

Department of Computer and IT Engineering University of Kurdistan

Complex Networks

Communities

By: Dr. Alireza Abdollahpouri

Strength of Weak Ties

How people find out about new jobs?

- \triangleright Mark Granovetter, part of his PhD in 1960s
- \triangleright People find the information through personal contacts
- **But:** Contacts were often **acquaintances** rather than close friends
	- **This is surprising:**
		- \triangleright One would expect your friends to help you out more than casual acquaintances when you are between the jobs
		- \triangleright why is it that distant acquaintances are most helpful?

Triadic Closure

Which edge is more likely to form, a-b or a-c?

 Triadic closure: If two people in a network have a friend in common there is an increased likelihood they will become friends themselves

Birds of a feather, flock together

The images received with the aid of GPS mounted on the six wolf cattle flocks in the American National Park show how they respect each other's territory.

Zachary's Karate Club

Similarity of Connected Nodes in Social Networks

- Race
- Religion
- Education
- Income level
- Job and skills
- Language
- Interests and preferences

More examples of Communities

- **• Network: World Wide Web: Communities: Sites on related topics**
- **• Network: Friendship network: Communities: Group formation among people**
- **• Network: Metabolic networks: Communities: Functional modules**
- **• Network: Collaboration network: Communities: Research fields**

A variety of definitions of community/cluster/module exist:

• A group of nodes which share common properties and/or play a similar role within the graph [Fortunato, 2010].

• A subset of nodes within which the node-node connections are dense, and the edges to nodes in other communities are less dense [Girvan & Newman, 2002].

Why community detection?

Graphs help us to comprehend in a visual way the global organization of the system. This works extremely well when the graph is small but, as soon as the system is made of hundreds or thousands of nodes, a brute force representation typically leads to a meaningless cloud of nodes.

Why community detection?

Uncovering communities/modules helps to change the resolution of the representation and to draw a readable map of the network

Community- Definition

- **Networks of tightly connected groups**
- **Network communities:**
	- **► Sets of nodes with lots of connections inside and few to outside (the rest of the network)**

Communities, clusters, groups, modules

Overlapping vs. Disjoint Communities

Overlapping Communities **Disjoint Communities**

Community detection- Questions

- What do we really mean by a community?
- **How many communities are in a network?**
- **How many different ways can we partition a** network into communities?
- **How can we detect communities?**
- **How do communities evolve and how can we** study evolving communities?
- **How can we evaluate detected communities?**

H1: A network's community structure is uniquely encoded in its wiring diagram (there is a ground truth about a network's community organization, that can be uncovered by inspecting ^Aij) .

H2: Connectedness Hypothesis

A community corresponds to a connected subgraph.

H3: Density Hypothesis

Communities correspond to locally dense neighborhoods of a network.

Cliques as communities

A clique is a complete subgraph of k-nodes

Cliques as communities

- Triangles are frequent; larger cliques are rare.
- Communities do not necessarily correspond to complete subgraphs, as many of their nodes do not link directly to each other.
- Finding the cliques of a network is computationally rather demanding, being a so -called NP -complete problem.

Strong and weak communities

Consider a connected subgraph C of N_c nodes

Internal degree, ki̥^{nt} : set of links of node *i* that connects to other nodes of the same community C.

External degree k e^{ext} *:* the set of links of node *i* that connects to the rest of the network.

If $k_f^{ext}=0$: all neighbors of *i* belong to C, and C is a good community for *i*.

If $k_i^{int} = 0$, all neighbors of *i* belong to other communities, then *i* should be assigned to a **M**different community.

 $k_i^{int}=3$

 $k_i^{ext}=1$

Strong community:

Each node of C has more links within the community than with the rest of the graph.

 $k_i^{\text{int}}(C) > k_i^{\text{ext}}(C)$

Weak community:

The total internal degree of C exceeds its total external degree**,**

$$
\sum_{i \in C} k_i^{\text{in}}(C) > \sum_{i \in C} k_i^{\text{out}}(C)
$$

20

Partition the full wiring diagram of an integrated circuit into smaller subgraphs, so that they minimize the number of connections between them.

2.5 billion transistors

Graph partitioning

How many ways can we partition a network into 2 communities? (Graph bisection)

Divide a network into two non-overlapping subgraphs, such that the number of links between the nodes in the two groups is minimized.

Two subgroups of size n_1 and n_2 . Total number of combinations:

 $N=10 \rightarrow 256$ partitions (1 ms)

 $N=100 \rightarrow 10^{26}$ partitions (10²¹ years)

 $N!$

 $n_1!n_2!$

Graph partitioning

Kerninghan-Lin Algorithm for graph bisection

- Partition a network into two groups of predefined size. This partition is called cut.
- Inspect each a pair of nodes, one from each group. Identify the pair that results in the largest reduction of the cut size (links between the two groups) if we swap them
- Swap them.
- If no pair deduces the cut size, we swap the pair that increases the cut size the least.
- The process is repeated until each node is moved once.

Spectral Clustering Algorithms

Three basic stages:

- **1) Pre-processing**
	- \triangleright Construct a matrix representation of the graph
- **2) Decomposition**
	- \triangleright Compute eigenvalues and eigenvectors of the matrix
	- \triangleright Map each point to a lower-dimensional representation based on one or more eigenvectors

3) Grouping

 \triangleright Assign points to two or more clusters, based on the new representation

Spectral Partitioning Algorithm

 \triangleright Build Laplacian matrix **^L** of the graph $(L = D-A)$

2) Decomposition:

- \triangleright Find eigenvalues λ and eigenvectors **^x** of the matrix **^L**
- \triangleright Map vertices to corresponding components of λ_2

Spectral Partitioning

3) Grouping:

- \triangleright Sort components of reduced 1-dimensional vector
- \triangleright Identify clusters by splitting the sorted vector in two

How to choose a splitting point?

- \triangleright Naïve approaches:
	- Split at **0** or median value
- \triangleright More expensive approaches:
	- \triangleright Attempt to minimize normalized cut in 1-dimension (sweep over ordering of nodes induced by the eigenvector)

Example: Spectral Partitioning

Community detection vs. Graph partitioning

Both terms refer to the division of a network into dense groups

- **Graph partitioning:** the number and size of the groups is <u>fixed</u> by the user.
- **Community detection:** the number and size of the groups are unspecified (unknown), but determined by the organization of the network. Ideally, the method should be able to uncover a mixture of groups of different size in the same system. It should divide a network only when a good subdivision exists and leave it undivided otherwise

Community detection- Algorithm

Is it possible to uncover the (multi-scale) modular organization of networks in an automated fashion? Given a graph, we look for an algorithm able to uncover its modules without specifying their number nor their size The method should be scalable to accommodate very large networks, as often observed in the real-world.

Clustering and Community Finding

Many methods:

- Hierarchical methods:
	- Top-down/ bottom-up
- Graph partitioning methods:
	- Define "edge counting" metric conductance, expansion, modularity, etc. – and optimize!

Spectral methods:

- Based on eigenvector decomposition of modified graph adjacency matrix
- Clique percolation method:
	- To extract **overlapping** communities in networks

No community overlapsNo community overlaps

Hierarchical Clustering

Hierarchical Methods

Agglomerative

bottom-up Top-down

Hierarchical Clustering

- 1. Build a **similarity matrix** for the network
- 2. Similarity matrix: how similar two nodes are to each other \rightarrow we need to determine from the adjacency matrix
- 3. Hierarchical clustering iteratively identifies groups of nodes with high similarity, following one of two distinct strategies:
	- *Agglomerative algorithms* merge nodes and communities with high similarity. (A bottom-up strategy)
	- *Divisive algorithms* split communities by removing links that connect nodes with low similarity. (A top-down strategy)

Hierarchical tree or dendrogram: visualize the history of the merging or splitting process the algorithm follows. Horizontal cuts of this tree offer various community partitions. 4.

Agglomerative algorithms merge nodes and communities with high similarity.

Step 1: Define the Similarity Matrix (Ravasz algorithm)

- High for node pairs that likely belong to the same community, low for those that likely belong to different communities.
- Nodes that connect directly to each other and/or share multiple neighbors are more likely to belong to the same dense local neighborhood, hence their similarity should be large.

Topological overlap matrix: $x_{ij}^o = \frac{J_N(i,j)}{\min(k_i,k_i)}$

 $J_{\gamma}(i,j)$: number of common **neighbors of node ⁱ and j; (+1) if there is a direct link between ⁱ and j;**

versity of Kurdistan

(b

 $1/3$

Step 2: Decide Group Similarity

Groups are merged based on their mutual similarity through *single*, complete or average cluster linkage

Step 3: Apply Hierarchical Clustering

- Assign each node to a community of its own and evaluate the similarity for all node pairs. The initial similarities between these "communities" are simply the node similarities.
- Find the community pair with the highest similarity and merge them to form a single community.
- Calculate the similarity between the new community and all other communities.
- Repeat from Step 2 until all nodes are merged into a single community.

Step 4: Build Dendrogram

• Describes the precise order in which the nodes are assigned to communities.

Computational complexity:

- Step 1 (calculation similarity matrix): $O(N^2)$
- Step 2-3 (group similarity): $O(N^2)$

 $O(N^2)$

Divisive Algorithms

Divisive algorithms split communities by removing links that connect nodes with low similarity.

Step 1: Define a Centrality Measure (Girvan-Newman algorithm)

- **Link betweenness is the number of shortest paths between all node pairs that run along a link.**
- **Random-walk betweenness. A pair of nodes ^m and ⁿ are chosen at random. A walker starts at ^m, following each adjacent link with equal probability until it reaches ⁿ. Random walk betweenness ^xij is the probability that the link i→j was crossed by the walker after averaging over all possible choices for the starting nodes ^m and ⁿ**

 (a)

 (b)

Divisive Algorithms

Step 2: Hierarchical Clustering (a) (b) (c) a) Compute of the centrality of each link. b) Remove the link with the largest centrality; in case of a tie, choose one randomly. c) Recalculate the centrality of each link for the altered network. d) Repeat until all links are removed (yields a dendrogram).

 (d)

Ambiguity in Hierarchical clustering

Randomly wired networks are not expected to have a community structure.

Modularity measures how different the clusters of the partition are from the corresponding clusters of the ensemble of random graphs obtained by randomly joining the vertices, such to preserve their degrees, on average

the fraction of the edges that fall within communities minus the expected fraction if edges were distributed at random

Imagine a partition in n_c **communities** $\{C_c, c = 1, n_c\}$

Modularity
$$
M(C_c) = \frac{1}{2L} \sum_{i,j=1}^{N} (A_{ij}) \underbrace{P_{ij} \delta(C_i, C_j)}_{\text{Original data}}
$$

Original data expected connections, Relative to a specific partition a model

$$
\longrightarrow \quad \textbf{Random network} \quad P_{ij} = 2Lp_i p_j = \frac{k_i k_j}{2L}
$$

Modularity is a measure associated to a partition

Another way of writing M

Modularity - Example

Modularity Modularity - Example

Modularity Modularity - Example

Modularity - Example

Which partition?

- **(a)** Optimal partition, that maximizes the modularity.
- **(b)** *Sub-optimal* but positive modularity.
- **(c)** Zero modularity: Assigning all nodes to the same community, independent of the network structure.
- **(d)** Negative Modularity: If we assign each node to a different community.

Modularity based community identification

A **greedy algorithm**, which iteratively joins nodes if the move increases the new partition's modularity.

Step 1. Assign each node to a community of its own. Hence we start with N communities.

Step 2. Inspect each pair of communities connected by at least one link and compute the modularity variation obtained if we merge these two communities.

Step 3. Identify the community pairs for which ΔM is the largest and merge them. Note that modularity of a particular partition is always calculated from the full topology of the network.

Step 4. Repeat step 2 until all nodes are merged into a single community.

Step 5. Record for each step and select the partition for which the modularity is maximal.

Modularity for Girvan-Newman method

- Divisive hierarchical clustering based on the notion of edge **betweenness**: **Number of shortest paths passing through the edge**
- **Girvan-Newman Algorithm:**
	- **- Undirected unweighted networks**
	- \triangleright Repeat until no edges are left:
		- \triangleright Calculate betweenness of edges
		- \triangleright Remove edges with highest betweenness
	- \triangleright Connected components are communities
	- \triangleright Gives a hierarchical decomposition of the network

Girvan-Newman: Example

Need to re-compute betweenness at every step

Girvan-Newman: Example

10

 $\overline{11}$

Hierarchical network decomposition:

Step 3:

niversity of Kurdistan

3

Girvan-Newman: Results

Modularity: Number of clusters

 \triangleright Modularity is useful for selecting the number of clusters:

Characterizing Communities

Weights can help identifying communities

Caution!

 \rightarrow In social networks (a), the weak tie hypothesis says that communities are connected by links with smaller weight

In transport systems, high betweenness links (correlates with weight, (b)) connect different communities

Using Cliques as a seed of Community

Clique Percolation Method (CPM):

- \triangleright Input
	- \triangleright A parameter k, and a network
- \triangleright Procedure
	- \triangleright Find out all cliques of size k in the given network
	- \triangleright Construct a clique graph.
		- \triangleright Two cliques are adjacent if they share k-1 nodes
	- \triangleright These connected components in the clique graph form a community

Clique Percolation Method: Example

Online Resources (CFinder)

The CFinder software package that implements the Clique Percolation Method can be downloaded at

www.cfinder.org

Benchmarcs and metrics

iversity of Kurdista<mark>n</mark>

Testing Communities -Benchmarks

Newman-Girvan (NG) Benchmark

- N nodes in $n_c=4$ communities
- Nodes in the same community connected with probability e^{int} athorities e^{ext} p^{int} , otherwise p^{ext}
- Control parameter

 $k^{ext} \ll k^{int}$

$$
k^{ext} < k^{int} \qquad \qquad k^{ext} = k^{int}
$$

Testing Communities -Benchmarks

Lancichinetti-Fortunato-Radicchi (LFR) Benchmark

- Nnodes in N_C communities, taken from $P_{N_C} \sim N_C^{-\zeta}$
- Each node is assigned a degree k from $P_k \!\!\sim\!\! k^{\gamma}$
- Each node *i* is assigned to a community, and receives an internal degree $(1-\mu)k_i$ and an external degree μk_{i}
- Connect randomly nodes, according to the constraints above. until there are no more free stubs (a)

Vertex degree and **community size** are **powerlaw distributed**, to account for the heterogeneity observed in real networks with community structure

Testing Communities -Metrics

- \triangleright The number of communities after grouping can be different from the ground truth
- \triangleright No clear community correspondence between clustering result and the ground truth
- **Normalized Mutual Information (NMI)** can be used

Normalized Mutual Information

- \triangleright Entropy: the information contained in a distribution $H(X) = \sum p(x) \log p(x)$
- Mutual Information: the shared information between two distributions $I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left(\frac{p(x,y)}{p_1(x)p_2(y)} \right)$
- Normalized Mutual Information (between 0 and 1) $NMI(X;Y) = \frac{I(X;Y)}{\sqrt{H(X)H(Y)}}$ JMLR03, Strehl $\int_{\text{Cov}} NMI(X;Y) = \frac{2I(X;Y)}{H(X) + H(Y)}$ KDD04, Dhilon
- \triangleright Consider a partition as a distribution (probability of one node falling into one community), we can compute the matching between the clustering result and the ground truth

Normalized Mutual Information

$$
H(X) = \sum_{x \in X} p(x) \log p(x)
$$
\n
$$
H(\pi^b) = \sum_{\ell} \frac{k^{(b)}}{n} \log \left(\frac{n_b^a}{n}\right)
$$
\n
$$
H(\pi^b) = \sum_{\ell} \frac{n_{\ell}^b}{n} \log \left(\frac{n_{\ell}^b}{n}\right)
$$

$$
I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left(\frac{p(x,y)}{p_1(x)p_2(y)} \right) \Longrightarrow I(\pi^a, \pi^b) = \sum_{h} \sum_{\ell} \frac{n_{h,\ell}}{n} \log \left(\frac{\frac{n_{h,\ell}}{n}}{\frac{n_h^a}{n} \frac{n_b^b}{n}} \right)
$$

$$
NMI(X;Y) = \frac{I(X;Y)}{\sqrt{H(X)H(Y)}}
$$

$$
NMI(\pi^a, \pi^b) = \frac{\sum_{h=1}^{k^{(a)}} \sum_{\ell=1}^{k^{(b)}} n_{h,\ell} \log \left(\frac{n \cdot n_{h,\ell}}{n_h^{(a)} \cdot n_{\ell}^{(b)}} \right)}{\sqrt{\left(\sum_{h=1}^{k^{(a)}} n_h^{(a)} \log \frac{n_h^a}{n} \right) \left(\sum_{\ell=1}^{k^{(b)}} n_{\ell}^{(b)} \log \frac{n_{\ell}^b}{n} \right)}}
$$

NMI-Example

 \triangleright Partition a: [1, 1, 1, 2, 2, 2] \triangleright Partition b: [1, 2, 1, 3, 3, 3]

$$
NMI(\pi^a, \pi^b) = \frac{\sum_{h=1}^{k^{(a)}} \sum_{\ell=1}^{k^{(b)}} n_{h,\ell} \log \left(\frac{n \cdot n_{h,\ell}}{n_h^{(a)} \cdot n_\ell^{(b)}} \right)}{\sqrt{\left(\sum_{h=1}^{k^{(a)}} n_h^{(a)} \log \frac{n_h^a}{n} \right) \left(\sum_{\ell=1}^{k^{(b)}} n_\ell^{(b)} \log \frac{n_\ell^b}{n} \right)}} = 0.8278
$$

Normalized Mutual Information

Testing Accuracy with the NG Benchmark

Normalized Mutual Information

Testing Accuracy with the NG Benchmark

Community dynamics(evolution)

Online Resources (Modularity)

R assigns self-loops to nodes to increase or decrease the aversion of nodes to form communities

NetworkX

community.best_partition(graph, partition=None) 1

Compute the partition of the graph nodes which maximises the modularity (or try..) using the Louvain heuristices This is the partition of highest modularity, i.e. the highest partition of the dendogram generated by the Louvain algorithm.

Finds the partition that maximizes modularity (considers weights and direction)

community.modularity(partition, graph)

Compute the modularity of a partition of a graph

Calculates the modularity of the partition you provide

