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 Which vertices are important?

 How we answer this question depends on what 

exactly we mean by important, and there are 

several general approaches to answering it
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Power in social networks



Centrality in social networks

 Centrality encodes the relationship between structure and power in groups

Certain positions within the network give nodes more power or importance

 How do we measure importance? 

 Who can directly affect/influence others?

 Highest degree nodes are “in the thick of it”

 Who controls information flow?

 Nodes that fall on shortest paths between others can disrupt the flow of 

information between them

 Who can quickly inform most others?

 Nodes who are close to other nodes can quickly get information to them
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Characterizing networks: Who is most central?

?

?

?
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Network centrality

 Which nodes are most ‘central’?

 Local measure:

• degree

 Relative to rest of network:

• closeness, betweenness, eigenvector (Bonacich power 

centrality), Katz, PageRank, …

 How evenly is centrality distributed among nodes?

• Centralization, hubs and authorities, …
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Centrality: who’s important based on their 

network position

Y 

X 

Y 

X 

Y X 

Y 

X 

indegree

In each of the following networks, X has higher centrality than Y 

according to a particular measure

outdegree betweenness closeness
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He who has many friends is most important.

Degree centrality (undirected)

When is the number of connections the best centrality measure?

o people who will do favors for you

o people you can talk to (influence set, information access, …)

o influence of an article in terms of citations (using in-degree)
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Degree: normalized degree centrality

divide by the max. possible, i.e. (N-1)
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Degree centrality

 The number of others a node is connected to

 Node with high degree has high potential communication activity

1

2 3

4 5

node In-degree Out-degree Total 
degree

1 0 1 1

2 3 2 5

3 1 3 4

4 2 1 3

5 2 1 3

1

2 3

4 5
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Extensions of undirected degree centrality -

prestige

 degree centrality

• indegree centrality

- a paper that is cited by many others has high prestige

- a person nominated by many others for a reward has high prestige
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Freeman’s general formula for centralization:
(can use other metrics, e.g. gini coefficient or standard deviation)



CD 
CD (n

*)CD (i) 
i1

g


[(N 1)(N 2)]

Centralization: how equal are the nodes?

How much variation is there in the centrality 

scores among the nodes?

maximum value in the network
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Freeman: .07

Variance: .20

Freeman: 1.0

Variance: 3.9
Freeman: .02

Variance: .17

Freeman: 0.0

Variance: 0.0

Degree Centrality in Social Networks
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Degree centralization examples

CD = 0.167

CD = 0.167
CD = 1.0
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Centralization= Σ(C*-Ci) / Max Σ(C*-Ci) 



Degree centralization examples

example financial trading networks

high centralization: one node 

trading with many others
low centralization: trades 

are more evenly distributed

14



When degree isn’t everything

In what ways does degree fail to capture centrality in 

the following graphs?

 ability to broker between groups

 likelihood that information originating anywhere in the network reaches you…
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Betweenness: another centrality measure

 intuition: how many pairs of individuals would have to go 

through you in order to reach one another in the minimum 

number of hops?

 who has higher betweenness, X or Y?

Y X 

Y 

X 
XY
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Betweenness centrality

 Number of shortest paths (geodesics) connecting all pairs of other nodes 

that pass through a given node

 Node with highest betweenness can potentially control or distort 

communication

1

2 3

4 5

12 123 124 1245

23 24 245

34 3532

452 4523 45

52 523 524

1

2 3

4 5
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Betweenness on toy networks

 non-normalized version:

A B C ED

 A lies between no two other vertices

 B lies between A and 3 other vertices: C, D, and E

 C lies between 4 pairs of vertices (A,D),(A,E),(B,D),(B,E)

 note that there are no alternate paths for these pairs to 

take, so C gets full credit
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

CB (i)  g jk(i) /g jk
jk



Where gjk = the number of geodesics connecting j-k, and 

gjk = the number that actor i is on.

Usually normalized by:



CB
' (i) CB (i ) /[(n 1)(n 2)/2]

number of pairs of vertices 

excluding the vertex itself

Betweenness centrality: definition
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betweenness of vertex i
paths between j and k that pass through i

all paths between j and k

For directed graph: (N-1)*(N-2)



Betweenness on toy networks
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 non-normalized version:



Betweenness on toy networks

 non-normalized version:
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broker



 non-normalized version:

A B

C

E

D

 why do C and D each have 

betweenness 1?

 They are both on shortest 

paths for pairs (A,E), and (B,E), 

and so must share credit:

 ½+½ = 1

 Can you figure out why B has 

betweenness 3.5 while E has 

betweenness 0.5?
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Betweenness on toy networks
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If you add lines from C to G and from D to H, you remove

the high betweenness centrality of E and F

Betweenness centrality
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Hue (from red = 0 to 

blue = max) shows the 

node betweenness

Betweenness centrality
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Centrality vs. Centralization

Centrality is a characteristic of an actor’s position in a network

Centralization is a characteristic of a network 

Centralization indicates:

- how unequal the distribution of centrality is in a network or 

- how much variance there is in the distribution of centrality 

in a network

• Centrality is a micro-level measure

• Centralization is a macro-level measure 



Centralization: 1.0

Centralization: .31

Centralization: .59 Centralization: 0

Betweenness Centralization (examples)
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Comparison 

Can you spot nodes with 

high betweenness but 

relatively low degree?  

What about high 

degree but relatively 

low betweenness? 
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Nodes are sized by degree, and colored by 

betweenness. 



Extending betweenness centrality to directed networks

 We now consider the fraction of all directed paths between any two 

vertices that pass through a node

 Only modification: when normalizing, we have 

(N-1)*(N-2) instead of (N-1)*(N-2)/2, because we have 

twice as many ordered pairs as unordered pairs

CB (i)  g jk
j,k

 (i) /g jk

betweenness of vertex i
paths between j and k that pass through i

all paths between j and k



C
B

' (i) C
B
(i) /[(N 1)(N 2)]
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Directed geodesics

A node does not necessarily lie on a geodesic from j to k if 

it lies on a geodesic from k to j

k

j
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Closeness: another centrality measure

 What if it’s not so important to have many direct friends?

 Or be “between” others

 But one still wants to be in the “middle” of things, 

 not too far from the center
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Closeness is based on the length of the average shortest 

path between a vertex and all vertices in the graph



Cc (i)  d(i, j)
j1

N














1

)1)).((()('  NiCiC CC

Closeness Centrality:

Normalized Closeness Centrality

Closeness centrality: definition
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depends on inverse distance to other vertices





Cc
' (A) 

d(A, j)
j1

N



N 1



















1


1 2 3 4

4








1


10

4








1

 0.4

Closeness centrality: toy example

A B C ED
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Closeness centrality: more toy examples
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Distance     Closeness  normalized

0 1 1 1 1 1 1 1    .143      1.00

1 0 2 2 2 2 2 2    .077      .538

1 2 0 2 2 2 2 2    .077      .538

1 2 2 0 2 2 2 2    .077      .538

1 2 2 2 0 2 2 2    .077      .538

1 2 2 2 2 0 2 2    .077      .538

1 2 2 2 2 2 0 2    .077      .538

1 2 2 2 2 2 2 0    .077      .538

Distance     Closeness  normalized

0 1 2 3 4 4 3 2 1    .050     .400

1 0 1 2 3 4 4 3 2    .050     .400

2 1 0 1 2 3 4 4 3    .050     .400

3 2 1 0 1 2 3 4 4    .050     .400

4 3 2 1 0 1 2 3 4    .050     .400

4 4 3 2 1 0 1 2 3    .050     .400

3 4 4 3 2 1 0 1 2    .050     .400

2 3 4 4 3 2 1 0 1    .050     .400

1 2 3 4 4 3 2 1 0    .050     .400

Closeness Centrality (examples)
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Distance     Closeness  normalized

0 1 2 3 4 5 6    .048     .286

1 0 1 2 3 4 5    .063     .375

2 1 0 1 2 3 4    .077     .462

3 2 1 0 1 2 3    .083     .500

4 3 2 1 0 1 2    .077     .462

5 4 3 2 1 0 1    .063     .375

6 5 4 3 2 1 0    .048     .286

Closeness Centrality in Social Networks



Distance      Closeness  normalized

0 1 1 2 3 4 4 5 5 6 5 5 6  .021      .255

1 0 1 1 2 3 3 4 4 5 4 4 5  .027      .324

1 1 0 1 2 3 3 4 4 5 4 4 5  .027      .324

2 1 1 0 1 2 2 3 3 4 3 3 4  .034      .414

3 2 2 1 0 1 1 2 2 3 2 2 3  .042      .500

4 3 3 2 1 0 2 3 3 4 1 1 2  .034      .414

4 3 3 2 1 2 0 1 1 2 3 3 4  .034      .414

5 4 4 3 2 3 1 0 1 1 4 4 5  .027      .324

5 4 4 3 2 3 1 1 0 1 4 4 5  .027      .324

6 5 5 4 3 4 2 1 1 0 5 5 6  .021      .255

5 4 4 3 2 1 3 4 4 5 0 1 1  .027      .324

5 4 4 3 2 1 3 4 4 5 1 0 1  .027      .324

6 5 5 4 3 2 4 5 5 6 1 1 0  .021      .255

Closeness Centrality in Social Networks
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 degree

 number of connections

 denoted by size

 closeness

 length of shortest path 

to all others

 denoted by color

How closely do  degree and betweenness
correspond to closeness?
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Closeness centrality

 Values tend to span a rather small dynamic range

 typical distance increases logarithmically with network size

 In a typical network the closeness centrality C might span a factor of five or 

less

 It is difficult to distinguish between central and less central vertices

 a small change in network might considerably affect the centrality order

 Alternative computations exist but they have their own problems
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Influence range

 The influence range of i is the set of vertices who are reachable from 

the node i
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Extensions of undirected closeness centrality

 closeness centrality usually implies

 all paths should lead to you

 paths should lead from you to everywhere else 

 usually consider only vertices from which the node i in question can be 

reached
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Eigenvector Centrality

41

Idea: A central actor is connected to other central actors

For a given graph G:=(V,E) with |V| number of vertices 

let A be the adjacency matrix. The centrality score of 

vertex v can be defined as:

A natural extension of the degree centrality



Eigenvector Centrality
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Node B is more popular in the 

network if we only extend our vision 

out to a distance of 1 from each node. 

But A is connected to nodes that are 

connected to many other nodes, while 

B is connected to less-popular nodes. 

A has a higher eigenvector centrality.
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Eigenvector Centrality
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Degree vs. Eigenvector Centrality



PageRank: Standing on the Shoulders of Giants

Key insights

 Analyzes the structure of the web of hyperlinks to determine importance 

score of web pages

 A web page is important if it is pointed to by other important pages

 An algorithm with deep mathematical roots

 Random walks

 Social network theory
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Page rank

 Link analysis approaches

 Rank pages (nodes) by analyzing topology of the web graph

 Idea: Links as votes

- Page is more important if it has more links adjacent to it

 Incoming links? Outgoing links?

 Links from important pages have higher weight => recursive problem!

46

Developed by Google founders to measure the importance of 

webpages from the hyperlink network structure.



n = number of nodes in the network

k = number of steps

 1. Assign all nodes a PageRank of 1/𝑛

 2. Perform the Basic PageRank Update Rule k times.

Basic PageRank Update Rule: Each node gives an equal share of its current

PageRank to all the nodes it links to.

The new PageRank of each node is the sum of all the PageRank it received from

other nodes.
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Page rank



 Who should be the most “important” node in this network?

 Calculate the PageRank of each node after 2 steps of the procedure 

(𝑘 = 2).
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Page rank- Example
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From D From E

Page rank- Example
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Page rank- Example
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Page rank- Example



 What if continue with k = 4,5,6,...? For most networks, PageRank 

values converge
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Page rank- Example



PageRank and the Random Surfer

Random Surfer

 Starts at arbitrary page I

H

L

M

G

E

F B C

D A

53



PageRank and the Random Surfer

Random Surfer

 Starts at arbitrary page

 Bounces from page to 

page by following links 

randomly

I

H

L

M

G

E

F B C

D A
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PageRank and the Random Surfer

I

H

L

M

G

E

F B C

D A

Random Surfer

 Starts at arbitrary page

 Bounces from page to 

page by following links 

randomly

 PageRank score of a 

web page is the relative 

number of time it is 

visited by the Random 

Surfer
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But there are problems …

 Random Surfer gets trapped by dangling nodes! (no outlinks)

 Random Surfer gets trapped in buckets

 Reachable strongly connected component without outlinks

I

H

L

M

G

E

F B C

D A
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Finally …

 Google matrix

G = aS + (1-a) E

 Where a is the damping factor

 Interpretation of G

 With probability a, Random Surfer follows a hyperlink from a page 

(selected at random)

 With probability 1-a, Random Surfer jumps to any page (e.g., by entering 

a new URL in the browser)

 PageRank scores are the solution of self-consistent equation

p=pG

=apS + (1-a)u
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PageRank scores

I

1.6

H

1.6

L

1.6

M

1.6

G

1.6

E

8.1

F

3.9
B

38.4

C

34.3

D

3.9
A

3.3
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Empirical study: 

Comparing centralization of different networks 

Comparison of centralization metrics across three networks: 

• butland ppi: binding interactions among 716 yeast proteins 

• addhealth9: friendships among 136 boys 

• tribes: positive relations among 12 NZ tribes
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The protein network looks visually centralized, but 

• most centralization is local; 

• globally, somewhat decentralized. 

The friendship network has small degree centrality (why?). 

The tribes network has one particularly central node. 

Empirical study: 

Comparing centralization of different networks 
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Examples of A) Betweenness centrality, B) Closeness centrality, C) Eigenvector centrality, D) Degree centrality, of the same graph.

https://en.wikipedia.org/wiki/Betweenness_centrality
https://en.wikipedia.org/wiki/Closeness_centrality
https://en.wikipedia.org/wiki/Eigenvector_centrality
https://en.wikipedia.org/wiki/Degree_centrality


import networkx as nx

import matplotlib.pyplot as plt

G=nx.read_edgelist("D:\\karate.txt")

nx.draw(G,with_labels = True)

plt.draw()

b = nx.edge_betweenness_centrality(G)

c = nx.closeness_centrality(G)

d = nx.degree_centrality(G)

e = nx.eigenvector_centrality(G)

k  = nx.katz_centrality(G)
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Centralities in Python
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Questions


