optimization schemes:**

- Directly optimize based on 1-hop and 2-hop random probabilities (as in LINE from Tang et al. 2015).
- ¡ **Network preprocessing techniques:**
	- Run random walks on modified versions of the origin network (e.g., Ribeiro et al. 2017's struct2vec, Chen e 2016's HARP).
- ¡ **Core idea:** Embed nodes so that distances in embedding space reflect node similarities in the original network.
- ¡ **Different notions of node similarity:**
	- § Naïve: similar if 2 nodes are connected
	- § Neighborhood overlap (covered in Lecture 2)
	- § Random walk approaches **(covered today)**

Summary so far

¡ **So what method should I use..?**

- No one method wins in all cases....
	- E.g., node2vec performs better on node classific while alternative methods perform better on lin prediction (Goyal and Ferrara, 2017 survey)
- \blacksquare Random walk approaches are generally m efficient
- **In general:** Must choose definition of nod similarity that matches your application!

Stanford CS224W: Embedding Entire Graphs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Embedding Entire Graphs

■ Goal: Want to embed a subgraph or an entire graph G. Graph embedding: \mathbf{z}_G .

embedding space

"" " " " A ^ZG

¡ **Tasks:**

- Classifying toxic vs. non-toxic molecules
- § Identifying anomalous graphs

pproach 1

Simple idea 1:

- Run a standard graph embedding technique *on* [the \(sub\)graph](https://arxiv.org/abs/1509.09292)
- **Then just sum (or average) the node** embeddings in the (sub)graph G

■ Used by Duvenaud et al., 2016 to classify molecules based on their graph structure

Approach 2

¡ **Idea 2:** Introduce a **"virtual node"** to represent th[e \(sub\)graph a](https://arxiv.org/abs/1511.05493)nd run a stand graph embedding technique

Approach 3: Anonymous Walk Embed

States in **anonymous walks** correspond to the index of the **first time** we visited the node in random walk

Anonymous Walk Embeddings, ICML 2018 https://arxiv.org/pdf/1805.11921.pdf

2/14/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Approach 3: Anonymous Walk Embeddings

- **Agnostic to the identity of the nodes visited** (hence anonymous)
- Example RW1:

- Step 1: node A node 1
- Step 2: node B
- ¡ Step **3**: node C
- Step 4: node B
- ¡ Step **5**: node C
- node 2 (different from node 1)
- node 3 (different from node 1, 2)
	- node 2 (same as the node in step 2)
		- node 3 (same as the node in step 3)
- ¡ Note: RW2 gives the same anonymous walk

Number of Walks Grows

Number of anonymous walks grows exponentially:

• There are 5 anon. walks w_i **of length 3:** w_1 =111, w_2 =112, w_3 = 121, w_4 = 122, w_5 = 123

Simple Use of Anonymous Walks

- **Simulate anonymous walks** w_i **of l steps and** record their counts
- ¡ **Represent the graph as a probability distribution over these walks**

¡ **For example:**

- Set $l = 3$
- Then we can represent the graph as a 5-dim vector
	- Since there are 5 anonymous walks w_i of length 3: 111, 112, 121, 122, 123
- $\mathbb{Z}_G[i]$ = probability of anonymous walk W_i in G

Sampling Anonymous Walks

- **Exampling anonymous walks: Generate** independently a set of m random walks
- **Represent the graph as a probability distribution** over these walks
- \blacksquare How many random walks m do we need?
	- We want the distribution to have error of more than ε with prob. less than δ :

$$
m = \left[\frac{2}{\varepsilon^2} \left(\log(2^n - 2) - \log(\delta)\right)\right]
$$

where: η is the total number of anon. walks of length l .

For example:

There are $\eta = 877$ anonymous walks of length $l = 7$. If we set $\epsilon = 0.1$ and $\delta = 0.01$ then we need to generate $m=122,500$ random walks

Rather than simply represent each walk by the fraction of times it occurs, we **learn embedding of anonymous walk**

■ Learn a graph embedding Z_G together with all **the anonymous walk embeddings** $Z = \{z_i : i = 1 ... \eta\}$, where η is the number of sampled anonymous walks.

How to embed walks?

¡ **Idea:** Embed walks s.t. the next walk can be predicted

Learn Walk Embeddings

- A vector parameter \mathbf{z}_G for input graph
	- The embedding of entire graph to be learned
- Starting from **node 1**: Sample anonymous random walks, e.g. w_1 w_2 w_3 w_4

 \blacksquare Learn to predict walks that co-occur in Δ -size **window** (e.g. predict w_2 given w_1 , w_3 if $\Delta = 1$) **• Objective:** $T-\Delta$

> max > $\log P(w_t|w_{t-\Delta}, ..., w_{t+\Delta}, \mathbf{z}_G)$

 $t = \Delta$ Sum the objective over all nodes in the graph Graph d

Learn Walk Embeddings

- **Run T different random walks from** \boldsymbol{u} **each of length** $N_R(u) = \{w_1^u, w_2^u ... w_T^u\}$
- Learn to predict walks that co-occur in Δ -size win
- **Extimate embedding** z_i **of anonymous walk** w_i Let η be number of all possible walk embeddings

$$
\text{Objective: } \max_{Z,d} \frac{1}{T} \sum_{t=\Delta}^{T-\Delta} \log P(w_t | \{w_{t-\Delta}, \dots, w_{t+\Delta}, \dots, w_{t+\Delta})\})
$$

All possible v (require negative

- $P(w_t | \{w_{t-\Delta}, ..., w_{t+\Delta}, \mathbf{z}_{\mathbf{G}}\}) = \frac{\exp(y(w_t))}{\sum_{i=1}^{n} \exp(y(w_t))}$ $\sum_{i=1}^{\eta} \exp(y(w_i))$
- \bullet $y(w_t) = b + U \cdot \left(cat(\frac{1}{2\Delta} \sum_{i=-\Delta}^{\Delta} Z_i, \mathbf{z}_G) \right)$
	- $cat(\frac{1}{2\Delta}\sum_{i=-\Delta}^{\Delta}Z_i, \mathbf{z}_G)$ means an average of anonymous walk embeddi concatenated with the graph embedding z_G
	- **•** $b \in \mathbb{R}$, $U \in \mathbb{R}^D$ are learnable parameters. This represents a linear layer.

Learn Walk Embeddings

- \blacksquare We obtain the graph embedding \mathbf{z}_G (learnable parameter) after optimization
- **Use** \mathbf{z}_f to make predictions (e.g. graph classification)
	- **Option1: Inner product** Kernel $\mathbf{z}_{\bm{G_1}}^T \mathbf{z}_{\bm{G_2}}$ (Lecture 2)
	- **Option2: Use a neural** network that takes \mathbf{z}_G as input to classify

Overall ArchitectureAnonymous Update Predict walk w_4 Average/Concatenate Anonymous Anonymous Anonymous Graph d walk w_1 walk w_2 walk w_3

Summary

We discussed 3 ideas to graph embeddings ¡ **Approach 1: Embed nodes and sum/avg them**

- ¡ **Approach 2: Create super-node that spans the (sub) graph and then embed that node**
- ¡ **Approach 3: Anonymous Walk Embeddings**
	- § **Idea 1: Sample the anon. walks and represent the graph as fraction of times each anon walk occurs**
	- Idea 2: Embed anonymous walks, concatenate their **embeddings to get a graph embedding**

Preview: Hierarchical Embeddings

- We will discuss more advanced ways to obtain graph embeddings in Lecture 8.
- ¡ We can **hierarchically** cluster nodes in graphs, and **sum/avg** the node embeddings according to these clusters.

How to Use Embeddings

■ **How to use embeddings** z_i **of nodes:**

- **Clustering/community detection:** Cluster points z_i
- **Node classification:** Predict label of node *i* based on z_i
- **Link prediction:** Predict edge (i, j) based on (z_i, z_j)
	- Where we can: concatenate, avg, product, or take a difference between the embeddings:
		- Goncatenate: $f(z_i, z_j)=g([z_i, z_j])$
		- Hadamard: $f(z_i, z_j) = g(z_i * z_j)$ (per coordinate product)
		- Sum/Avg: $f(z_i, z_j) = g(z_i + z_j)$
		- Distance: $f(z_i, z_j) = g(||z_i z_j||_2)$
- **Graph classification**: graph embedding z_G via aggregating node embeddings or anonymous random walks. Predict label based on graph embedding Z_G

Today's Summary

We discussed **graph representation learning**, a way to learn **node and graph embeddings** for downstream tasks, **without feature engineering**.

¡ **Encoder-decoder framework:**

- § **Encoder: embedding lookup**
- § **Decoder: predict score based on embedding to match node similarity**
- ¡ **Node similarity measure: (biased) random walk**
	- § **Examples: DeepWalk, Node2Vec**
- ¡ **Extension to Graph embedding: Node embedding aggregation and Anonymous Walk Embeddings**