

Department of Computer Engineering University of Kurdistan

Deep learning (Graduate level)

Convolutional Neural Networks (CNN)

By: Dr. Alireza Abdollahpouri

Deep Computer Vision

Our visual system is trained on images seen in 540 mln of years!

"To know what is where by looking."

Images are Numbers

What I see

What a computer sees

Images are Numbers

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	105	159	181
206	109	5	124	191	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	16
189	97	165	84	10	168	134	11	31	62	22	14
199	168	191	193	158	227	178	143	182	105	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	24
190	224	147	108	227	210	127	102	36	101	255	22
190	214	173	66	103	143	95	50	2	109	249	21
187	196	235	75	1	81	47	0	6	217	255	21
183	202	237	145	0	0	12	108	200	138	243	230
195	206	123	207	177	121	123	200	175	13	96	211

What the computer sees

						-					
157	153	174	168	150	152	129	151	172	161	155	156
156	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	105	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	166	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

An image is just a matrix of numbers [0,255]! i.e., 1080×1080×3 for an RGB image

Grayscale images are 2D matrices of pixel brightness

Color image: RGB 3 channels

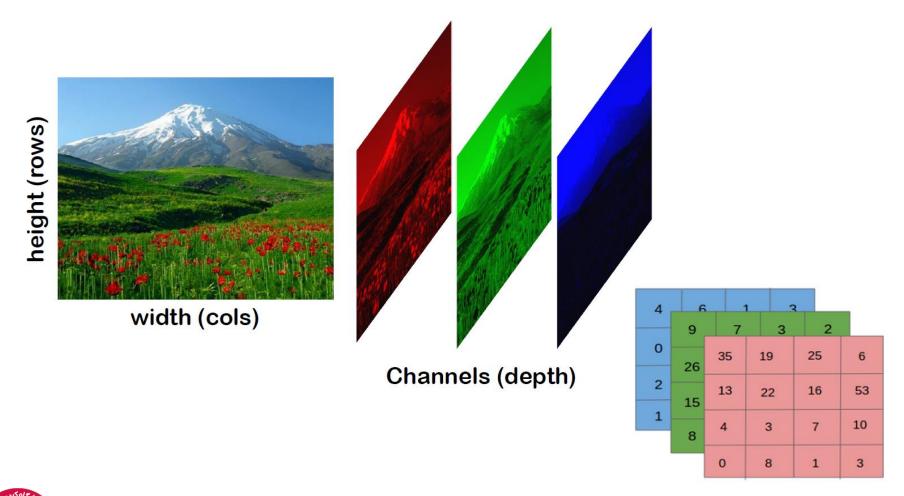


Image Classification task

Pixel Representation

Input Image

High-level Feature Detection

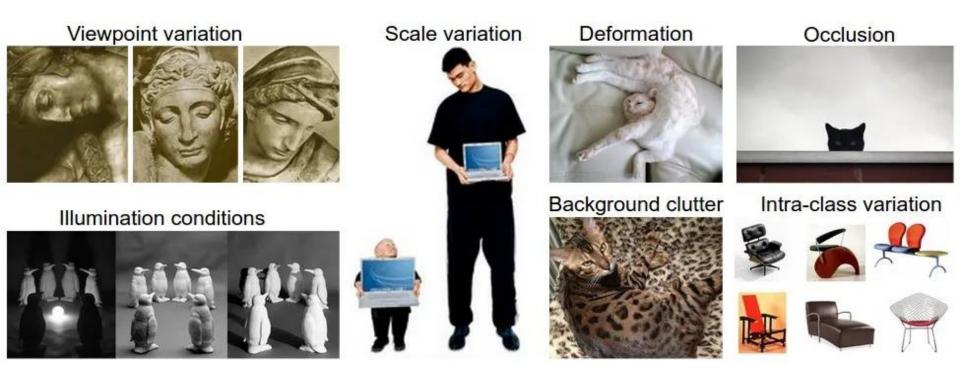
Let's identify key features in each image category

Nose, Eyes, Mouth

Wheels, License Plate, Headlights

Door, Windows, Steps

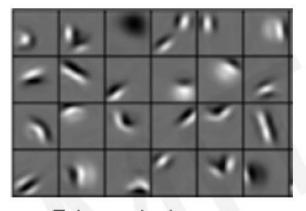
Manual Feature Extraction (challenges)



Learning Feature Representations

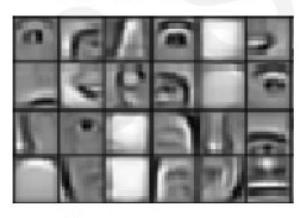
Can we learn a hierarchy of features directly from data instead of hand engineering?

Low level features



Edges, dark spots

Mid level features

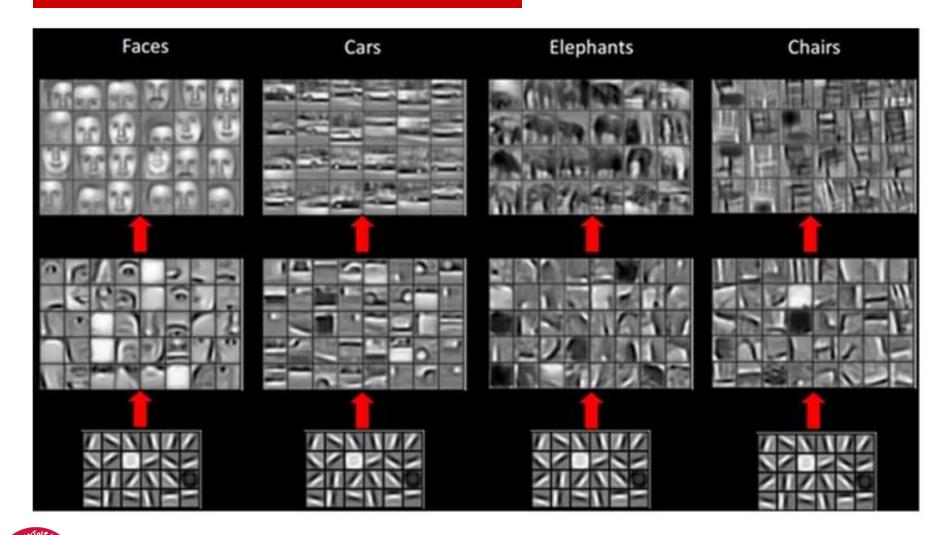


Eyes, ears, nose

High level features

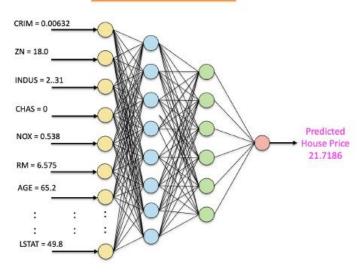
Facial structure

Learning Feature Representations



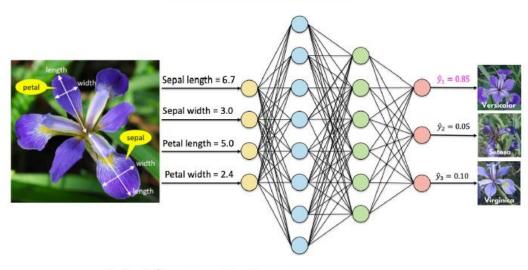
MLPs for Supervised learning tasks

Regression



- Boston Housing Dataset
 - 13 features and 506 records
 - A 3-Layer MLP (13-8-6-1)
 - Performance: RMSE = 3.97

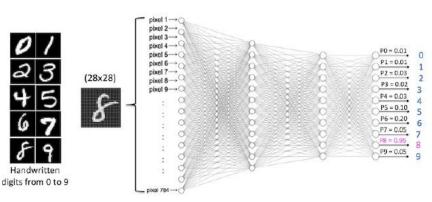
Classification



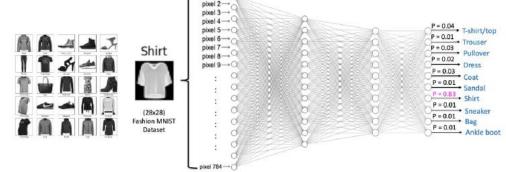
- Iris Flower Dataset
 - 4 features and 150 records
 - A 3-Layer MLP (4-25-15-3)
 - Performance: 98.7% Accuracy

MLPs for Grayscale Image Classifications

Handwritten Digits Recognition



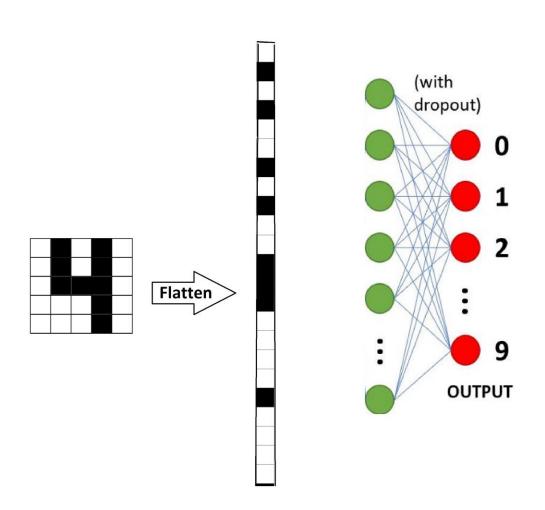
Fashion Image Classification



- MNIST Dataset
 - 70,000 28x28 Grayscale Images
 - 3-Layer MLP (784-128-64-10)
 - Performance: 98.36% Accuracy
 - No. of Parameters: 109.386K

- Fashion MNIST Dataset
 - 70,000 28x28 Grayscale Images
 - 3-Layer MLP (784-128-64-10)
 - Performance: 84.18% Accuracy
 - No. of Parameters: 109.386K

Traditional Method

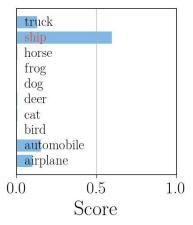


CIFAR-10 Classification Task

70,000 color images with 10 classes

Input $\mathbf{x} = (x_1, x_2, ..., x_{3072})$, for 32 x 32 x 3 = 3072 input features Output $\mathbf{y} = (y_1, y_2, ..., y_{10})$, one for each class

frog, airplane, automobile, bird, cat, deer, dog, horse, ship, truck





Traditional Method

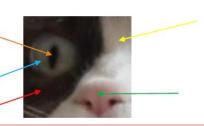
Previous DNNs use fully-connected layers

Connect all the neurons between the layers

Drawbacks:

- (-) Large number of parameters
- Easy to be over-fitted
- Large memory consumption
- (-) Does not enforce any structure, e.g., No Spatial information
- In many applications, local features are important, e.g., images

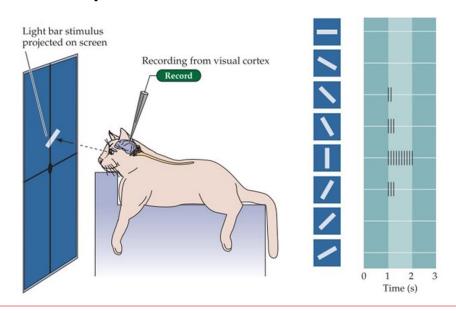
Neighboring variables are locally correlated



Hubel and Wiesel's experiment

Hubel and Wiesel's experiments on cats' visual cortex influenced the intuition behind CNN models.

- They discovered that certain neurons in the visual cortex were sensitive to edges and lines.
- Different neurons responded to specific orientations of edges, regardless of their position in the visual field.

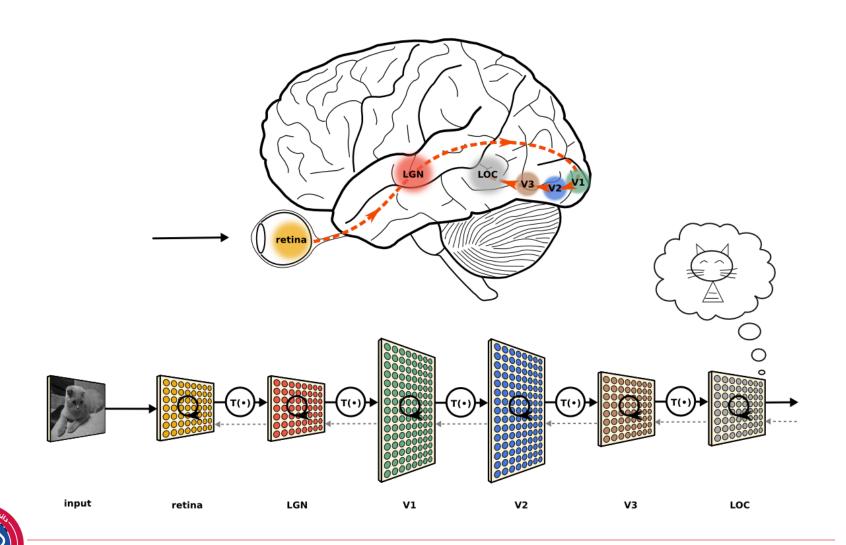


Hubel and Wiesel's experiment

- Their ground-breaking research led to the discovery of specialized cells in the visual cortex called "simple cells" and "complex cells."
- Simple cells responded selectively to specific orientations of lines or edges.
- Complex cells responded to more complex visual stimuli, such as moving lines or gratings

These findings led to the development of CNNs, which mimic the hierarchical processing of visual information in the brain.

Hierarchical visual processing in the brain



University of Kurdistan

ImageNet and AlexNet (2012)

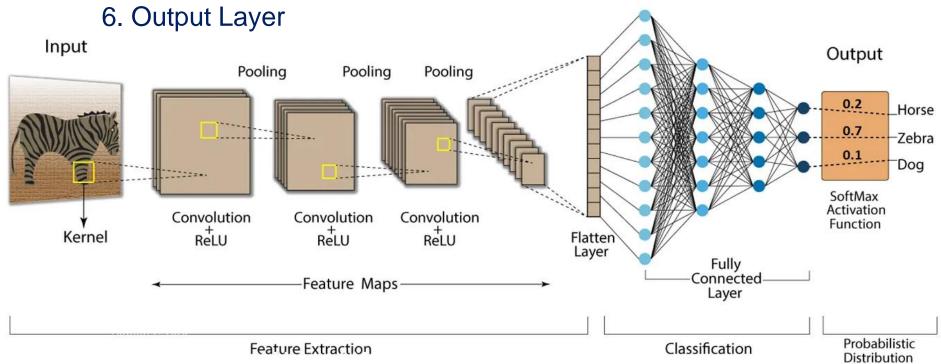
- ImageNet is a large-scale image dataset with over 14 million annotated images across over 2000 categories.
- The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is an annual image classification competition based on ImageNet started in 2010.
- In 2012, AlexNet, a deep 8-layer CNN developed by Krizhevsky et al., won ILSVRC with a 16.4% error rate, significantly outperforming traditional computer vision methods.
- Since AlexNet, ILSVRC error rates have continued to drop each year with newer CNN architectures.

Convolutional Neural Networks (CNN)

- 1. Input Layer (Height x Width x Depth)
- 2. Convolutional Layers
- 3. Activation Function (ReLU)
- 4. Pooling Layers

niversity of Kurdistan

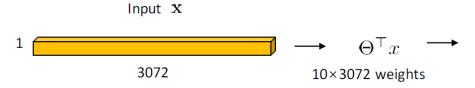
5. Fully Connected Layers



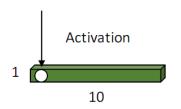
Convolutional layer

Fully-connected layer

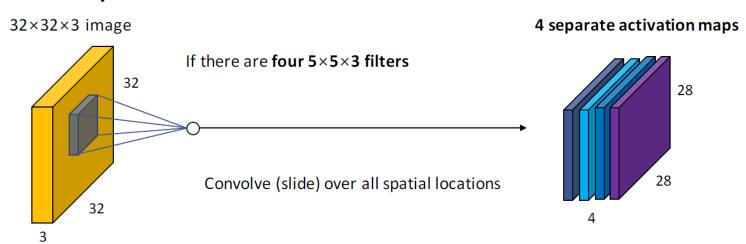
• 32×32×3 image → stretch to 3072×1



The result of taking a dot product between a row of Θ^{\top} and the input



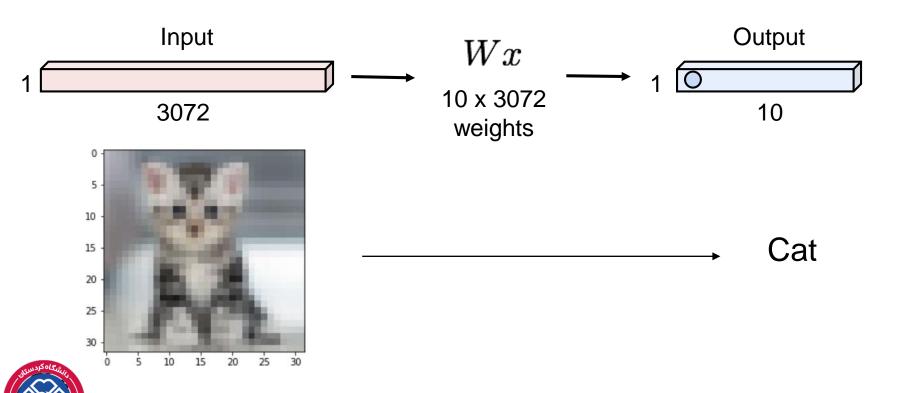
Convolution layer



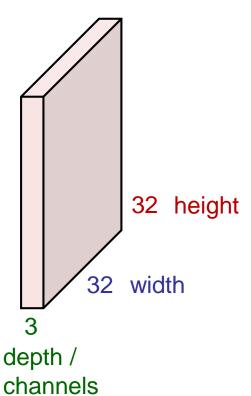
Traditional Method

University of Kurdistan

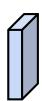
32x32x3 image -> stretch to 3072 x 1



Convolutional layer



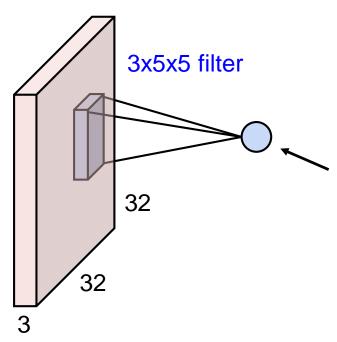
3x5x5 filter



Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolutional layer

3x32x32 image

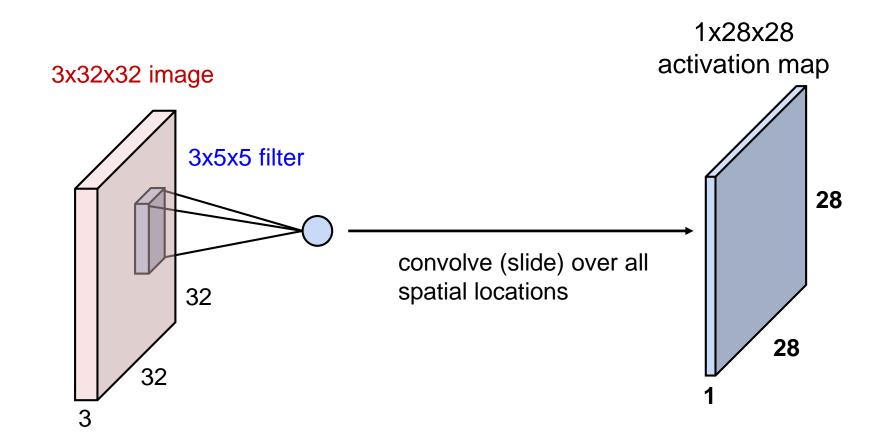


1 number:

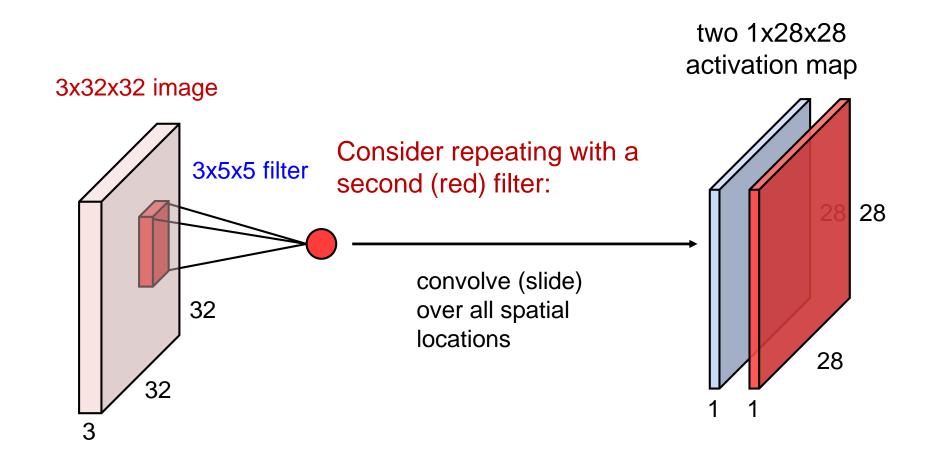
the result of taking a dot product between the filter and a small 3x5x5 chunk of the image

$$w^T x + b$$

Convolution Layer



Convolutional layer



Multiple 3D Filters

• For example, if we had 6 5x5x3 filters, we would get 6 separate feature maps:

each 1x28x28

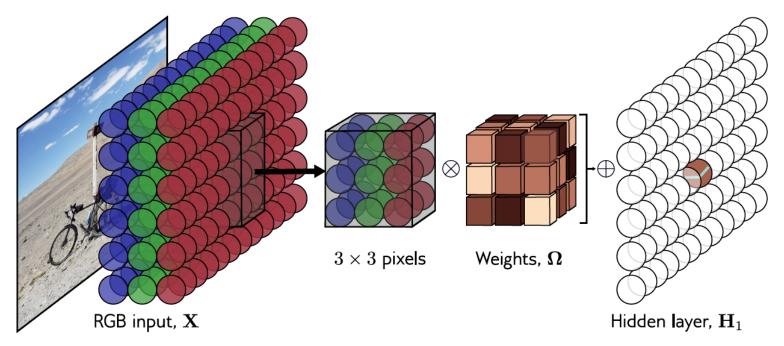
6 filters
Convolution Layer

28

We stack these up to get 6 feature maps of size 28x28x6 as output of this convolutional layer

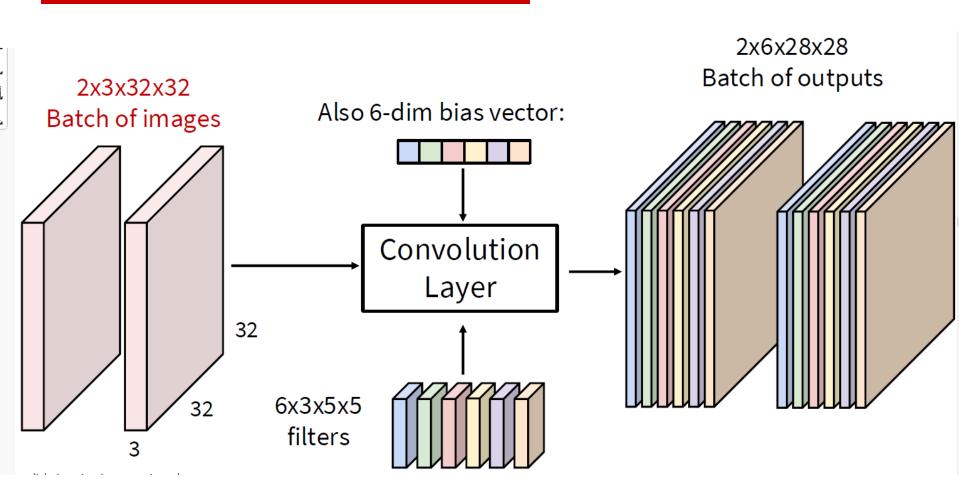
6 activation maps,

Channels in 2D convolution

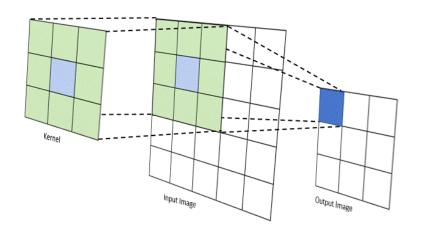


Kernel size, stride, dilation all work as you would expect

Convolution Layer



Convolutional layer



Х

Input

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

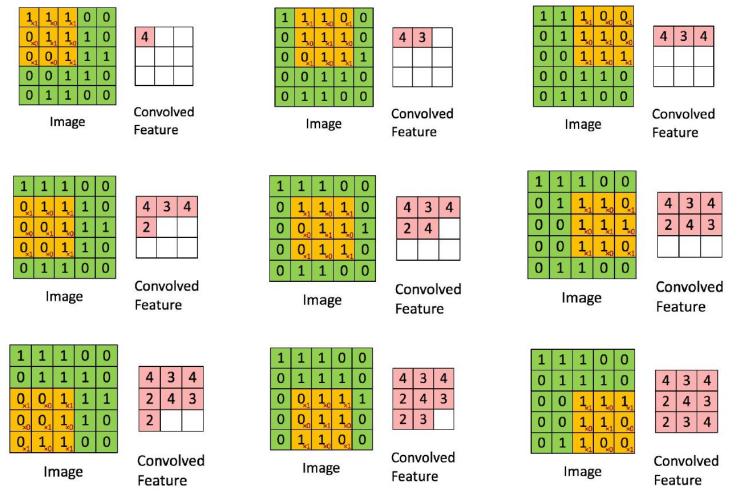
Filter / Kernel

1	0	1
0	1	0
1	0	1

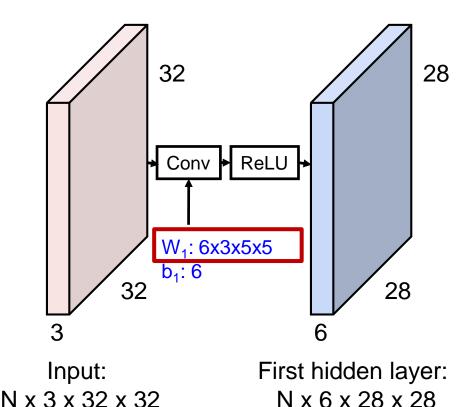
Feature map

4	

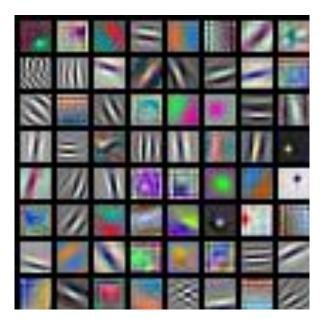
Convolution Operation



What do convolutional filters learn?



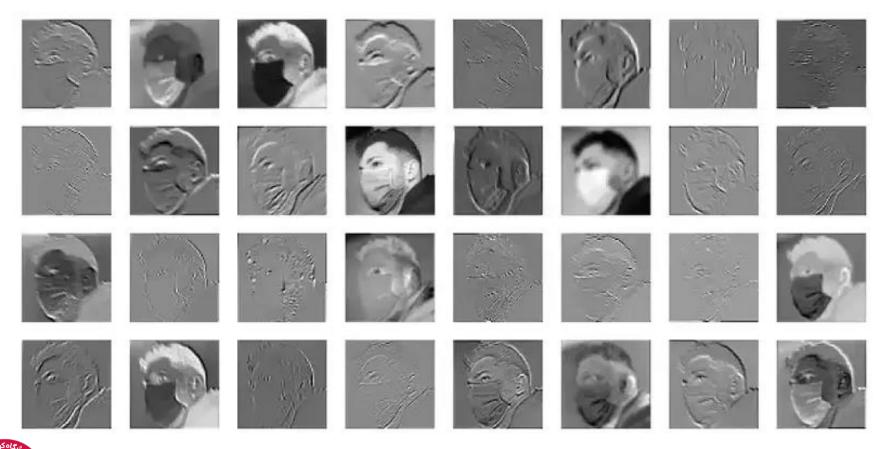
First-layer conv filters: local image templates (Often learns oriented edges, opposing colors)



AlexNet: 64 filters, each 3x11x11

Convolution filters

Convolution of an image with different filters can perform operations such as edge detection, blur and sharpen by applying filters.



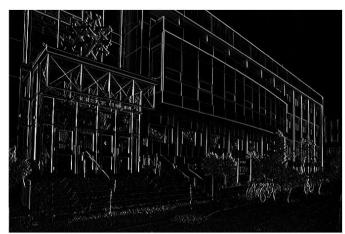
Filters

blurs the image

sharpens the image

Filters

$$\star \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \longrightarrow$$



10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

	1	0	-1			
*	1	0	-1			
	1	0	-1			
Kernel						

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

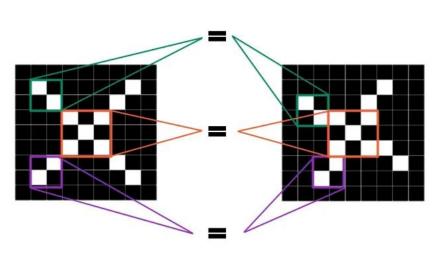
Output Feature Map

Input Image

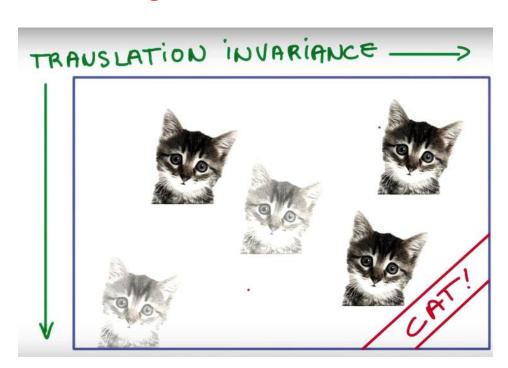
Vertical Edge Detection

Translation invariance

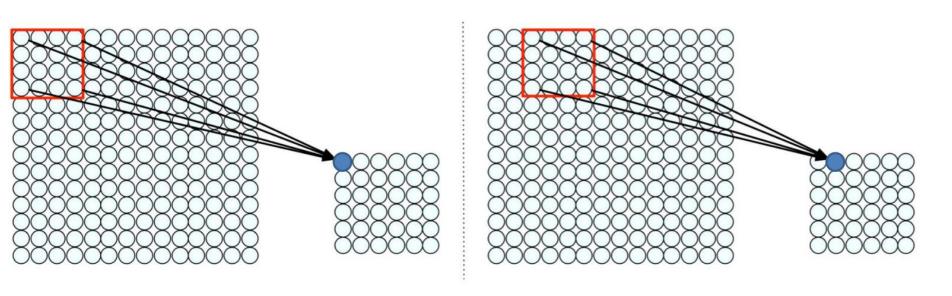
When input is changed spatially (translated or shifted), the corresponding output to recognize the object should not be changed



Features of X



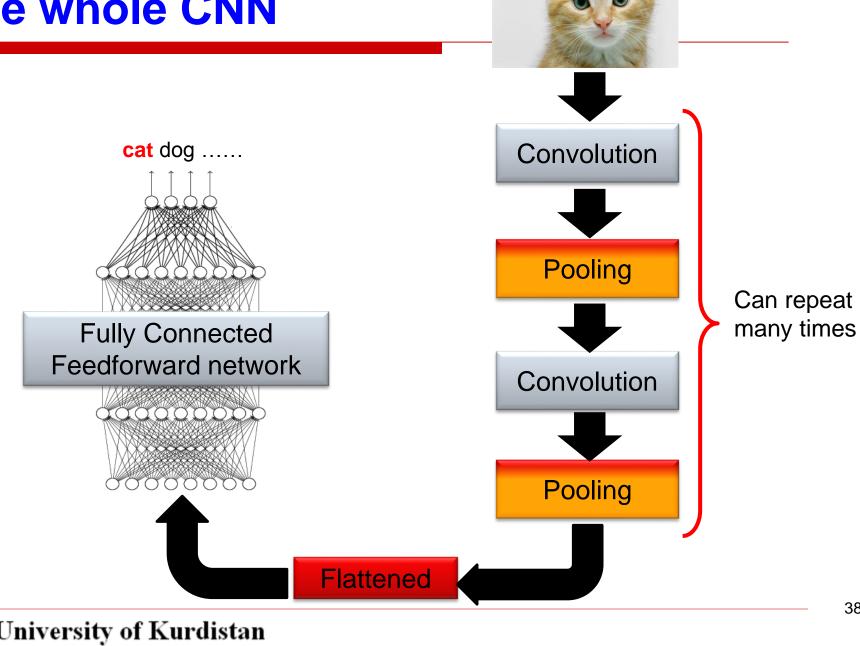
Using Spatial Structure/Information



2) Slide the patch window across the image.

Different weights (filters) detect different features

The whole CNN



CNN – Main components

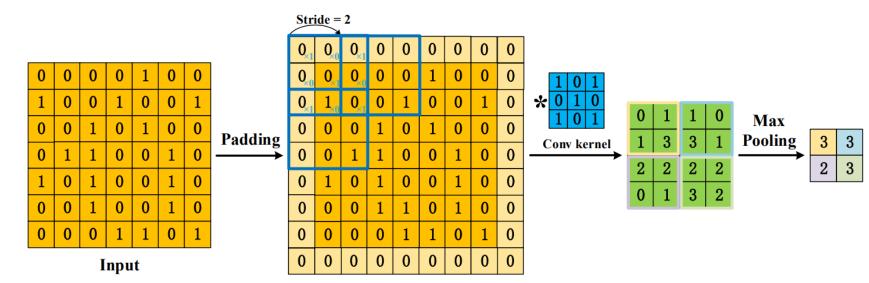
1. To build a CNN model, four components are typically needed (Li et al. 2020).

Convolution The outputs of convolution can be called feature maps.

Padding Padding enlarges the input with zero value.

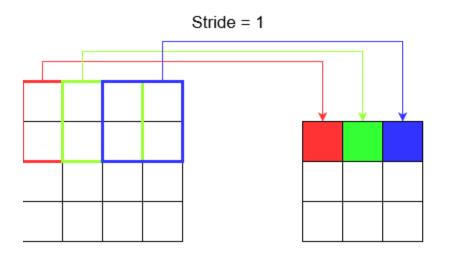
Stride For controlling the density of convolving, stride used.

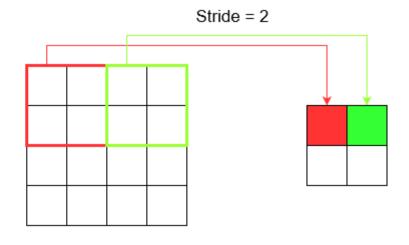
Pooling As a result, Pooling (down-sampling) such as max pooling and average pooling obviates large number of features in feature map.



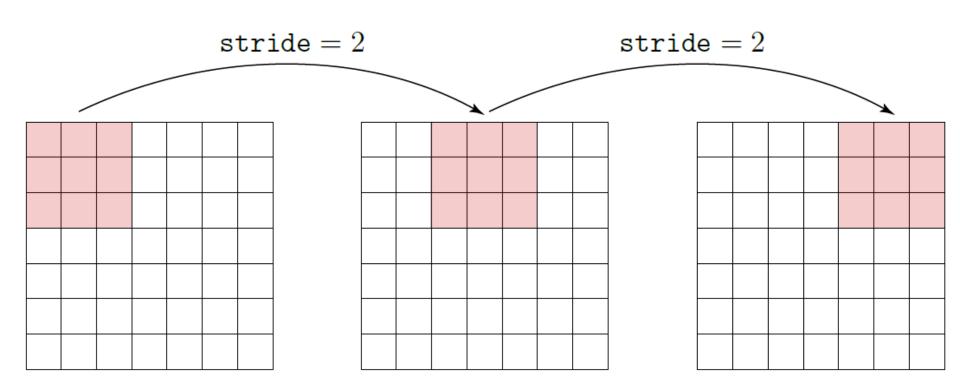
Strides

- Stride is the number of pixels shifts over the input matrix.
- When the stride is 1 then we move the filters to 1 pixel at a time. When the stride is 2 then we move the filters to 2 pixels at a time and so on.





Strides



Padding

- Sometimes filter does not fit perfectly fit the input image. We have two options:
- Pad the picture with zeros (zero-padding) so that it fits
- Drop the part of the image where the filter did not fit. This is called valid padding which keeps only valid part of the image.

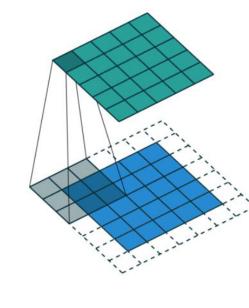
Padding

Add zeros around image borders to conserve the spatial extent of the input.

Prevents fast shrinking of the input data (image)

Example: Convolution with 3 x 3 filter and padding

0	0	0	0	0	0	0	0	0
0	•						•	0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0



Padding

- In practice: Common to **zero pad** the border
 - Used to control the output filter size

9

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

7×7 input (spatially)
Zero pad 1 pixel border
Assume 3×3 filter
Applied with **stride 3**

→ 3×3 output

9

Size of the Output

If you have a stride of 1 and if you set the size of zero padding to

$$Zero\ Padding = \frac{(K-1)}{2}$$

where K is the filter size, then the input and output volume will always have the same spatial dimensions.

The formula for calculating the output size for any given conv layer is

$$O = \frac{(W - K + 2P)}{S} + 1$$

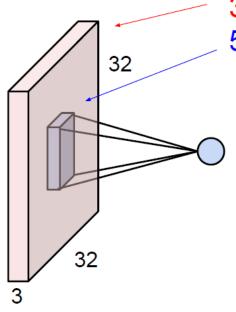
where O is the output height/length, W is the input height/length, K is the filter size, P is the padding, and S is the stride.

Size of the Output

$$O = \frac{(W - K + 2P)}{S} + 1$$

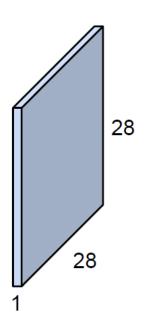
$$\frac{32 - 5 + 2 \cdot 0}{1} + 1 = 28$$

activation map



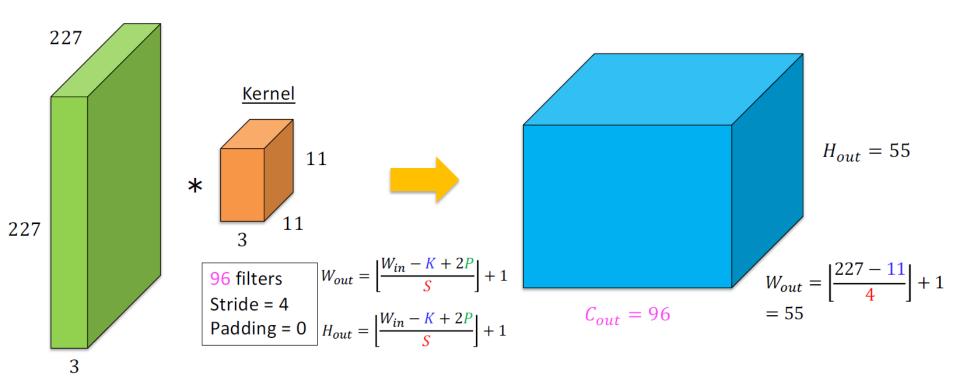
32x32x3 image 5x5x3 filter W_1

Zero Padding Stride =1



Size of the Output

Work out output dimensions for the following setting:



Convolution with PyTorch

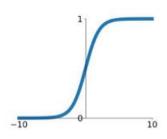
```
self.conv1 = nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=0)
```

```
self.conv2 = nn.Conv2d(16, 8, kernel_size=5, stride=1, padding=0)
```

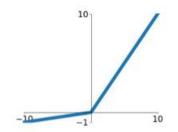

Non-linearity

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

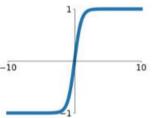


Leaky ReLU max(0.1x, x)



tanh

tanh(x)

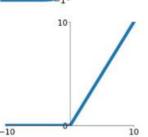


Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

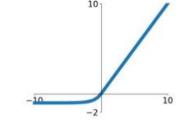
ReLU

 $\max(0,x)$



ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

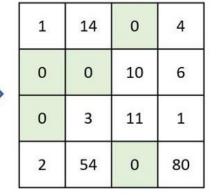


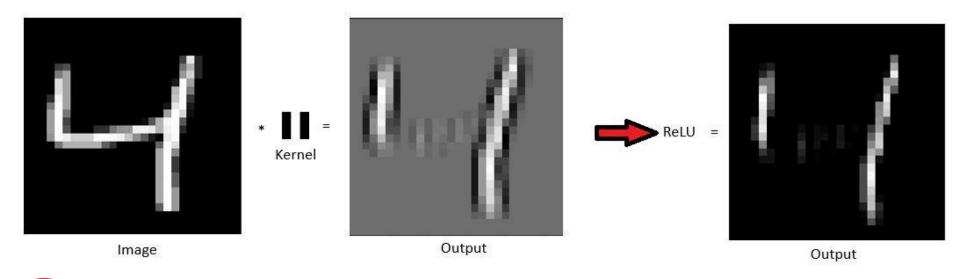
Non Linearity (ReLU)

- \triangleright ReLU stands for Rectified Linear Unit for a non-linear operation. The output is f(x) = max(0,x).
- Why ReLU is important?
- ReLU's purpose is to introduce non-linearity in our ConvNet. Since, the real world data would want our ConvNet to learn would be non-negative linear values.
- There are other non linear functions such as tanh or sigmoid can also be used instead of ReLU.
- Most of the data scientists uses ReLU since performance wise ReLU is better than other two.

Non Linearity (ReLU)

1	14	-9	4
-2	-20	10	6
-3	3	11	1
2	54	-2	80

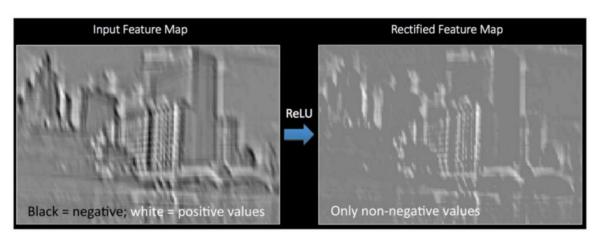




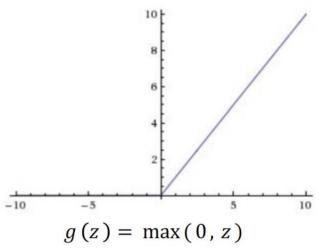
ReLU

Non Linearity (ReLU)

- Apply after every convolution operation (i.e., after convolutional layers)
- ReLU: pixel-by-pixel operation that replaces all negative values by zero. **Non-linear operation!**



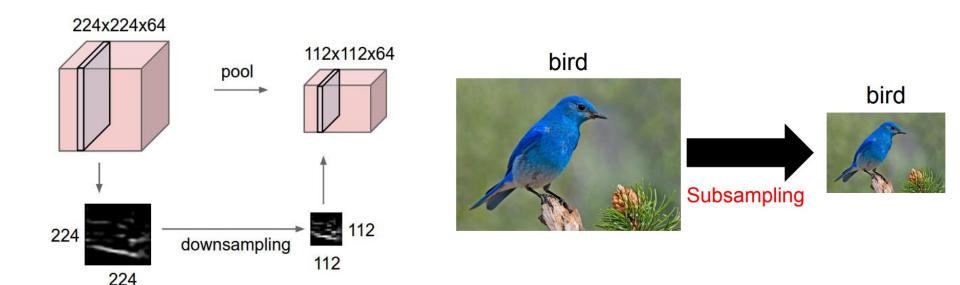
Rectified Linear Unit (ReLU)



Pooling Layers

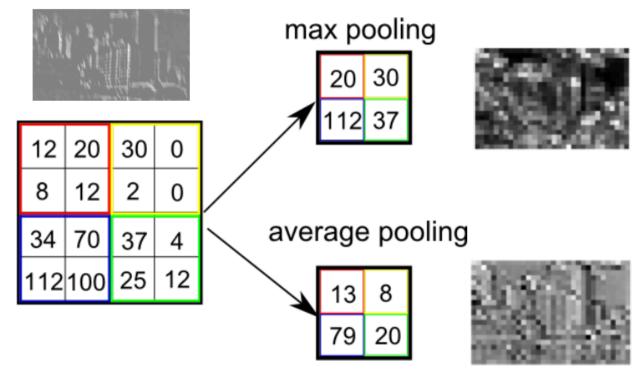
Pooling (or subsampling)

- Make the representations smaller (will not change the object)
- (+) Reduce number of parameters and computation

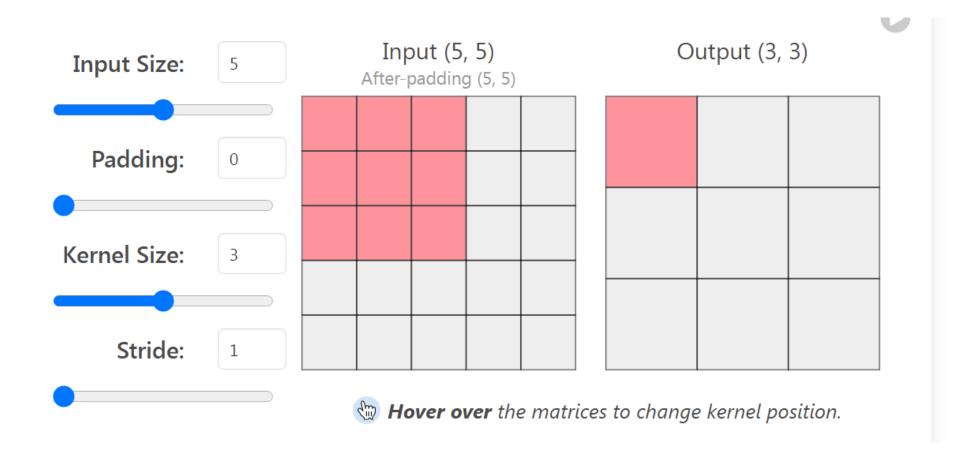


Pooling Layer - Downsampling

- Max pooling and average pooling
 - With 2×2 filters and stride 2

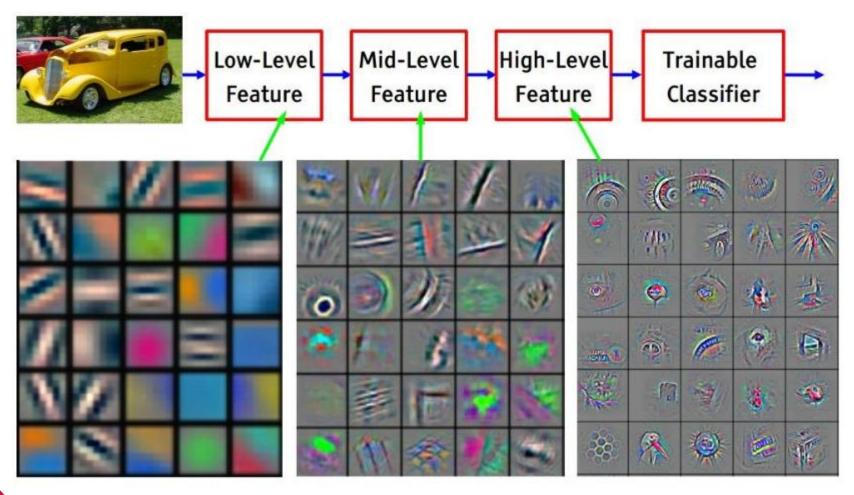


Understanding Hyper-parameters



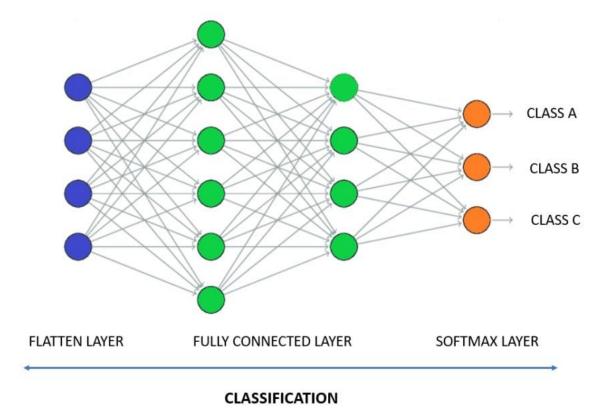
https://poloclub.github.io/cnn-explainer/

Visualization of CNNs layers



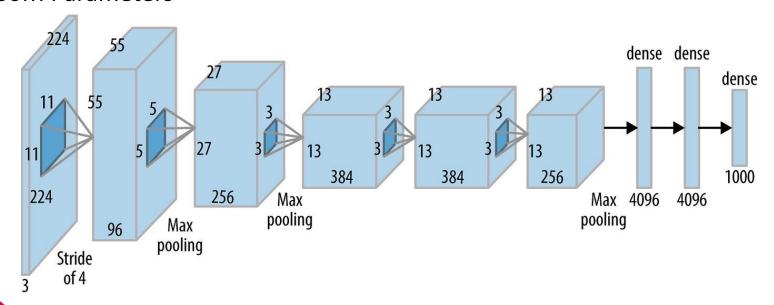
Fully Connected Layer

The layer we call as FC layer, we flattened our matrix into vector and feed it into a fully connected layer like neural network.



AlexNet Architecture

- 8 layers (5 conv layers and 3 fully connected layers)
- CONV1-CONV2-POOL-CONV3-POOL-CONV4-CONV5-POOL-FC-FC-FC
- The ReLU non-linearity is applied to the output of every layers
- Response normalization layer follow the first and second conv layers
- Overlapped 3x3 Max Pooling and Dropout in FC layers
- 60M Parameters



ImageNet Dataset (ILSVRC Challenge)



- About 1.2 million images and 1000 classes
- Image resolution: RGB-Color Images with 244x244x3
- Accuracy is measured as top-5 performance.

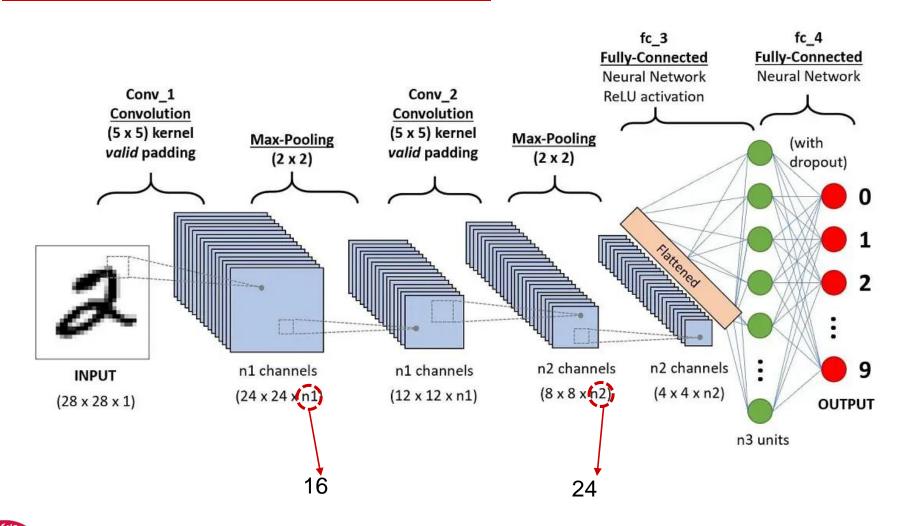
Correct prediction if the true label Matches one of the top 5 predictions of model

Complexity of AlexNet

- Convolutional layers cumulatively contain about 90-95% of computation, only about 5% of the parameters
- Fully-connected layers contain about 95% parameters
- Trained with SGD
 - On two NVIDA GTX 580 3GB GPUs
 - For about 1 week

	Activation shape	Activation size	# parameters
Input image	227 x 227 x 3	154587	0
Conv 1	55 x 55 x 96 (<i>f</i> =11 <i>s</i> = 4 <i>p</i> = 0)	290400	34944
Pool 1	27 x 27 x 96 (<i>f</i> =3 <i>s</i> = 2)	69984	0
Conv 2	$27 \times 27 \times 256$ ($f=5 s = 1 p = 2$)	186624	614,656
Pool 2	13 x 13 x 256 (f=3 s = 2)	43264	0
Conv 3	$13 \times 13 \times 384$ (f =3 s = 1 p = 1)	64896	885,120
Conv 4	$13 \times 13 \times 384$ (f =3 s = 1 p = 1)	64896	1,327,488
Conv 5	$13 \times 13 \times 256$ (f =3 s = 1 p = 1)	43264	884,992
Pool 5	6 x 6 x 256 (<i>f</i> =3 <i>s</i> = 2)	9216	0
FC 3	4096 x 1	4096	37,748,737
FC 4	4096 x 1	4096	16,777,217
Softmax	1000 x 1	1000	4096001

CNN for MIST Dataset



CNN for MIST Dataset

Dimension Flow:

Input: 1 × 28 × 28 (grayscale MNIST images)

After conv1: $16 \times 24 \times 24$ (28-5+1=24)

After maxpool1: $16 \times 12 \times 12$ (24/2=12)

After conv2: $24 \times 8 \times 8$ (12-5+1=8)

After maxpool2: $24 \times 4 \times 4$ (8/2=4)

Flatten: $24 \times 4 \times 4 = 384$ features

fc1: $384 \rightarrow 64$

fc2: $64 \rightarrow 10$ (digit classes)

CNN for MIST Dataset

Convolutional Layers:

```
self.conv1 = nn.Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1))
self.conv2 = nn.Conv2d(16, 24, kernel_size=(5, 5), stride=(1, 1))
```

Fully Connected Layers:

```
self.fc1 = nn.Linear(in_features=384, out_features=64, bias=True) self.fc2 = nn.Linear(in_features=64, out_features=10, bias=True)
```

Regularization

self.dropout = nn.Dropout(p=0.5, inplace=False)



