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Network Model

» A network model:
an algorithm which generates artificial networks

» It generates artificial graphs which are similar to real-world
networks

» How a graph becomes similar to real networks?

» Small-worlds, transitivity, long-tail degree distribution,
community structure, ...

» How to generate a network that conforms to such properties?
» Network models try to answer that question
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Graeh models

» We want to have formal processes which can give rise to networks with
specific properties

» E.g., degree distribution, transitivity, diameters etc.

» These models and their features can help us understand how the properties
of a network (network structure) arise

» By growing networks according to a variety of different rules/models and
comparing the results with real networks, we can get a feel for which growth
processes are plausible and which can be ruled out

» Random graphs represent the “simplest” model
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Network Models

» Terminology:
» Network model
» Network generation method
» Generative model
» Random graph generation model
» Examples:
»  Erdés—Rényi (ER) model: random networks
»  Watts—Strogatz (WS) model: small-world networks
»  Barabasi—Albert model: scale-free neworks
» Many other models (a research topic)
» How efficient? How similar to real networks? How tunable/adaptive?
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Why Network Models?

» Uncover/explain the generative mechanisms underlying
networks

>
>

Models can uncover the hidden reality of networks
Reveal the processes which results in real-world networks

» Predict the future
» They may simulate real networks:

>

YV V V

When we want to study the properties/dynamics of networks
When we have no access to real-world networks

When it is not safe to publish a network dataset

And many other applications
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Why Network Models? (cont’d)

> Network structure

» the parameters give us insight into the global structure of the network
itself.

> Simulations

» given an algorithm working on a graph we would like to evaluate how its
performance depends on various properties of the network.

» Extrapolations & Sampling
» we can use the model to generate a larger/smaller graph.
»  Graph similarity

» to compare the similarity of the structure of different networks (even of
different sizes) one can use the differences in estimated parameters as a
similarity measure.

» Graph compression
» we can compress the graph, by storing just the model parameters.
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Examples of Network Model Applications

>

vV VYV

How fast a virus spreads in a network?
» What if we do not have access to the exact graph?

> What if we do not want to share the network with
researchers?

How to advertise in Instagram?
How to search in Facebook for a person/information?

Network models may simulate real graphs
and help answer such questions

X/ University of Kurdistan
"Sity of W .



Basic Network Models

Random graph model
(Erdos and Rényi, 1959)

"Small world" model
(Watts & Strogatz, 1998)

Preferential attachement model
(Barabasi & Albert, 1999)




Erdos- Renyl Random graph model
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Random Network Model

» Definition: A random graph is a graph of A/ nodes
where each pair of nodes is connected by
probabllity p. G(N,p)

Erdos-Rényi model (1959)

Connect with probability p




Erdos—Reényi (ER) Model, Example:

0=0.03
N=100
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Clustering coefficient

» Clustering coefficient is defined as the probability that two vertices with a
common neighbor are connected themselves

» In a random graph the probability that any two vertices are connected is
equal to p=c/(n-1)

» Hence the clustering coefficient is also: (= ’

n-1

» Given that for large n, c is constant, it follows that the clustering coefficient
goesto O

» This is a sharp difference between the G(n,p) model and real networks
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The Number of Links 1s Variable

» nand pdo not uniquely determine the graph!
(The graph is a result of a random process)

» We can have many different realizations given the same
nand p

<7 10
me /I

number of edges=8 number of edges=7 number of edges=9
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Number of Links in ER Networks

P(L): the probability to have exactly L links in a network of N
nodes and probabillity p:

The maximum number of links
in a network of N nodes.

N N(N-D |
P(L)=||2]|p"A-p) ?
L

Number of different ways

N X N —X
we can choose L links P(X) — X P (1_ p)

among all potential links.

Binomial distribution...
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Degree Distribution of Random Networks

The probability of having k links for a node?
(Degree Probabillity Distribution)

N-1 k (N-1)—k
P(k) = y p"(1-p)

Pk)
.
-

<k>=p(N-1) Makes sense

As the network size increases, the distribution becomes
Increasingly narrow—we are increasingly confident that the

degree of a node is in the vicinity of <k>.

15
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Degree Distribution of Random Networks

For large values of n,
the degree distribution
follows a Poisson
distribution
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ER properties

 Binomial degree distribution: P(k) = N -1 pk(l_ p)(N—l)—k
(biased coin experiment)

N N (N-1)
d A(L): the probability to have a p(L)= (2] ot (L-p) 2 -
network of exactly L links L

A The average number of links </>ina <[ >= pN(N_D
random graph 2

The average degree ¢:  C=<k>=2L/N=p(N-1)

o\-vﬂ 35 Lt""'(,
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Glant component and Phase transition

» How many components exist in G(n,p) model
» p=0 -> Every node is isolated - Component size = 1 (independent of n)

» p=1 -> All nodes connected with each other - Component size = n
(proportional to n)

» Itis interesting to examine what happens for values of p in-between

» In particular, what happens to the largest component in the network as p
increases?

|
| —
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Glant component and Phase transition

» A network component whose size grows in
proportion to n is called giant component

» Let u be the fraction of nodes that do not
belong to the giant component. Hence,

» If there is no giant component - u=1
» If there is giant component - u<l

> In order for a node | not to connect to the
giant component:

- I needs not connect to any other node |

= With probability: 1-p  or

- 1 is connected to j, but j itself is not
connected to the giant component

- With probability: pu

giant component

%/ University of Kurdistan 19




Glant component and Phase transition

Thus, if there is no giant component (e.g., p = 0), then v =1,
and if there is, then v< 1.

uw=(1-p+pu)"!
n—1 -
_ |1 C (1—%) limn%m(l—%) —e 7
n—1
_ e—c(l—u)

let S = 1- v be the probabillity that | belongs to the giant
component S
S=1-—e

X7/ University of Kurdistan 20
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solutions The point where two solutions start

Glant component and Phase transition

We plot y=1-e°> with S between 0 and 1 (since it represents fraction of
nodes)

We also plot y=S
The point where the two curves intersect is the solution

For small c only one solution

= S=0 T - L
For greater c there might be two 0.8 5

appearing is when the gradients of the two |

curves are equal at S=0 0.4
v This happens for c=1

%/ University of Kurdistan
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Glant component and Phase transition

(b)

0.8
all small,
0.6+ tree-like
components
04 , ,

giant component +
small tree-like components

Size of the giant component S

o
n

Fraction of nodes in the

largest component 0 05 1 15 2 25 3 35 4
Mean degree ¢

The size of the largest component undergoes a sudden change, or phase transition,
from constant size to extensive size at one particular special value of p (p. = 1/n)

Phase transition in random graphs
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Diameter of G(n, p) random graphs

Simple random graphs are locally tree-like (no loops;
low clustering coefficient)

On average, the number of nodes D
steps away from a node:




Random graph properties

» Poisson degree distribution
» Locally tree-like structure (very few triangles)
» Small diameters (small-world property)

» Sudden appearance of a giant component
(Phase transition)

X/ University of Kurdistan
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Network Properties of G(n, p)

« Degree distribution: P(k)z( y

* Path length: O(log n)

n—l] k

p"(l-p

* Clustering coefficient: C=p=<4k>/(n-1)

X7/ University of Kurdistan
TSty of WO, .
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Does ER Represent Real Networks?

» ltis a simple and old model
» Not compatible to many characteristics of real networks

>

YV V V

No Transitivity

Degree distribution differs from real networks (Poisson vs. Long-tail)

No community structure

No Assortativity (No correlation between the degrees of adjacent vertices)

» However, random networks show small-world-ness

Z/University of Kurdistan
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Small World Model

Duncan J. Watts

Regular Small-world

Steven Strogatz

28



Small World Networks

» The World is Small. many evidences:
» Milgram experiment
» Six degrees of Kevin Bacon
» Erdos number
» Six degrees of separation

» The real networks also show high local clustering™™ =/-
» A friend of my friend, is probably my friend

20 —

s

:' starred in with { starred in with - 1)
1 ' .

| | 1 | 1 1 | I 1
o I 2 3 4 5 6 7 8 9 10 11 12
Ol

NUMBER OF INTERMEDIARIES

John Guare, 1990 1993
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O

A Small-World

Consequence of expansion:
= Short paths: O(log n)

This is the “best” we can do if the graph

has constant degree and /7 nodes

= Random graphs also result in short paths

But networks have
local structure:

=  Triadic closure:
Friend of a friend is my friend
How can we have both?

O 0O O O 0O 00 0O 00 O 0 O 00 0 0 00 0 0 0 )

Pure exponential growth

Triadic closure reduces growth rate

%/ University of Kurdistan
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Small-World vs. Clustering

»  Could a network with high clustering be at the same time a small world?

» How can we at the same time have
high clustering and small diameter?

»  Clustering implies edge “locality”
» Randomness enables “shortcuts”

High clustering Low clustering
High diameter Low diameter

Z/University of Kurdistan
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Clustering Implies Edge Locality

Data set Avg. shortest path Avg. Shortest path Clustering Clustering
length (measured) length (random) coefficient coefficient
(measured) (random)

Film actors (225,226

nodes, avg. degree k=61) 3.65 2.99 0.79 0.00027
Electrical power grid

(4.941 nodes, k=2.67) 18.7 12.4 0.080 0.005
Network of neurons (282

nodes, k=14) 2.65 2.25 0.28 0.05
l':/':s%')\' (180 miliion edges, 6.6 0.114 0.00000008
Facebook (721 million,

k=99) 4.7 0.14

Real-world networks have high clustering and small diameter

%/ University of Kurdistan



Solution: The Small-World Model

Small-world Model [Watts-Strogatz ‘98].

2 components to the model:

» (1) Start with a low-dimensional regular lattice
- Has high clustering coefficient

> (2) Now introduce randomness (“shortcuts”): Rewire:

» Add/remove edges to create shortcuts to join remote parts
of the lattice

» For each edge with prob. p move the other end to a random node

X7 University of Kurdistan 33



The Small-World Model

REGULAR HETUWORK SMALL LWORLD HETLIORE RAHOOM HETLJORK

F=0 INCREASIMG RAHDOMHESS F=1
High clustering High clustering Low clustering
High diameter Low diameter Low diameter
h= N C= 3 log N k

log N

Rewiring allows us to interpolate between regular
lattice and a random graph

34




Diameter of the Watts-Strogatz

» Alternative formulation of the model:
»  Start with a square grid
» Each node has 1 random long-range edge
» Each node has 1 spoke. Then randomly connect them.

TIPS
L AR AL AL AL AL
AIRIRIXIRIXT
SN
XIRRIXIRIXT
NS SOV,
TAIRTXIREIAT

NOTNOTNSATNATNATN
o"‘o"‘o"‘o"‘o"‘o"‘o

C.2 2*¥12/(8*7) 2 0.43

It is /og(n)
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Watts-Strogatz (WS) Model

» Waltts-Strogatz networks:

netwo rk

~In(N)

Cnetwork >> C

randomgraph

» Random networks: In N




What happens in between?

» Small shortest path means small clustering?
» Large shortest path means large clustering?
» Through numerical simulation
» As we increase pfrom0Oto 1l
» Fast decrease of mean distance
» Slow decrease In clustering

X/ University of Kurdistan
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What happens in between?

1Tfo—e—E W g g | L
08| Clustering ] -2
ST 7 « Intuition: It takes a lot
£ of randomness to ruin
06| 2 the clustering, but a
L £ very small amount to
¢ create shortcuts.
i 0
0.4 | + @
L Path lengths 2
i IS
: L(p)/ L(O <
L LP /L) :
0 I ] 1 1 1 IIIII 1 L 1 L1 1 11 1 1 Ll 1 11 1 1 1 L1 1.1l
0.0001 0.001 0.01 0.1 1

The “Small-World” regime:
paths short, clustering high
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Degree distribution

p=0 delta-function
p>0 broadens the distribution
p=1 =» random networks =» Binomial distribution

The shape of the degree distribution is similar to that of a random graph
and has a pronounced peak at k=K and decays exponentially for large |k-K]|

A

A
I
P(k)

P(k)
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Small World Model: Summary

» Can a network with high clustering also be a small world?
» Yes! Only need a few random links.

» The Watts-Strogatz Model:
» A random graph generation model

Provides insight on the interplay between clustering and the small-world
Captures the structure of many realistic networks
Accounts for the high clustering of real networks

YV V V

%/ University of Kurdistan
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Preferential Attachment Model

41



Hubs represent the most striking difference between a
random and a scale-free network. Their emergence in
many real systems raises several fundamental
guestions:

*‘Why does the random network model of Erdos and
Rényi fail to reproduce the hubs and the power laws
observed in many real networks?

 Why do so different systems as the WWW or the cell
converge to a similar scale-free architecture?

42




Growth and Preferential Attachment

The random network model differs from real networks
In two important characteristics:

1-Growth: While the random network model assumes
that the number of nodes is fixed (time invariant), real
networks are the result of a growth process that
continuously increases.

2-Preferential Attachment: While nodes in random
networks randomly choose their interaction partner, in real
networks new nodes prefer to link to the more connected
nodes.

X/ University of Kurdistan
"Sity of W .
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Preferential attachment (PA) model

» parameters: m, n (positive integers)
» n: number of nodes
» m: number of attachments of each new node
» attime 0, consider an arbitrary initial graph
» E.g., asingle edge or a 10-clique

» attime t+1, add m edges from a new node v, to
existing nodes forming the graph G; deg(x)  deg(x)

> the edge v, X Is added with probability: S deg(x,) " 2|E(G)]

1<i<n
The larger deg(x;), the higher the

probability that new node is joined to X;

X/ University of Kurdistan 44
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Basic BA-model

» Very simple algorithm to implement
» start with an initial set of m, fully connected nodes

> €.g.my=3
3

1 2

Y

now add new vertices one by one, each one with exactly m edges

» each new edge connects to an existing vertex in proportion to the
number of edges that vertex already has — preferential attachment

» easiest if you keep track of edge endpoints in one large array and
select an element from this array at random

» the probability of selecting any one vertex will be proportional to
the number of times it appears in the array — which corresponds to
its degree

%/ University of Kurdistan »



Generating BA graphs — cont’d

» To start, each vertex has an equal

number of edges (2)

»  the probability of choosing any

vertex is 1/3

112233

» We add a new vertex, and it will

have m edges, here take m=2

» draw 2 random elements from the 1122233344

array — suppose they are 2 and 3

» Now the probabilities of selecting

1,2,3,0or 4 are
1/5, 3/10, 3/10, 1/5

it to connect from the array

Add a new vertex, draw a vertex for

>  etc.

11222333344455

Z/University of Kurdistan
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Preferential Attachment
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Preferential Attachment and Scale-free Networks

Y

Preferential attachment (PA) results in scale-free networks

Networks with power-law degree distribution are called
scale-free

» PA = rich getricher

» A few nodes become important hubs with many
attachments

» Many nodes stay with little relationships

Y

-
‘s
7z O 4

frequency

degree
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Properties of BA Networks

» The graph is connected
- Every vertex is born with a link (m= 1) or several links (m > 1)

- It connects to older vertices, which are part of the giant
component

» The older are richer
- Nodes accumulate links as time goes on

- preferential attachment will prefer wealthier nodes, who
tend to be older and had a head start

» BA networks are not clustered.(Can you think of a growth
model of having preferential attachment and clustering at the
ez, Same time?)

X/ University of Kurdistan
"Sity of W .
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Properties of BA Networks

Degree distribution ,
- power law degree distribution with  P(k) ~ k~

/ InN
Average path length nin N

- Which is even shorter than in random networks

Average degree
- 2m

Clustering coefficient
- no analytical result
- higher for the BA model than for random networks

X7 University of Kurdistan
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Problems of the BA Model

Y VYV

BA model is a nice one, but is not fully satisfactory!

BA model does not give satisfactory answers with regard to clustering
»  While the small world model of Watts and Strogatz does!

BA predicts a fixed exponent of 3 for the powerlaw

» However, real networks shows exponents between 2 and 3

%/ University of Kurdistan
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Problems of the BA Model (cont’d)

» Real networks are not “completely” power law

» After having obeyed the power-law for a large amount of k,
for very large k, the distribution suddenly becomes exponential

» They exhibit a so called exponential cut-off
» In general

» The distribution has still a “heavy tailed” | _— ot

» However, such tail is not infinite
»  This can be explained because

» The number of resources (i.e., of links) that an individual c
can properly handled) is often limited

%/ University of Kurdistan >



Growing Networks

» In general, networks are not static entities
» They grow, with the continuous addition of new nodes

» The Web, Internet, acquaintances, scientific
literature, etc.

» Thus, edges are added in a network with time

» Preferential-Attachment, is a growing-network model

X/ University of Kurdistan 53
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Evolving Networks

>

More in general...

» Network grows AND network evolves

The evolution may be driven by various forces

» Connection age

» Connection satisfaction

Connections can change during the life of the network

» Not necessarily in a random way

» But following characteristics of the network...
Preferential-Attachment is not an evolving-network model

%/ University of Kurdistan
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Variations on the BA Model: Evolving Networks

» The problems of the BA Model may depend on the fact that networks not
only grow but also evolve

» BA does not account for evolutions following the growth
» Evolution is frequent in real networks, otherwise:
» Google would have never replaced Altavista
» All new Routers in the Internet would be unimportant ones
» A Scientist would have never the chance of becoming a highly-cited one

%/ University of Kurdistan >



Variations on the BA Model: Edges Rewiring

» By coupling the model for node additions

» Adding new nodes at new time interval
» One can consider also mechanisms for edge rewiring

» E.g., adding some edges at each time interval

» Some of these can be added randomly

» Some of these can be added based on preferential attachment
» Then, itis possible to show (Albert and Barabasi, 2000)

» That the network evolves as a power law with an exponent that can vary
between 2 and infinity

» This enables explaining the various exponents that are measured in real
networks

%/ University of Kurdistan >



Variations on the BA Model: Aging and Cost

» Node Aging
» The possibility of hosting new links decreased with the “age” of the node
» E.g. nodes get tired or out-of-date

» Link cost
» The cost of hosting new link increases with the number of links

» E.g., for a Web site this implies adding more computational power, for a
router this means buying a new powerful router

Z/University of Kurdistan
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Scale-free networks

» Many real world networks contain hubs: highly connected nodes (Hubs)
» Usually the distribution of edges is extremely skewed

n
>

many nodes with few edges

P(k) ~ k™

fat tail: a few nodes with a very
large number of edges

number of nodes with so many edges

g
>

number of edges

%/ University of Kurdistan
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What is a heavy tailed-distribution?

» Normal distribution (not heavy tailed)
» e.g. heights of human males: centered around 175cm

» Power-law distribution (heavy tailed)

» e.g. city population sizes: Tehran 12 million, but many, many small
towns

» High ratio of max to min
» Human heights
» tallest man: 272cm, shortest man: (1°'10") ratio: 4.8
» City sizes
» Tehran: pop. 12 million, a village 78, ratio: 150,000

Z/University of Kurdistan >



The Heavy Tall

» The power law distribution implies an “infinite variance”

» (it has a finite variance only if k>3, where k is the exponent)

» The probability to have elements very far from the average is not
negligible

» The big number counts

X7 University of Kurdistan
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Power-law distribution

linear scale log-log scale
0.004 10” 3y,
5 ] 10 =
= 0.003 3
- 107 3
o ] .
L 5 =3
o)) 0.002 — 107 = .
2] 7 3
E i 5 \
v . 10735 )
2 0.001 .
L - R
Q 107 3
0—_ 10'8_ T T T T T 11T | \||ﬁ!q
0 210’ 4x10° 10' 10 10° 10
population of city

high skew (asymmetry)
straight line on a log-log plot
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Power laws everywhere

word frequency citations web hits
Moby Dick scientific papers 1981-1997 AOLUSETs Visitng sites ‘97
(d) f 4 (e) 1 04 ..... (I)
6
100 10 ﬂ
107
10 \ 10° 2
", 10 .‘-..
) 0 ! .°o.
T 10 AR RS RN RS R
10° 10 0’ 100 a0t 10" 2 3 4 5 6 7
books sold telephone calls recerved earthquake magnitude

bestsellers 1895-1965  AT&T customers on 1 day California 1910-1992

Source:MEJ Newman, 'Power laws, Pareto distributions and Zipf's law’, Contemporary
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The Power-law In real networks

]
Average k Power law exponents

Network Size £ rand ¢ pow Reference
WWW 325729 832 477 Albert, Jeong, and Barabdsi 1999
WWW 410" Kumar et al, 1999
WWW 23107 885 T.61 Broder ef al., 2000
WWW, site 260000 Huberman and Adamic, 2000
Internet, domain®  3015-4380§3.42-3.76Q030-4002.1-2.2 2.1-22 § - 63 52 Faloutsos, 1999
Internet, router® RERN RT3 T.67 Faloutsos, 1999
Internet, router™ 150000 . 128 747 Govindan, 2000
Movie actors* 212250 23 2. 365 401 Barabasi and Albert, 1999
Co-authors, SPIRES* 56627 1.2 1.2 212 1.95 Newman, 2001b
Co-authors, neuro.” 209293 2.1 2.1 501 3.86 Barabasi ef al, 2001
Co-authors, math.® 70975 2.5 2.5 82 h.53 Barabasi et al., 2001
Sexual contacts® 2810 34 34 Liljeros e al.. 2001
Metabolic, E. coli 718 2.2 2.2 332 280 Jeong et al., 2000
Protein, 8. cerev.® 1870 24 24 Jeong, Mason, et al., 2001
Ythan estuary™ 134 105 105 2260 1.71 Montova and Sole, 2000
Silwood Park™ 154 113 113 323 2 Montova and Sole, 2000
Citation 783339 3 Redner, 1998
Phane call 53 100 2.1 Adello ef al., 2000

Ferrer 1 Cancho and Solé, 2001
Yook ef al, 2001b

Words, co-occurrence® 460002
Words, synonyms® 22311

University of Kurdistan



Some exponents for real world data

Xrmin exponent o
frequency of use of words 1 2.20
number of citations to papers 100 3.04
number of hits on web sites 1 2.40
copies of books sold in the US 2 000 000 3.51
telephone calls received 10 2.22
maghnitude of earthquakes 3.8 3.04
diameter of moon craters 0.01 3.14
intensity of solar flares 200 1.83
intensity of wars 3 1.80
net worth of Americans $600m 2.09
frequency of family names 10 000 1.94
population of US cities 40 000 2.30

Z/University of Kurdistan
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Many real-world networks are power law

exponent o
(infout degree)
film actors 2.3
telephone call graph 2.1
email networks 1.5/2.0
protein interactions 2.4
WWW 2.3/2.7
Internet 2.5
peer-to-peer 2.1
metabolic network 2.2

X7 University of Kurdistan
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How do they look like?

Protein "~
Network =

. J‘ b
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How do they look like?

The Internet
Routers

67



Poisson vs. Scale-free network

al

cl

Number of nodes with links

Highway network

Many nodes with
similar number of
links

Absence of
highly connected
nodes

b)

d)

Number of nodes with links

Air traffic network

Scale-free

' Many nodes with
", few links

° \Q‘\' Few hubs with
Q‘ o' many links

Number of links
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What implications does this have?

Robustness

Search

Spread of disease

Opinion formation

Spread of computer viruses
Gossip

V.V V V V V

X7/ University of Kurdistan
TSty of WO, .
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In social networks, it’s nice to be a hub
B

e —

The concept of trust

70



But it depends on what you’re sharing...




Failure vs. Attack

How do network connectivity change as nodes get
removed?

» Nodes can be removed:
- Random failure: Remove nodes uniformly at random

- Targeted attack: Remove nodes in order of decreasing degrees
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Random failure or targeted attack

Scale-free network

Random network

Erroy
Attack\

Attack\

In a scale-free network, the
random removal (error) of even
a large fraction of vertices
impacts the overall
connectedness of the network
very little , while targeted attack
destroys the connectedness
very quickly, causing a rapid
drop in efficiency. On the
contrary, in random graphs,
removal of nodes through
either error or attack has the
same effect on the network
performance.
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Dashun08_Random.mov
Dashun08_Attack.mov

What does it mean to be scale free?

» A power law looks the same no mater what scale we
look at it on

(2 to 50 or 200 to 5000)
» Only true of a power-law distribution!

> p(bx) = g(b) p(x)
» shape of the distribution is unchanged except for a
multiplicative constant

> p(bx) = (bx) = b x—©

W —>b*x
- Whatever the scale at which we observe the network,

the network looks the same, i.e., it looks similar to itself

- Overall properties of the network are preserved \
independently of the scale

log(p(x))

log(x)
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Fractals and Scale Free Networks

» Fractal objects have the property of being “self-
similar” or “scale-free”

» Their "appearance” is independent from the scale of
observation

» They are similar to itself independently of whether you
look at the from near and from far

» That is, they are scale-free
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Examples of Fractals
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Log-log scale plot of straight binning of the data
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Empirical network features:

Power-law (heavy-tailed) degree distribution

Small average distance (graph diameter)

Large clustering coecient (transitivity)

Giant connected component, hierarchical structure,etc
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Most of the networks we study are evolving over time, they
expand by adding new nodes:

- Citation networks

- Collaboration networks

- Web

- Social networks
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Network Models: Comparison

Topology Average Path Clustering Degree
Length (L) Coefficient (CC) | Distribution (A(k))
Random Graph Poisson Dist.:
% In¢k) rand =\ P(k) ~e® =
(Sv\r/n?tllzvé)trld t Loy <L,y cc,, > Srlgnplfr to random
atts rogatz,
1998) CC/’&/’IO’
Scale-Free Leg <L,y Power-law
network Distribution:
k) ~ k7

{K): Average degree
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» Questions




