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Network Model

 A network model:

an algorithm which generates artificial networks

 It generates artificial graphs which are similar to real-world 

networks

 How a graph becomes similar to real networks?

 Small-worlds, transitivity, long-tail degree distribution, 

community structure, …

 How to generate a network that conforms to such properties?

 Network models try to answer that question
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Graph models

 We want to have formal processes which can give rise to networks with

specific properties

 E.g., degree distribution, transitivity, diameters etc.

 These models and their features can help us understand how the properties

of a network (network structure) arise

 By growing networks according to a variety of different rules/models and

comparing the results with real networks, we can get a feel for which growth

processes are plausible and which can be ruled out

 Random graphs represent the “simplest” model
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Network Models

 Terminology:

 Network model

 Network generation method

 Generative model

 Random graph generation model

 Examples:

 Erdős–Rényi (ER) model: random networks

 Watts–Strogatz (WS) model: small-world networks

 Barabási–Albert model: scale-free neworks

 Many other models (a research topic)

 How efficient? How similar to real networks? How tunable/adaptive?
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Why Network Models?

 Uncover/explain the generative mechanisms underlying 

networks
 Models can uncover the hidden reality of networks

 Reveal the processes which results in real-world networks

 Predict the future

 They may simulate real networks:
 When we want to study the properties/dynamics of networks

 When we have no access to real-world networks

 When it is not safe to publish a network dataset

 And many other applications
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Why Network Models? (cont’d)

 Network structure

 the parameters give us insight into the global structure of the network 

itself.

 Simulations

 given an algorithm working on a graph we would like to evaluate how its 

performance depends on various properties of the network. 

 Extrapolations & Sampling 

 we can use the model to generate a larger/smaller graph.

 Graph similarity

 to compare the similarity of the structure of different networks (even of 

different sizes) one can use the differences in estimated parameters as a 

similarity measure.

 Graph compression

 we can compress the graph, by storing just the model parameters.
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Examples of Network Model Applications

 How fast a virus spreads in a network?

 What if we do not have access to the exact graph?

 What if we do not want to share the network with 

researchers?

 How to advertise in Instagram?

 How to search in Facebook for a person/information?

 Network models may simulate real graphs 

and help answer such questions
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Random graph model 

(Erdős and Rényi, 1959)

"Small world" model 

(Watts & Strogatz, 1998)

Preferential attachement model 

(Barabasi & Albert, 1999)

Basic Network Models
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Gnp

Pál Erdös

(1913-1996)
Alfréd Rényi

(1921-1970)

Erdos- Renyi Random graph model 



Random Network Model

 Definition: A random graph is a graph of N nodes 

where each pair of nodes is connected by 

probability p.          G(N,p)

Erdös-Rényi model (1959)

Connect with probability p

p=1/6  

N=10 

<k> ~ 1.5
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Erdős–Rényi (ER) Model, Example:

p=0.03

N=100
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Clustering coefficient 

 Clustering coefficient is defined as the probability that two vertices with a

common neighbor are connected themselves

 In a random graph the probability that any two vertices are connected is

equal to p=c/(n-1)

 Hence the clustering coefficient is also:

 Given that for large n, c is constant, it follows that the clustering coefficient

goes to 0

 This is a sharp difference between the G(n,p) model and real networks
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C =
c

n-1
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 n and p do not uniquely determine the graph! 

(The graph is a result of a random process)

 We can have many different realizations given the same 

n and p

The Number of Links is Variable

number of edges=8 number of edges=7 number of edges=9



Number of Links in ER Networks

P(L): the probability to have exactly L links in a network of N
nodes and probability p:
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in a network of N nodes.

Number of different ways 

we can choose L links 

among all potential links.
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As the network size increases, the distribution becomes 

increasingly narrow—we are increasingly confident that the 

degree of a node is in the vicinity of <k>.
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< k >= p(N -1)

Degree Distribution of Random Networks 

The probability of having k links for a node?

(Degree Probability Distribution)

Makes sense
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Degree Distribution of Random Networks 

For large values of n, 

the degree distribution 

follows a Poisson 

distribution
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network of exactly L links
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random graph
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Giant component and Phase transition

 How many components exist in G(n,p) model

 p=0  Every node is isolated  Component size = 1 (independent of n)

 p=1  All nodes connected with each other  Component size = n

(proportional to n)

 It is interesting to examine what happens for values of p in-between

 In particular, what happens to the largest component in the network as p

increases?
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 A network component whose size grows in

proportion to n is called giant component

 Let u be the fraction of nodes that do not

belong to the giant component. Hence,

 If there is no giant component  u=1

 If there is giant component  u<1

 In order for a node i not to connect to the

giant component:

- i needs not connect to any other node j

 With probability: 1-p or

- i is connected to j, but j itself is not

connected to the giant component

 With probability: pu

Giant component and Phase transition
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Thus, if there is no giant component (e.g., p = 0), then u = 1, 

and if there is, then u < 1.

let S = 1- u be the probability that i belongs to the giant 

component

Giant component and Phase transition
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 We plot y=1-e-cS with S between 0 and 1 (since it represents fraction of

nodes)

 We also plot y=S

 The point where the two curves intersect is the solution

 For small c only one solution

 S=0

 For greater c there might be two

solutions The point where two solutions start

appearing is when the gradients of the two

curves are equal at S=0

 This happens for c=1

Giant component and Phase transition
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Phase transition in random graphs

The size of the largest component undergoes a sudden change, or phase transition, 

from constant size to extensive size at one particular special value of p (pc = 1/n)

Fraction of nodes in the 

largest component

Giant component and Phase transition

RandomGraph-cut.mov


What G(n, p) graphs look like?
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Diameter of G(n, p) random graphs
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Simple random graphs are locally tree-like (no loops; 

low clustering coefficient)

On average, the number of nodes D
steps away from a node:



Random graph properties

 Poisson degree distribution

 Locally tree-like structure (very few triangles)

 Small diameters (small-world property)

 Sudden appearance of a giant component 

(Phase transition)
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Network Properties of G(n, p) 
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• Degree distribution: 

• Path length:                       O(log n)

• Clustering coefficient:      C=p=<k>/(n-1)
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Does ER Represent Real Networks?

 It is a simple and old model

 Not compatible to many characteristics of real networks
 No Transitivity

 Degree distribution differs from real networks (Poisson vs. Long-tail) 

 No community structure

 No Assortativity (No correlation between the degrees of adjacent vertices)

 However, random networks show small-world-ness
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Small World Model 

Duncan J. Watts Steven Strogatz 



Small World Networks

 The World is Small. many evidences:

 Milgram experiment 

 Six degrees of Kevin Bacon

 Erdos number

 Six degrees of separation

 The real networks also show high local clustering

 A friend of my friend, is probably my friend

John Guare, 1990 1993
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A Small-World

o Consequence of expansion:

 Short paths: O(log n)

This is the “best” we can do if the graph

has constant degree and n nodes

 Random graphs also result in short paths

o But networks have 

local structure:

 Triadic closure:

Friend of a friend is my friend

o How can we have both?

Pure exponential growth

Triadic closure reduces growth rate
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Small-World vs. Clustering

 Could a network with high clustering be at the same time a small world?

 How can we at the same time have 

high clustering and small diameter?

 Clustering implies edge “locality”

 Randomness enables “shortcuts”

High clustering
High diameter

Low clustering
Low diameter
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Clustering Implies Edge Locality 

Data set Avg. shortest path 
length (measured)

Avg. Shortest path 
length (random)

Clustering 

coefficient
(measured)

Clustering 

coefficient
(random)

Film actors (225,226 
nodes, avg. degree k=61) 3.65 2.99 0.79 0.00027

Electrical power grid 
(4,941 nodes, k=2.67)

18.7 12.4 0.080 0.005

Network of neurons (282 
nodes, k=14)

2.65 2.25 0.28 0.05

MSN (180 million edges, 
k=7)

6.6 ... 0.114 0.00000008

Facebook (721 million, 
k=99) 4.7 ... 0.14 ...

Real-world networks have high clustering and small diameter
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Solution: The Small-World Model

Small-world Model [Watts-Strogatz ‘98]:

2 components to the model:

 (1) Start with a low-dimensional regular lattice
- Has high clustering coefficient

 (2) Now introduce randomness (“shortcuts”): Rewire: 

 Add/remove edges to create shortcuts to join remote parts 
of the lattice

 For each edge with prob. p move the other end to a random node
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The Small-World Model
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High clustering

High diameter

High clustering

Low diameter

Low clustering

Low diameter
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Rewiring allows us to interpolate between regular 
lattice and a random graph



Diameter of the Watts-Strogatz

 Alternative formulation of the model:

 Start with a square grid

 Each node has 1 random long-range edge

 Each node has 1 spoke. Then randomly connect them.
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Ci ≥ 2*12/(8*7) ≥ 0.43

What’s the diameter?

It is log(n)
Why?



Watts-Strogatz (WS) Model

 Watts-Strogatz networks:

 Random networks:
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graph randomnetwork CC 
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What happens in between?

 Small shortest path means small clustering?

 Large shortest path means large clustering?

 Through numerical simulation

 As we increase p from 0 to 1

 Fast decrease of mean distance

 Slow decrease in clustering
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What happens in between?

Intuition: It takes a lot 

of randomness to ruin 

the clustering, but a 

very small amount to 

create shortcuts.



 p=0 delta-function

 p>0 broadens the distribution

 p=1  random networks  Binomial distribution

 The shape of the degree distribution is similar to that of a random graph 

and has a pronounced peak at k=K and decays exponentially for large |k-K|

Degree distribution
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Small World Model: Summary

 Can a network with high clustering also be a small world?

 Yes! Only need a few random links.

 The Watts-Strogatz Model:

 A random graph generation model 

 Provides insight on the interplay between clustering and the small-world 

 Captures the structure of many realistic networks

 Accounts for the high clustering of real networks
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Preferential Attachment Model

Albert-László Barabási
Réka Albert



Hubs represent the most striking difference between a 

random and a scale-free network. Their emergence in 

many real systems raises several fundamental 

questions:

•Why does the random network model of Erdős and 

Rényi fail to reproduce the hubs and the power laws 

observed in many real networks? 

• Why do so different systems as the WWW or the cell 

converge to a similar scale-free architecture? 
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The random network model differs from real networks 

in two important characteristics: 

1-Growth: While the random network model assumes 

that the number of nodes is fixed (time invariant), real 

networks are the result of a growth process that 

continuously increases.

2-Preferential Attachment: While nodes in random 

networks randomly choose their interaction partner, in real 

networks new nodes prefer to link to the more connected 

nodes.

Growth and Preferential Attachment
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Preferential attachment (PA) model

 parameters: m, n (positive integers)

 n: number of nodes

 m: number of attachments of each new node

 at time 0, consider an arbitrary initial graph

 E.g., a single edge or a 10-clique

 at time t+1, add m edges from a new node vt+1 to 

existing nodes forming the graph Gt

 the edge vt+1 xi  is added with probability:
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)deg(

deg
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x
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x i

ni
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i 



The larger deg(xi), the higher the 

probability that new node is joined to xi
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Basic BA-model

 Very simple algorithm to implement

 start with an initial set of m0 fully connected nodes

 e.g. m0 = 3

 now add new vertices one by one, each one with exactly m edges

 each new edge connects to an existing vertex in proportion to the 

number of edges that vertex already has → preferential attachment

 easiest if you keep track of edge endpoints in one large array and 

select an element from this array at random

 the probability of selecting any one vertex will be proportional to 

the number of times it appears in the array – which corresponds to 

its degree

1 2

3
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Generating BA graphs – cont’d

 To start, each vertex has an equal 

number of edges (2)

 the probability of choosing any 

vertex is 1/3

 We add a new vertex, and it will 

have m edges, here take m=2

 draw 2 random elements from the 

array – suppose they are 2 and 3 

 Now the probabilities of selecting 

1,2,3,or 4 are 

1/5, 3/10, 3/10, 1/5

 Add a new vertex, draw a vertex for 

it to connect from the array

 etc.

1 2

3

1 1 2 2 3 3

1 2

3
1 1 2 2 2 3 3 3 4 4

4

1 2

3 4

1 1 2 2 2 3 3 3 3 4 4 4 5 5

5
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Preferential Attachment
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Preferential Attachment and Scale-free Networks

 Preferential attachment (PA) results in scale-free networks

 Networks with power-law degree distribution are called 

scale-free

 PA  rich get richer

 A few nodes become important hubs with many 

attachments

 Many nodes stay with little relationships

degree

frequency
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 The graph is connected

- Every vertex is born with a link (m= 1) or several links (m > 1)

- It connects to older vertices, which are part of the giant 

component

 The older are richer

- Nodes accumulate links as time goes on

- preferential attachment will prefer wealthier nodes, who 

tend to be older and had a head start

 BA networks are not clustered.(Can you think of a growth 

model of having preferential attachment and clustering at the 

same time?)

Properties of BA Networks
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Properties of BA Networks

 Degree distribution

- power law degree distribution with 

 Average path length

- Which is even shorter than in random networks

 Average degree

- 2m

 Clustering coefficient

- no analytical result

- higher for the BA model than for random networks

50



Problems of the  BA Model

 BA model is a nice one, but is not fully satisfactory!

 BA model does not give satisfactory answers with regard to clustering

 While the small world model of Watts and Strogatz does!

 BA predicts a fixed exponent of 3 for the powerlaw

 However, real networks shows exponents between 2 and 3

51



Problems of the  BA Model (cont’d)

 Real networks are not “completely” power law

 After having obeyed the power-law for a large amount of k, 

for very large k, the distribution suddenly becomes exponential

 They exhibit a so called exponential cut-off

 In general

 The distribution has still a “heavy tailed”

 However, such tail is not infinite

 This can be explained because

 The number of resources (i.e., of links) that an individual can sustain (i.e., 

can properly handled) is often limited
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Growing Networks

 In general, networks are not static entities

 They grow, with the continuous addition of new nodes

 The Web, Internet, acquaintances, scientific 

literature, etc.

 Thus, edges are added in a network with time

 Preferential-Attachment, is a growing-network model
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Evolving Networks

 More in general…

 Network grows AND network evolves

 The evolution may be driven by various forces

 Connection age

 Connection satisfaction

 Connections can change during the life of the network

 Not necessarily in a random way

 But following characteristics of the network…

 Preferential-Attachment is not an evolving-network model
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Variations on the BA Model: Evolving Networks

 The problems of the BA Model may depend on the fact that networks not 

only grow but also evolve

 BA does not account for evolutions following the growth

 Evolution is frequent in real networks, otherwise:

 Google would have never replaced Altavista

 All new Routers in the Internet would be unimportant ones

 A Scientist would have never the chance of becoming a highly-cited one

55



Variations on the BA Model: Edges Rewiring

 By coupling the model for node additions

 Adding new nodes at new time interval

 One can consider also mechanisms for edge rewiring

 E.g., adding some edges at each time interval

 Some of these can be added randomly

 Some of these can be added based on preferential attachment

 Then, it is possible to show (Albert and Barabasi, 2000)

 That the network evolves as a power law with an exponent that can vary 

between 2 and infinity

 This enables explaining the various exponents that are measured in real 

networks
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Variations on the BA Model: Aging and Cost

 Node Aging

 The possibility of hosting new links decreased with the “age” of the node

 E.g. nodes get tired or out-of-date

 Link cost

 The cost of hosting new link increases with the number of links

 E.g., for a Web site this implies adding more computational power, for a 

router this means buying a new powerful router
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Scale-free networks

 Many real world networks contain hubs: highly connected nodes (Hubs)

 Usually the distribution of edges is extremely skewed

many nodes with few edges

fat tail: a few nodes with a very 

large number of edges

number of edges
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What is a heavy tailed-distribution?

 Normal distribution (not heavy tailed)
 e.g. heights of human males: centered around 175cm

 Power-law distribution (heavy tailed)
 e.g. city population sizes: Tehran 12 million, but many, many small 

towns

 High ratio of max to min

 Human heights

 tallest man: 272cm, shortest man: (1’10”) ratio: 4.8

 City sizes
 Tehran: pop. 12 million, a village 78, ratio: 150,000
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The Heavy Tail

 The power law distribution implies an “infinite variance”

 (it has a finite variance only if k>3, where k is the exponent)

 The probability to have elements very far from the average is not 

negligible 

 The big number counts
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Power-law distribution

linear scale log-log scale

 high skew (asymmetry) 

straight line on a log-log plot
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Power laws everywhere

Moby Dick scientific papers 1981-1997 AOL users visiting sites ‘97

bestsellers 1895-1965 AT&T customers on 1 day California 1910-1992

Source:MEJ Newman, ’Power laws, Pareto distributions and Zipf’s law’, Contemporary 
Physics 46, 323–351 (2005)
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The Power-law in real networks
Average k Power law exponents
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Some exponents for real world data

xmin exponent 

frequency of use of words 1 2.20

number of citations to papers 100 3.04

number of hits on web sites 1 2.40

copies of books sold in the US 2 000 000 3.51

telephone calls received 10 2.22

magnitude of earthquakes 3.8 3.04

diameter of moon craters 0.01 3.14

intensity of solar flares 200 1.83

intensity of wars 3 1.80

net worth of Americans $600m 2.09

frequency of family names 10 000 1.94

population of US cities 40 000 2.30
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Many real-world networks are power law

exponent 

in/out degree)

film actors 2.3

telephone call graph 2.1

email networks 1.5/2.0

protein interactions 2.4

WWW 2.3/2.7

internet 2.5

peer-to-peer 2.1

metabolic network 2.2
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How do they look like?

Protein 

Network
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The Internet

Routers

How do they look like?
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Poisson vs. Scale-free network

Hub



What implications does this have?

 Robustness

 Search

 Spread of disease

 Opinion formation

 Spread of computer viruses

 Gossip
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mike

In social networks, it’s nice to be a hub

The concept of trust
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But it depends on what you’re sharing…
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How do network connectivity change as nodes get 

removed?

 Nodes can be removed: 

- Random failure:  Remove nodes uniformly at random 

- Targeted attack: Remove nodes in order of decreasing degrees 
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Random failure or targeted attack
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In a scale-free network, the 

random removal (error) of even 

a large fraction of vertices 

impacts the overall 

connectedness of the network 

very little , while targeted attack 

destroys the connectedness 

very quickly, causing a rapid 

drop in efficiency. On the 

contrary, in random graphs, 

removal of nodes through 

either error or attack has the 

same effect on the network 

performance.

Scale-free network

Random network

Error

Attack

Error

Attack

Dashun08_Random.mov
Dashun08_Attack.mov


What does it mean to be scale free?

 A power law looks the same no mater what scale we 

look at it on 

(2 to 50 or 200 to 5000)

 Only true of a power-law distribution!

 p(bx) = g(b) p(x) 

 shape of the distribution is unchanged except for a 

multiplicative constant

 p(bx) = (bx) = b x

log(x)

log(p(x))

x →b*x
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- Whatever the scale at which we observe the network, 

the network looks the same, i.e., it looks similar to itself

- Overall properties of the network are preserved 

independently of the scale



Fractals and Scale Free Networks

 Fractal objects have the property of being “self-

similar” or “scale-free”

 Their “appearance” is independent from the scale of 

observation

 They are similar to itself independently of whether you 

look at the from near and from far

 That is, they are scale-free 

75



Examples of Fractals
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Log-log scale plot of straight binning of the data
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Noise in the tail:

Here we have 0, 1 or 2 observations

of values of x when x > 500

here we have tens of thousands of observations

when x < 10
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Empirical network features:

 Power-law (heavy-tailed) degree distribution

 Small average distance (graph diameter)

 Large clustering coecient (transitivity)

 Giant connected component, hierarchical structure,etc
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Most of the networks we study are evolving over time, they 

expand by adding new nodes:

- Citation networks

- Collaboration networks

- Web

- Social networks



Network Models: Comparison

Topology Average Path 

Length (L)

Clustering 

Coefficient (CC)

Degree 

Distribution (P(k))

Random Graph Poisson Dist.:

Small World

(Watts & Strogatz, 

1998)

Lsw  Lrand CCsw 
CCrand

Similar to random 

graph

Scale-Free 

network

LSF  Lrand Power-law 

Distribution:

P(k) ~ k-

k

N
Lrand

ln

ln
~

N

k
CCrand
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k : Average degree
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Questions


