

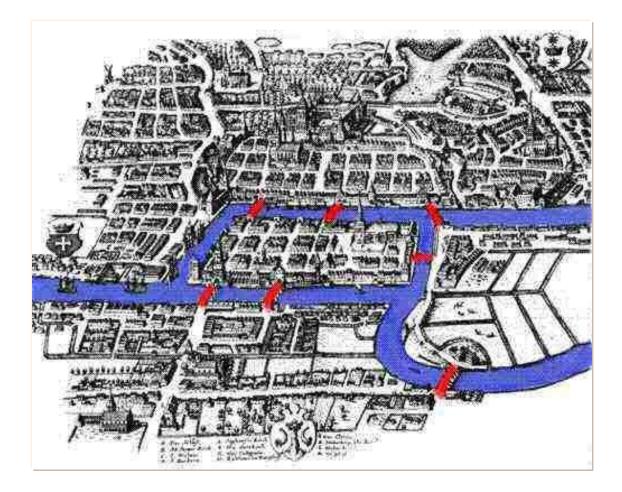
Department of Computer and IT Engineering University of Kurdistan

Complex Networks

Graph Theory

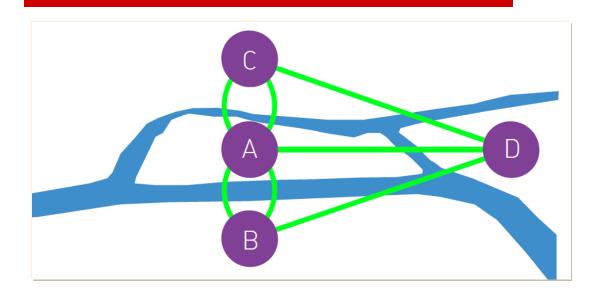
By: Dr. Alireza Abdollahpouri

The Bridges of Konigsberg



Can one walk across the seven bridges and never cross the same bridge twice?

The Bridges of Konigsberg



Can one walk across the seven bridges and never cross the same bridge twice?

1735: Euler's theorem:

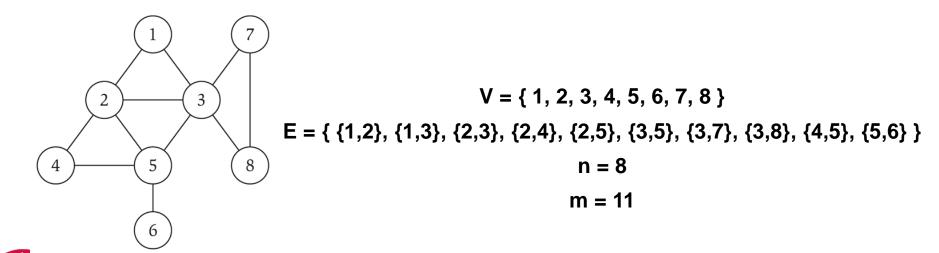
(a) If a graph has more than two nodes of odd degree, there is no path.

(b) If a graph is connected and has no odd degree nodes, it has at least one path.

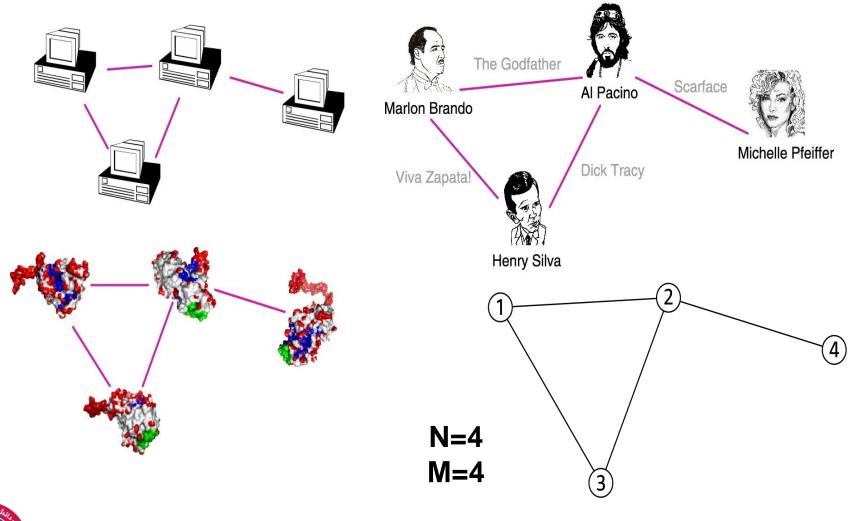
No matter how smart we are, we will never find the desired path. Networks have properties encoded in their structure that limit or enhance their behavior.

Introduction to graph theory

- Graph mathematical object consisting of a set of:
 - \bigcirc *V* = nodes (vertices, points).
 - \bigcirc *E* = edges (links, arcs) between pairs of nodes.
 - \bigcirc Denoted by G = (V, E).
 - Captures pairwise relationship between objects.
 - Graph size parameters: n = /V/, m = /E/.



A Common Language



Networks or Graphs

network often refers to real systems

- www,
- Social network
- Metabolic network.

Language: (Network, node, link)

graph: mathematical representation of a network

•web graph, •social graph (a Facebook term)

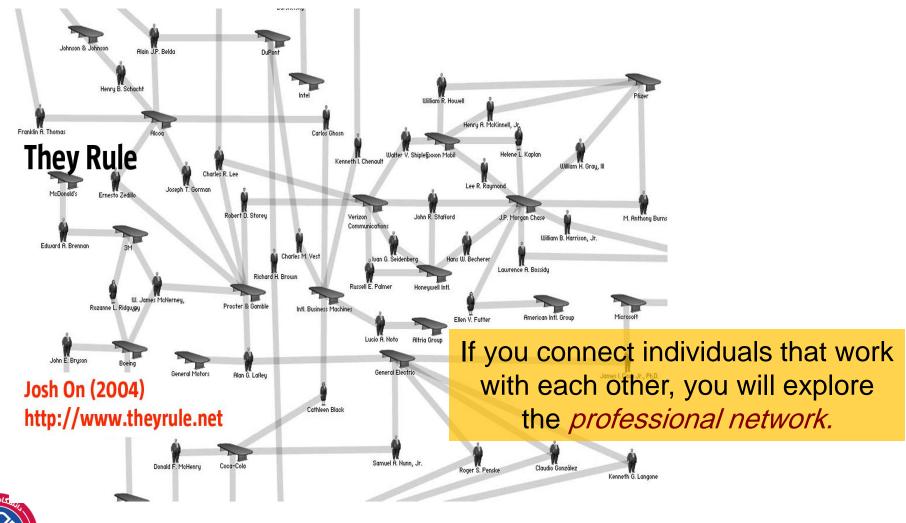
Language: (Graph, vertex, edge)

We will try to make this distinction whenever it is appropriate, but in most cases we will use the two terms interchangeably.

Choosing a Proper Representation

- The choice of the proper network representation determines our ability to use network theory successfully.
- In some cases there is a unique, unambiguous representation.
- \succ In other cases, the representation is by no means unique.
- For example, the way we assign the links between a group of individuals will determine the nature of the question we can study.

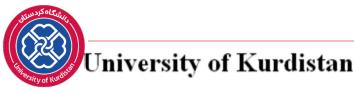
Choosing a Proper Representation



If you connect individuals based on their first name (*all Peters connected to each other*), you will be exploring what?

It is a network, nevertheless.

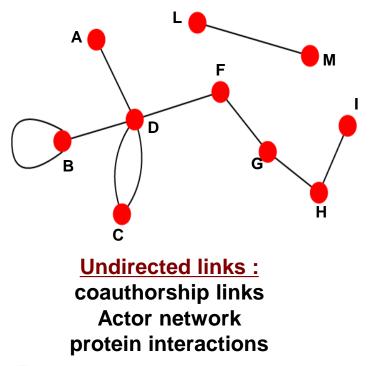
may have little practical utility



Undirected vs. Directed Networks

Undirected

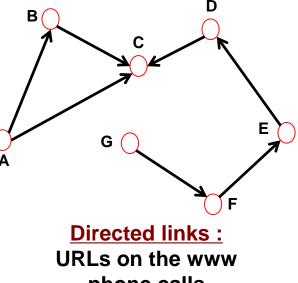
Links: undirected (symmetrical)



Directed

Links: directed (*arcs*).

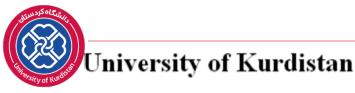
Digraph = directed graph:



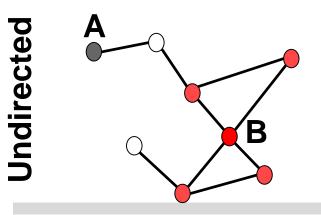
An undirected link is the superposition of two opposite directed links.

phone calls metabolic reactions

Degree, Average Degree and Degree Distribution



Node Degrees



G

Node degree: the number of links connected to the node.

$$k_A = 1$$
 $k_B = 4$

In *directed networks* we can define an **in-degree** and **out-degree**. The (total) degree is the sum of in- and out-degree.

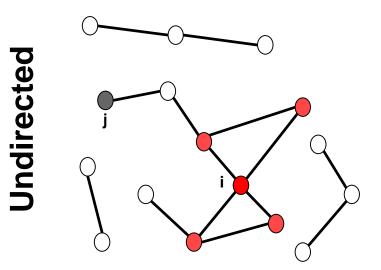
$$k_C^{in} = 2 \quad k_C^{out} = 1 \qquad k_C = 3$$

Source: a node with $k^{in} = 0$; **Sink**: a node with $k^{out} = 0$.

Directed

В

Average Degree



$$\langle k \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i = \frac{2L}{N}$$

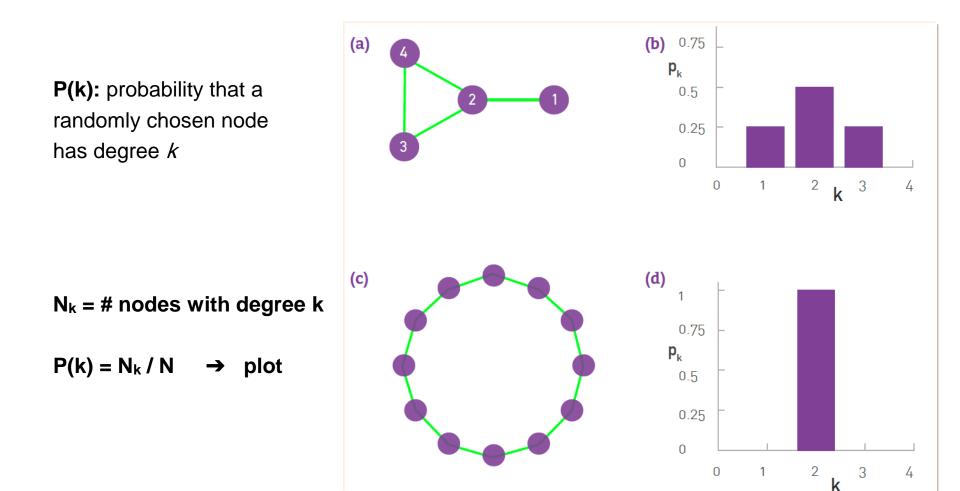
- N the number of nodes in the graph
- L: Number of links in the graph

$$\sum_{\mathbf{A}}^{\mathbf{B}} \underbrace{c}_{\mathbf{F}} \underbrace{c}_{\mathbf{F}} \underbrace{\left\langle k^{\text{in}} \right\rangle}_{\mathbf{F}} = \frac{1}{N} \sum_{i=1}^{N} k_i^{\text{in}} = \left\langle k^{\text{out}} \right\rangle = \frac{1}{N} \sum_{i=1}^{N} k_i^{\text{out}} = \frac{L}{N}$$

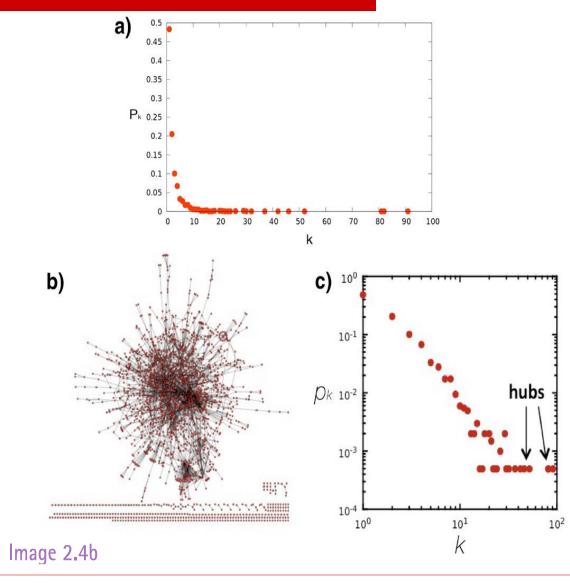
Average Degree (Real Networks)

Network	Nodes	Links	Directed / Undirected	Ν	L	<k></k>
Internet	Routers	Internet connections	Undirected	192,244	609,066	6.34
WWW	Webpages	Links	Directed	325,729	1,497,134	4.60
Power Grid	Power plants, transformers	Cables	Undirected	4,941	6,594	2.67
Mobile-Phone Calls	Subscribers	Calls	Directed	36,595	91,826	2.51
Email	Email addresses	Emails	Directed	57,194	103,731	1.81
Science Collaboration	Scientists	Co-authorships	Undirected	23,133	93,437	8.08
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908	83.71
Citation Network	Papers	Citations	Directed	449,673	4,689,479	10.43
E. Coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802	5.58
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2,930	2.90

Degree Distribution



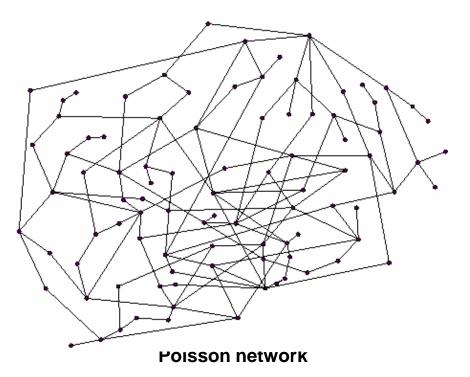
Degree Distribution



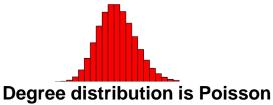
Degree Distribution

- \blacktriangleright Let p_k denote a fraction of nodes with degree k
- > We can plot a histogram of p_k vs. k
- In a Erdos-Renyi random graph degree distribution follows Poisson distribution
- Degrees in real networks are heavily skewed to the right
- Distribution has a long tail of values that are far above the mean
- Heavy (long) tail:
 - Amazon sales
 - > word length distribution, ...

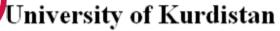
Poisson vs. Scale-free network

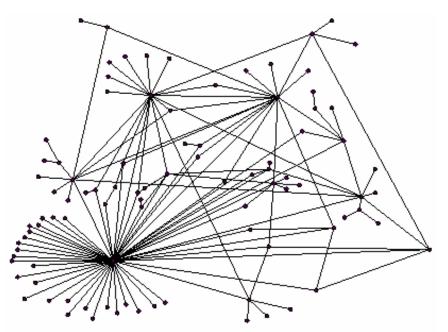


(Erdos-Renyi random graph)



Degree distribution is Poisson

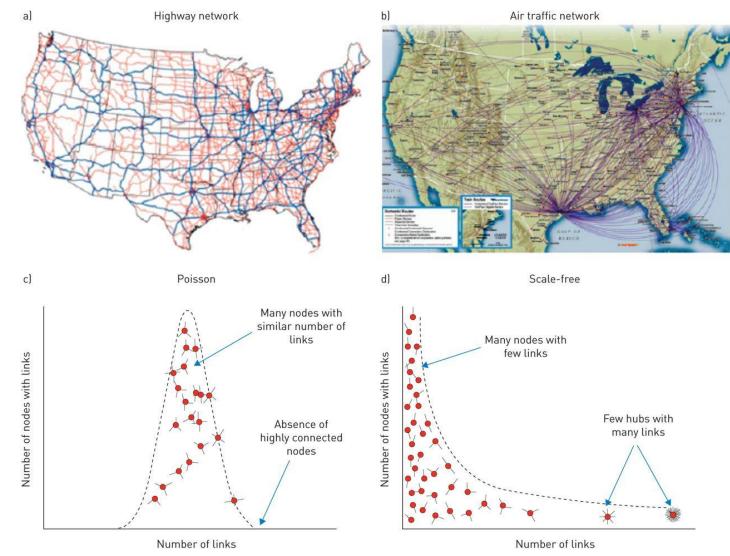




Scale-free (power-law) network

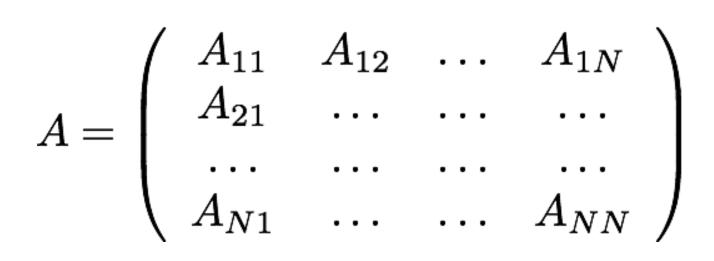
Degree distribution is Power-law

Poisson vs. Scale-free network



Graph Representation

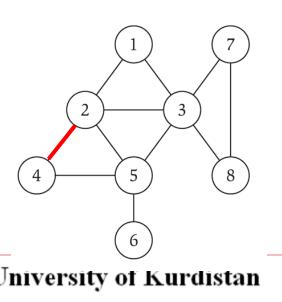
- Adjacency matrix
- Adjacency list

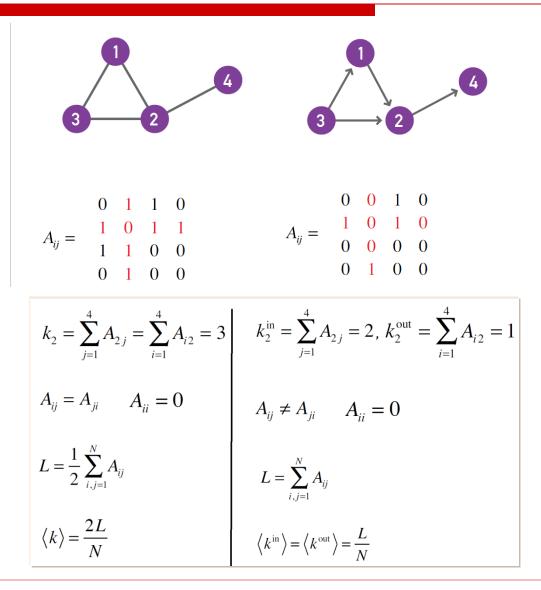


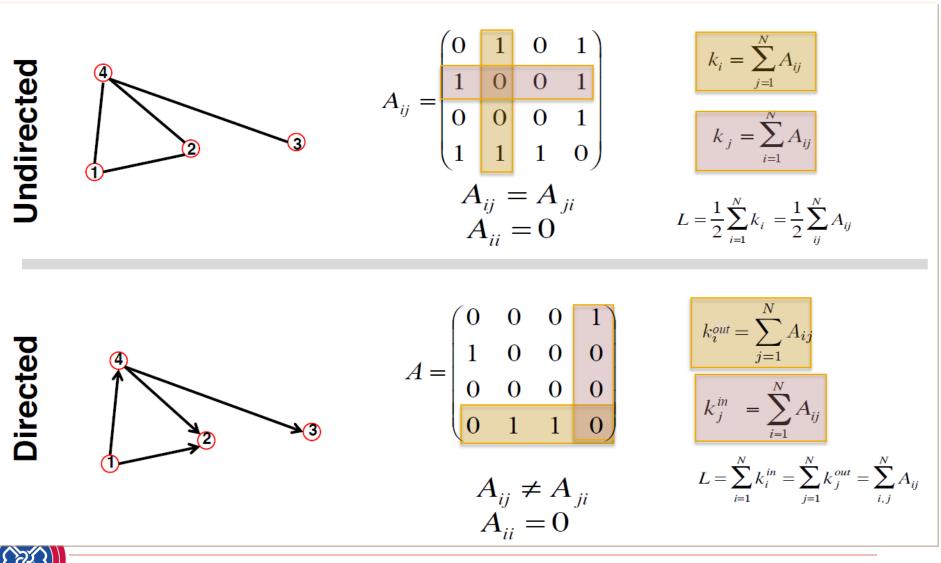
 $A_{ij} = 1$ if there is a link pointing from node *j* to node *i* $A_{ij} = 0$ if nodes *i* and *j* are not connected to each other

Graph Representation: Adjacency Matrix

- Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.
 - Two representations of each edge (symmetric matrix for undirected graphs; not for directed graphs).
 - Space: proportional to n².
 - Not efficient for *sparse graphs* (small number of edges compared to the maximum possible number of edges in the graph),
 - e.g., biological networks
 - Algorithms might have longer running time if this representation used
 - Checking if (u, v) is an edge takes $\Theta(1)$ time.
 - Identifying all edges takes $\Theta(n^2)$ time.





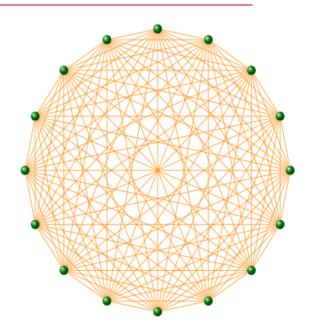


- Convenient for analytical calculations
- Easy to remove/add an edge (changing the value of an element in the matrix is O(1)

- Needs a lot of memory O(N^2) space
- Inconvenient for numerical calculations

The maximum number of links a network of N nodes can have is:

$$L_{\max} = \binom{N}{2} = \frac{N(N-1)}{2}$$



A graph with degree $L=L_{max}$ is called a complete graph, and its average degree is <k>=N-1

Real Networks are Sparse

Most networks observed in real systems are sparse:

$L \ll L_{max}$ or $\ll < N-1$.

WWW (ND Sample): Protein (*S. Cerevisiae*): Coauthorship (Math): Movie Actors:

N=3	25,729;	L=1.4 10°		
N=	1,870;	L=4,470		
N= 1	70,975;	L=2 10 ⁵		
N=2 [*]	12,250;	L=6 10 ⁶		

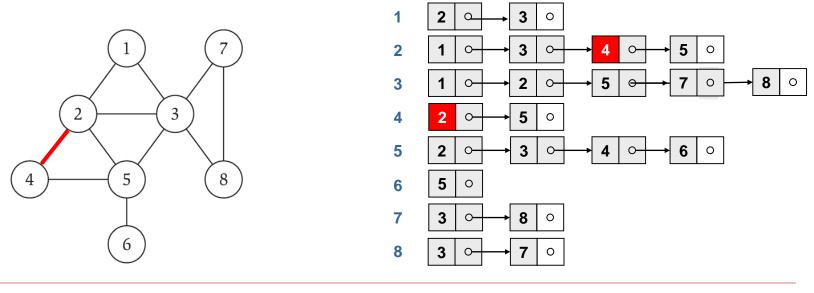
L _{max} =10 ¹²	<k>=4.51</k>
$L_{max} = 10^7$	<k>=2.39</k>
L _{max} =3 10 ¹⁰	<k>=3.9</k>
L _{max} =1.8 10 ¹³	<k>=28.78</k>

(Source: Albert, Barabasi, RMP2002)

Graph Representation: Adjacency List

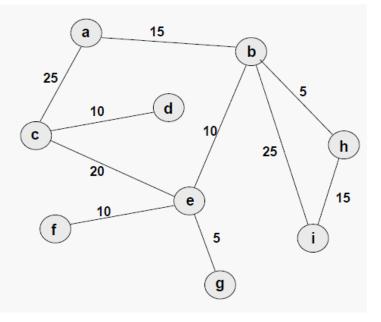
Adjacency list. Node indexed array of lists.

- Two representations of each edge.
- \bigcirc Space proportional to *m* + *n*.
- \bigcirc Checking if *(u, v)* is an edge takes *O(deg(u))* time.
- Identifying all edges takes $\Theta(m+n)$ time = linear time for G(V,E).
- \bigcirc Requires *O(m+n)* space. Good for dealing with sparse graphs.



Weighted Graphs

- In many applications, each edge of a graph has an associated numerical value, called a weight.
- Usually, the edge weights are nonnegative integers.
- Weighted graphs may be either directed or undirected.



The weight of an edge is often referred to as the "cost" of the edge. In applications, the weight may be a measure of the length of a route, the capacity of a line, the energy required to move between locations along a route, etc.

University of Kurdistan

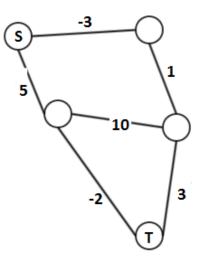
Weighted Graphs

Weight of edges can represent everything in real world, e.g amount of money to be transferred from one account to an other account can be **positive** or **negative**:

- One gene activates/ inhibits another
- One person trusting/ distrusting another

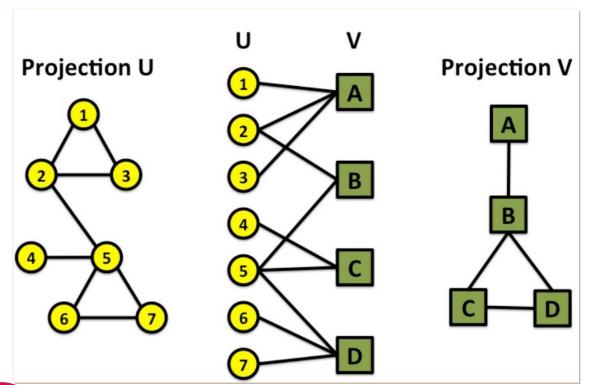
For *weighted networks* the elements of the adjacency matrix carry the weight of the link as: $A_{ij} = w_{ij}$

Think of a driver, who gets paid to drive his employer from **s** to **t** but he pay between **a** and **b** (say travelling between his home and his workplace).



Bipartite Graphs

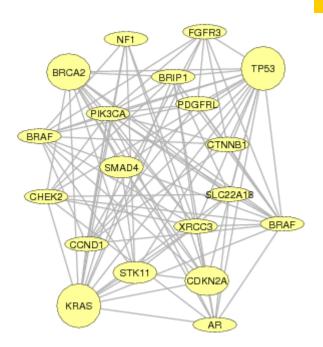
bipartite graph (or bigraph) is a graph whose nodes can be divided into two disjoint sets U and V such that every link connects a node in U to one in V; that is, U and V are independent sets.



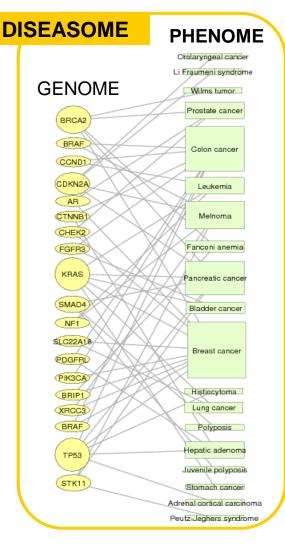
Examples:

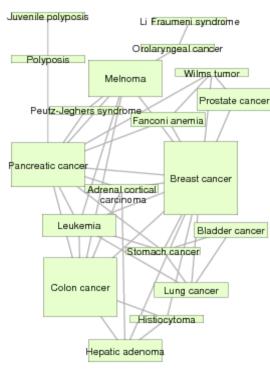
Hollywood actor network Collaboration networks Disease network (diseasome)

Bipartite Graphs(Gene Disease Network)



Gene network





Disease network

Paths

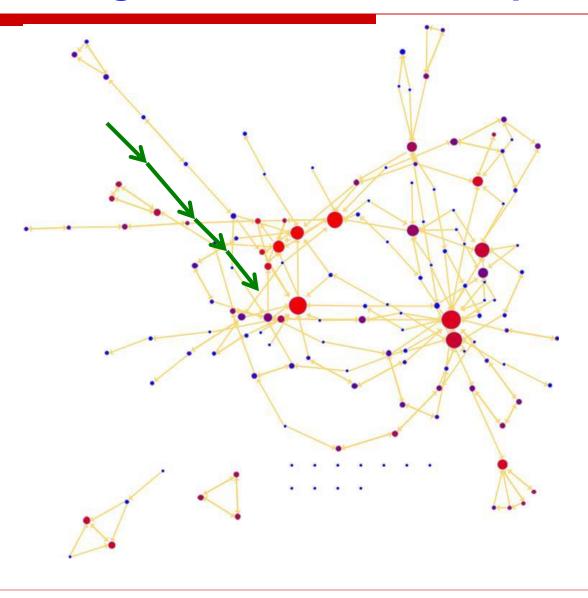
A *path is* a sequence of nodes in which each node is adjacent to the next one

 $P_{i0,in}$ of length *n* between nodes i_0 and i_n is an ordered collection of *n+1* nodes and *n* links

$$P_{n} = \{i_{0}, i_{1}, i_{2}, \dots, i_{n}\} \qquad P_{n} = \{(i_{0}, i_{1}), (i_{1}, i_{2}), (i_{2}, i_{3}), \dots, (i_{n-1}, i_{n})\}$$

• In a directed network, the path can follow only the direction of an arrow.

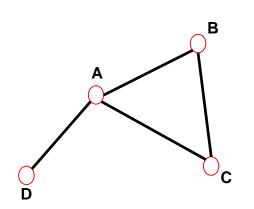
Characterizing networks: How far apart are things?



Network metrics: paths

- A path is any sequence of vertices such that every consecutive pair of vertices in the sequence is connected by an edge in the network.
 - For directed: traversed in the correct direction for the edges.
- path can visit itself (vertex or edge) more than once **Colf available address interpose the model.**
 - Self-avoiding paths do not intersect themselves.
- Path length r is the number of edges on the path
 Called hops

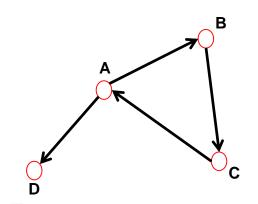
Distance in a Graph- Shortest Path, Geodesic Path



The distance (shortest path, geodesic path) between

two nodes is defined as the number of edges along the shortest path connecting them.

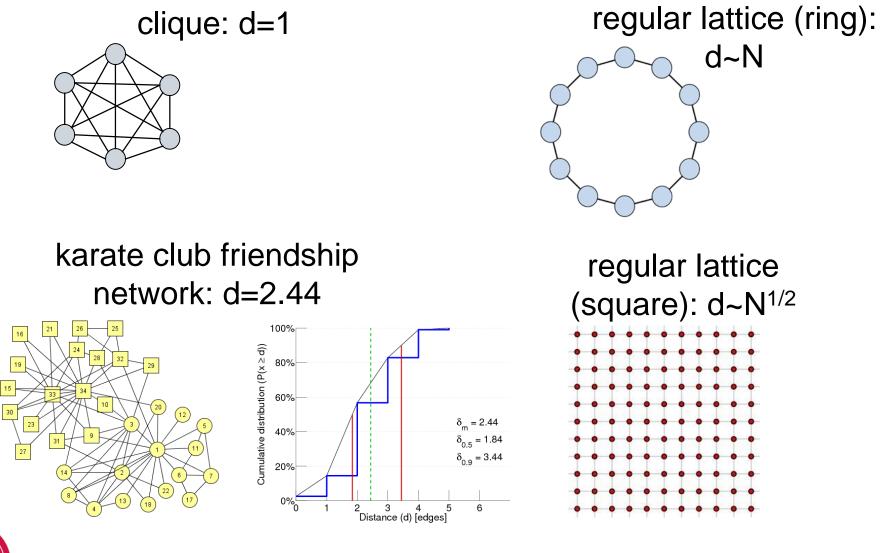
*If the two nodes are disconnected, the distance is infinity.



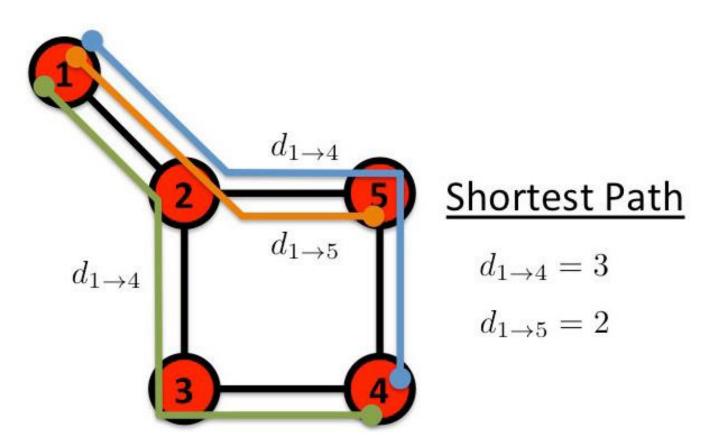
In directed graphs each path needs to follow the direction of the arrows.

Thus in a digraph the distance from node A to B (on an AB path) is generally different from the distance from node B to A (on a BCA path).

Average distance in networks

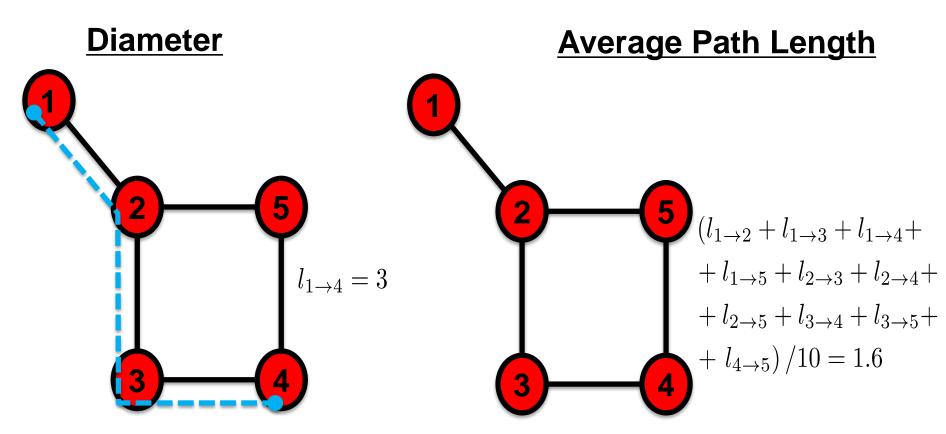


Shortest Path



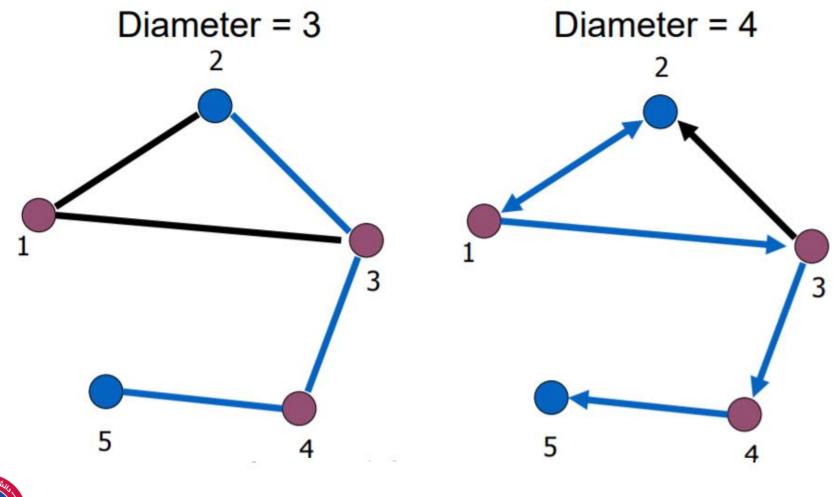
The path with the shortest length between two nodes (distance).

Diameter and Average Path Length

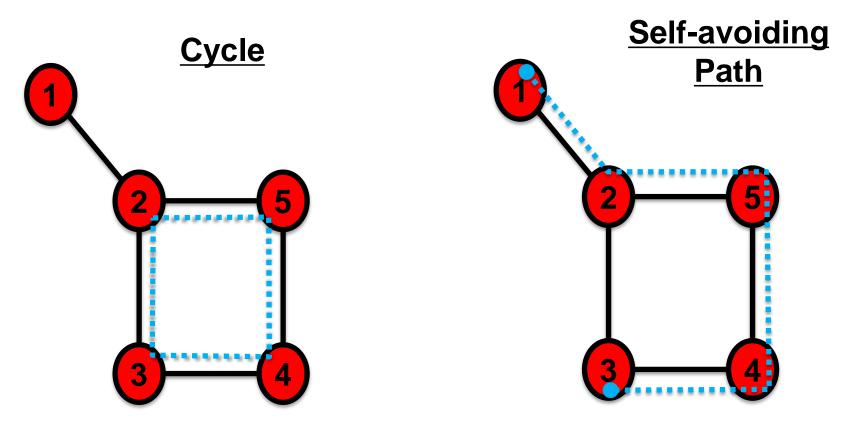


The longest shortest path in a graph The average of the shortest paths for all pairs of nodes.

Diameter in directed and undirected Graphs



Cycle and Self-avoiding Path

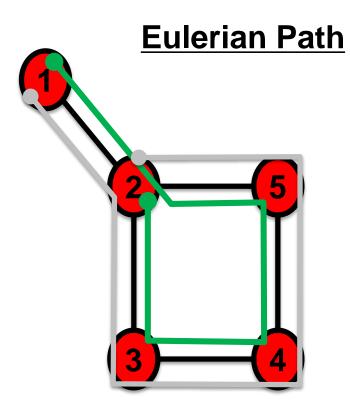


A path with the same start and end node.

University of Kurdistan

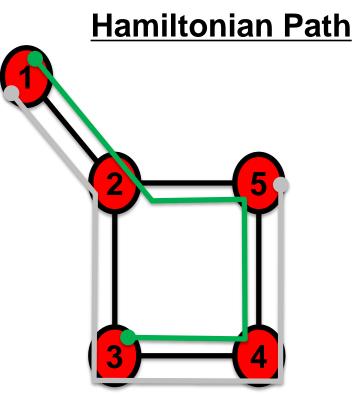
A path that does not intersect itself.

Eulerian and Hamiltonian Path



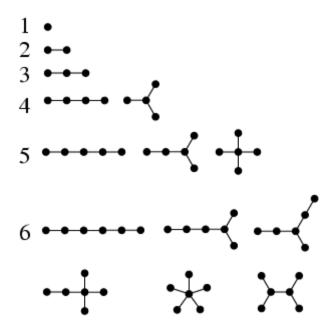
A path that traverses each link exactly once.

University of Kurdistan



A path that visits each node exactly once.

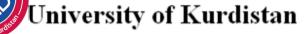
Trees are undirected graphs that contain no cycles

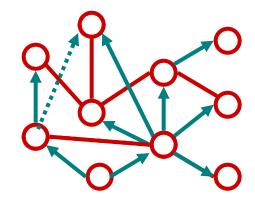


- > For n nodes, number of edges m = n-1
- Any node can be dedicated as the root

Examples of trees

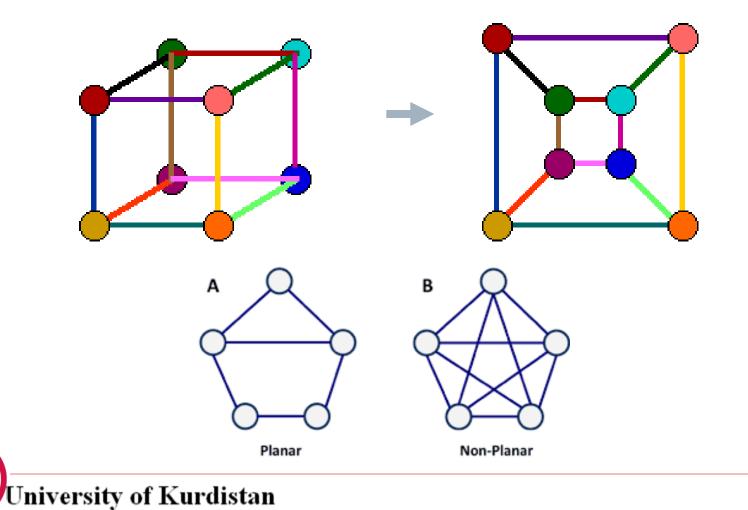
- In nature
 - > trees
 - river networks
 - arteries (or veins, but not both)
- Man made
 - sewer system
- Computer science
 - binary search trees
 - decision trees (AI)
- Network analysis
 - minimum spanning trees
 - from one node how to reach all other nodes most quickly
 - may not be unique, because shortest paths are not always unique
 - depends on weight of edges





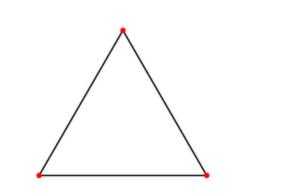
Planar graphs

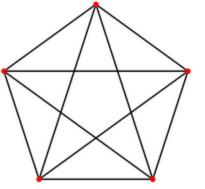
> A graph is planar if it can be drawn on a plane without any edges crossing



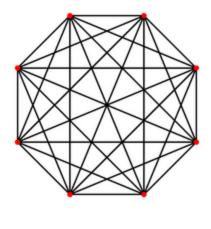
Cliques and complete graphs

- K_n is the complete graph (clique) with K vertices
 - each vertex is connected to every other vertex
 - there are n*(n-1)/2 undirected edges





K₅



K₈

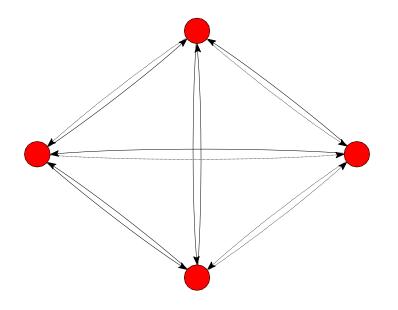
K₃

Network metrics: graph density

- Of the connections that may exist between n nodes
 - directed graph

$$e_{max} = n^*(n-1)$$

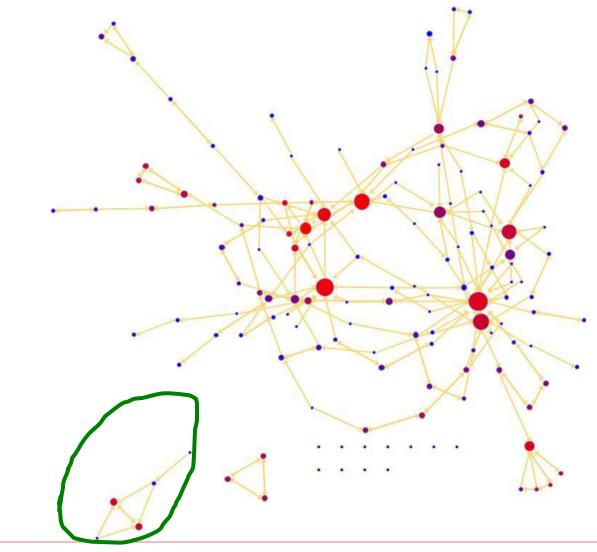
- undirected graph $e_{max} = n^*(n-1)/2$
- What fraction are present?
 - density = e/ e_{max}



For example, out of 12 possible connections, this graph has 7, giving it a density of 7/12 = 0.583

CONNECTEDNESS

Characterizing networks: Is everything connected?

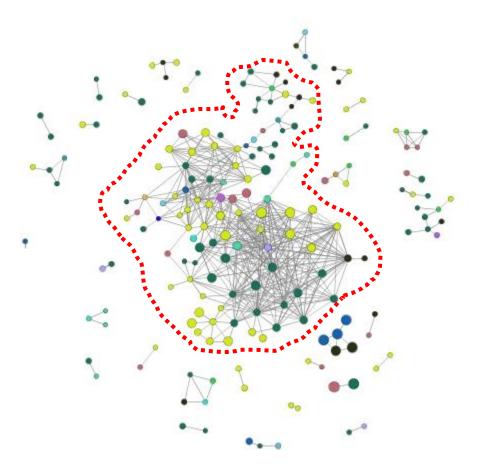


Network metrics: components

- If there is a path from every vertex in a network to every other, the network is *connected*
 - > otherwise, it is *disconnected*
- Component: A subset of vertices such that there exist at least one path from each member of the subset to others and there does not exist another vertex in the network which is connected to any vertex in the subset
 - Maximal subset
- A singeleton vertex that is not connected to any other forms a size one component
 - Every vertex belongs to exactly one component

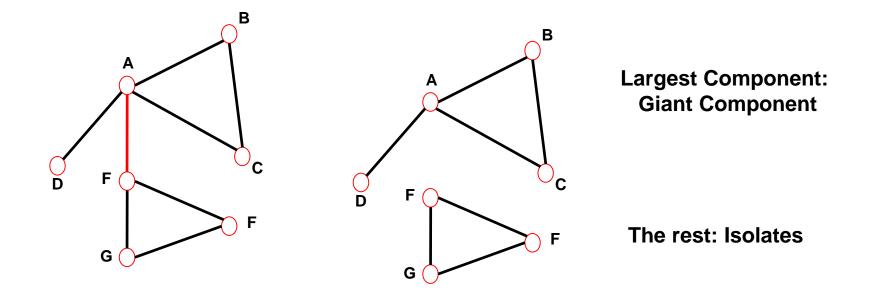
Network metrics: size of giant component

if the largest component encompasses a significant fraction of the graph, it is called the giant component



Connectivity of Undirected Graphs

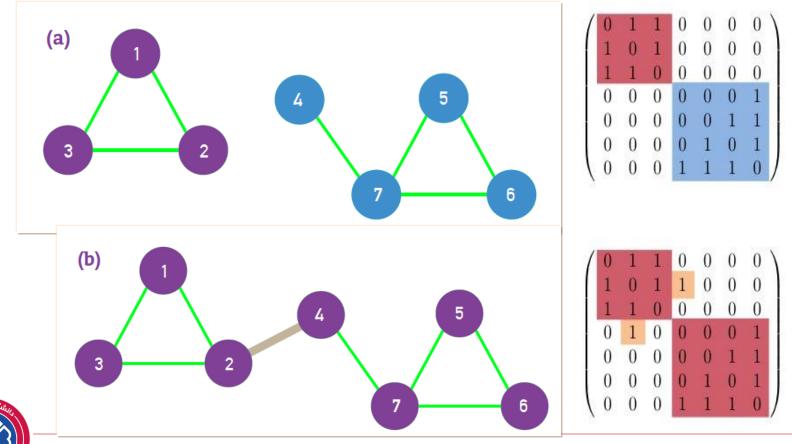
Connected (undirected) graph: any two vertices can be joined by a path. A disconnected graph is made up by two or more connected components.



<u>Bridge</u>: if we erase it, the graph becomes disconnected.

Connectivity of Undirected Graphs

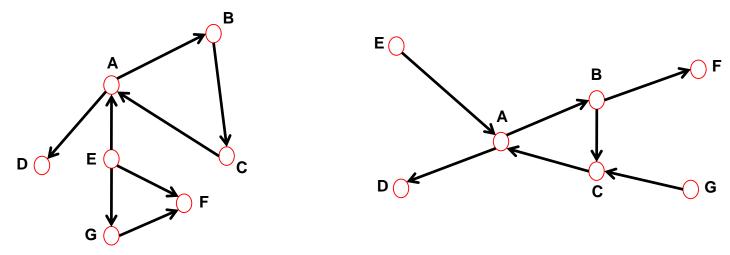
The adjacency matrix of a network with several components can be written in a block-diagonal form, so that nonzero elements are confined to squares, with all other elements being zero:



Connectivity of Directed Graphs

Strongly connected directed graph: has a path from each node to every other node and vice versa (e.g. AB path and BA path). Weakly connected directed graph: it is connected if we disregard the edge directions.

Strongly connected components can be identified, but not every node is part of a nontrivial strongly connected component.

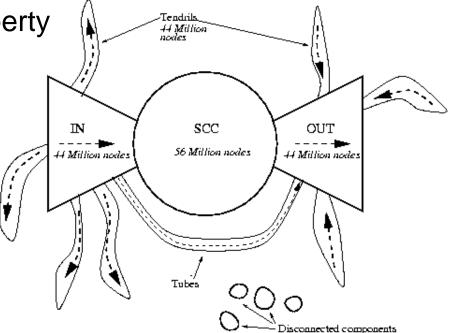


In-component: nodes that can reach the scc,

Out-component: nodes that can be reached from the scc.

Bow-Tie structure of the web

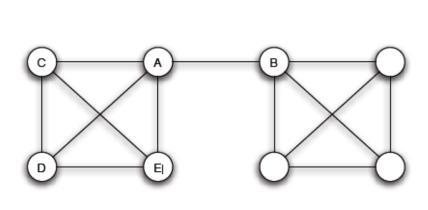
- Strongly Connected Component (SCC)
 - Core with small-world property
- Upstream (IN)
 - Core can't reach IN
- Downstream (OUT)
 - OUT can't reach core
- Disconnected components

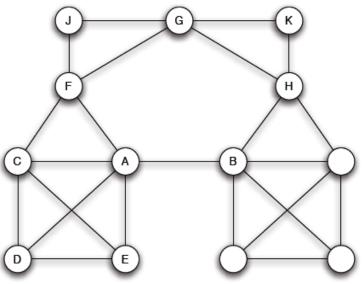


Broder et al. (Graph Structure of the Web, 2000) Examined a large web graph (200M pages, 1.5B links)

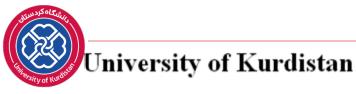
Bridges and Local Bridges

- And edge that joins two nodes A and B in a graph is called a *bridge* if deleting the edge would cause A and B to lay in two different components
- Iocal bridge in real-world networks (with a giant component) - if deleting an edge between A and B would increase distance > 2





Clustering coefficient

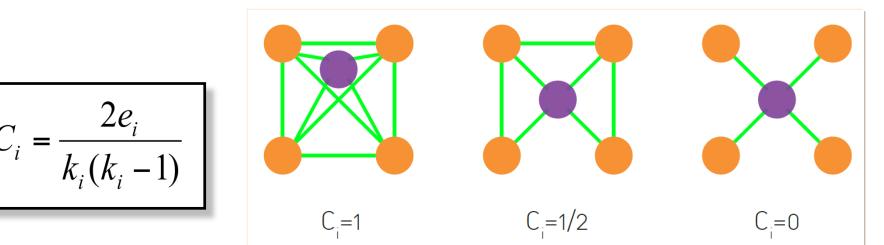


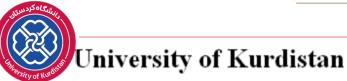
Clustering Coefficient

> what fraction of your neighbors are connected?

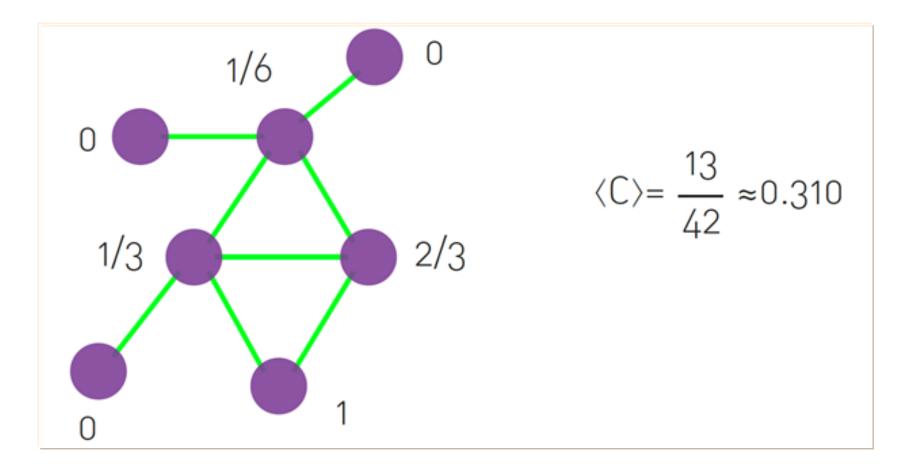
Node i with degree k_i

* C_i in [0,1]



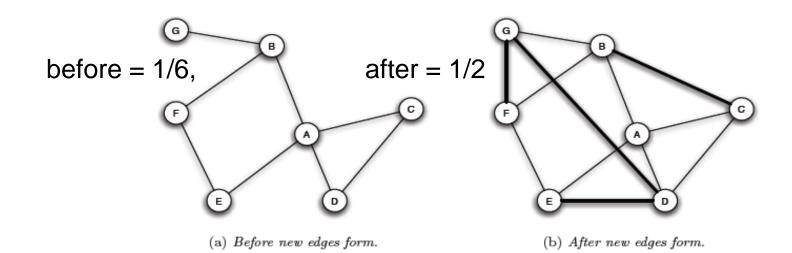


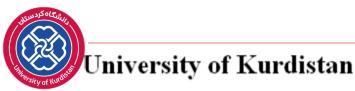
Clustering Coefficient



The Clustering Coefficiency

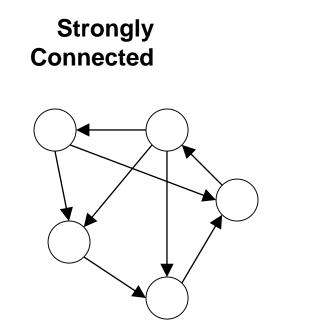
- The clustering coefficiency of a node A is a probability that two randomly selected friends of A are friends with each other
- Example: the clustering Coefficiency of A before and after the new edges?

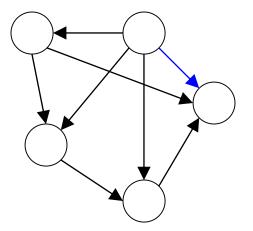




Strongly Connected Directed graphs

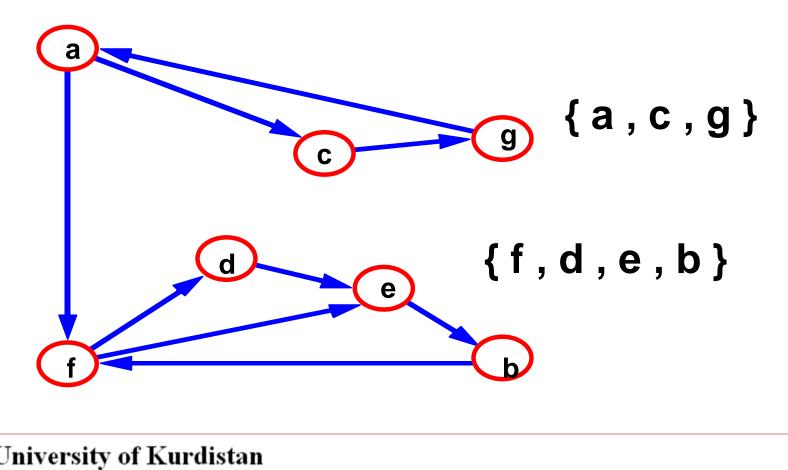
Every pair of vertices are reachable from each other





Strongly Connected Components

A strongly connected *component* of a graph is a maximal subset of nodes (along with their associated edges) that is strongly connected. Nodes share a strongly connected component if they are inter-reachable.



Real networks can have multiple characteristics

WWW > directed multigraph with self-interactions

Protein Interactions > undirected unweighted with self-interactions

Collaboration network >

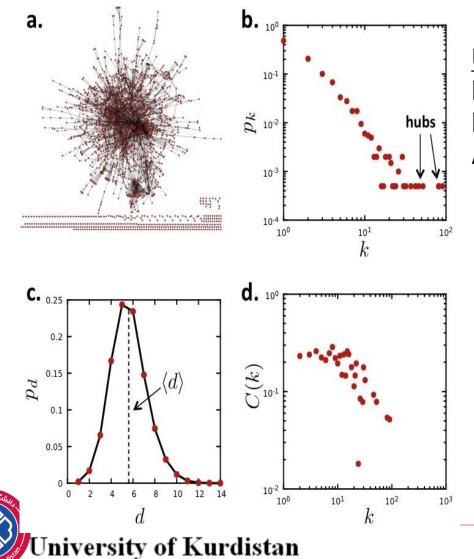
undirected multigraph or weighted.

Mobile phone calls >

directed, weighted.

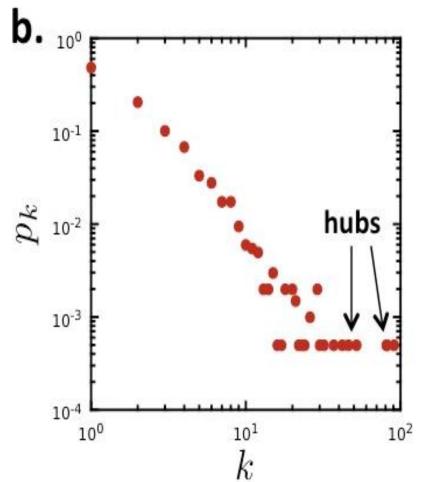
Facebook Friendship links >

undirected, unweighted.



<u>Undirected network</u> N=2,018 proteins as nodes L=2,930 binding interactions as links. Average degree <k>=2.90.

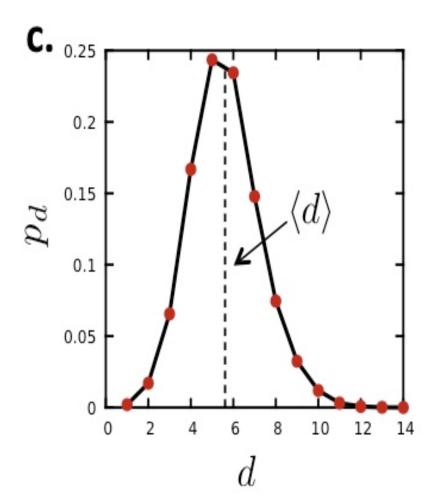
<u>Not connected:</u> 185 components the largest (giant component) 1,647 nodes



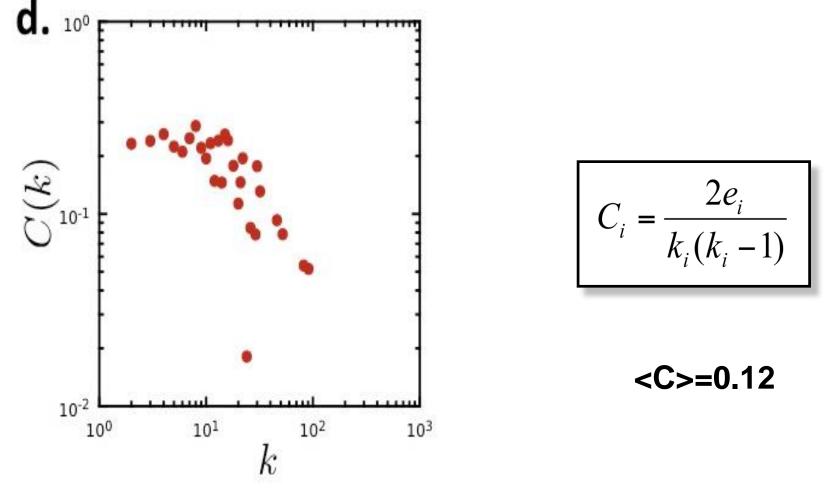
p_k is the probability that a node has degree k.

N_k = # nodes with degree k

 $p_k = N_k / N$



<d>=5.61

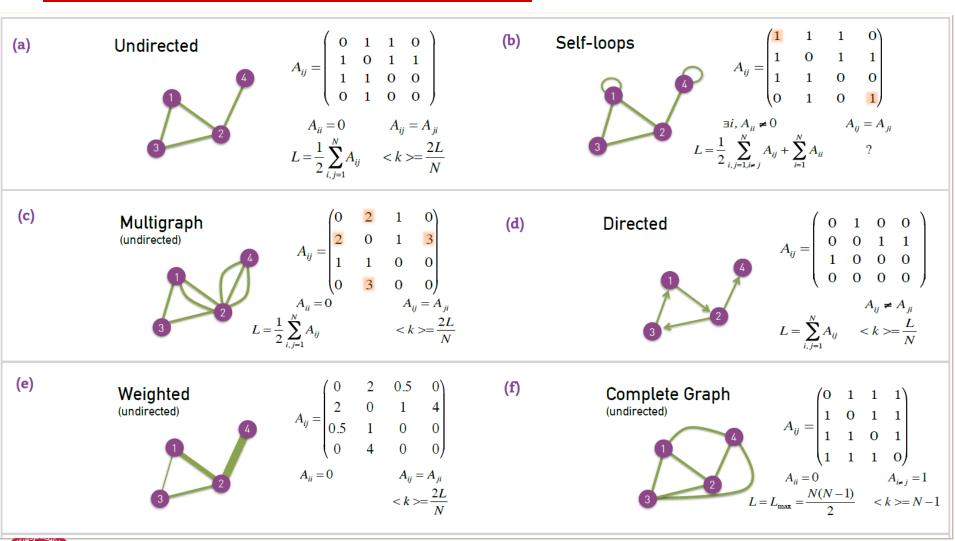


Real network properties

- Most nodes have only a small number of neighbors (degree), but there are some nodes with very high degree (power-law degree distribution)
 - scale-free networks
- If a node x is connected to y and z, then y and z are likely to be connected
 - high clustering coefficient
- Most nodes are just a few edges away on average.
 small world networks
- Networks from very diverse areas (from internet to biological networks) have similar properties
 - Is it possible that there is a unifying underlying generative process?

Processes on networks

- Why is it important to understand the structure of networks?
- Epidemiology: Viruses propagate much faster in scalefree networks
- Vaccination of random nodes does not work, but targeted vaccination is very effective



Graph Searching Algorithms

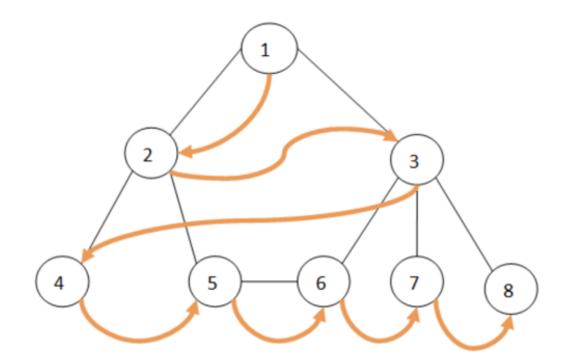
Graph-searching Algorithms

Searching a graph:

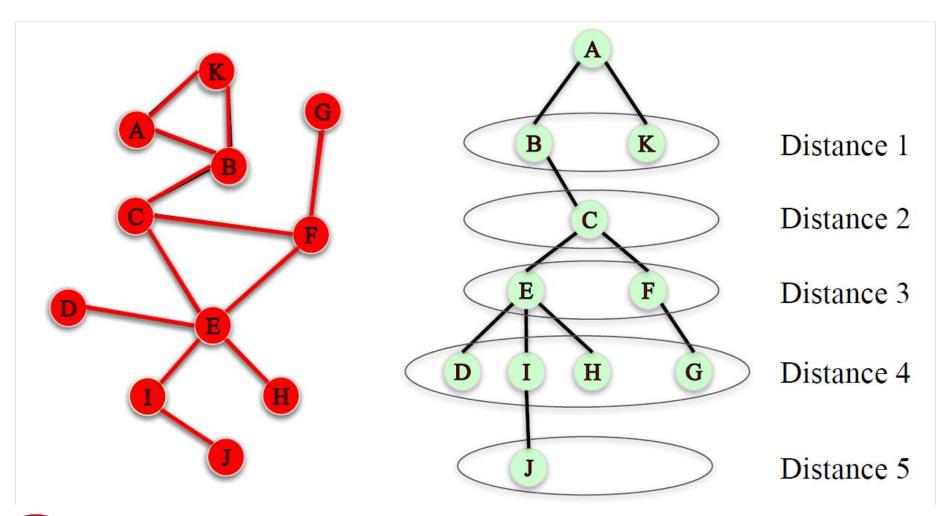
- Systematically follow the edges of a graph to visit the vertices of the graph.
- Used to discover the structure of a graph.
- Standard graph-searching algorithms.
 - Breadth-first Search (BFS).
 - Depth-first Search (DFS).

Breadth-first Search

BFS tries to learn local neighbors first

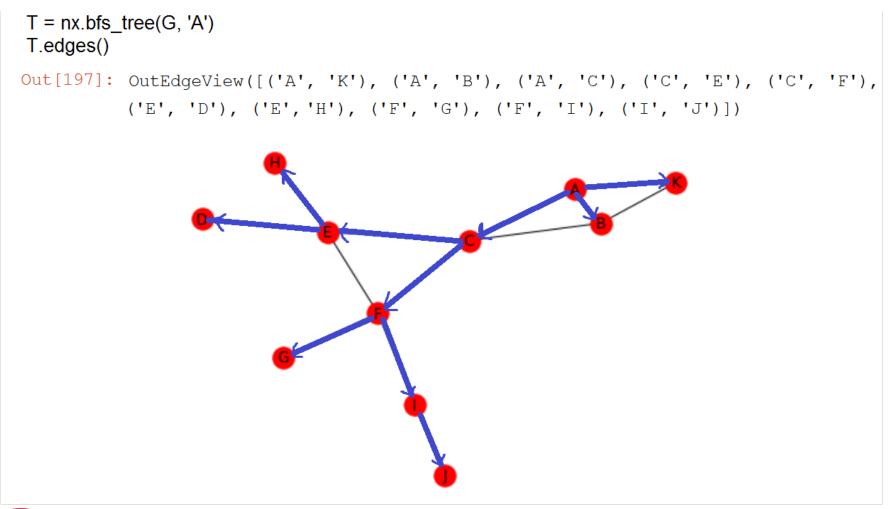


Breadth-first Search



University of Kurdistan

Breadth-first Search

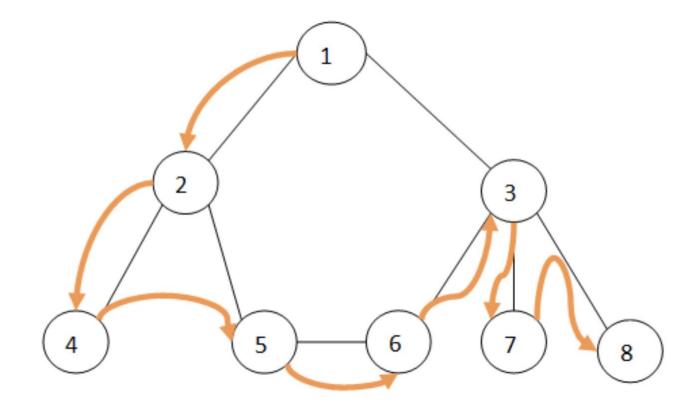


Depth-first Search (DFS)

- Explore edges out of the most recently discovered vertex v.
- When all edges of v have been explored, backtrack to explore other edges leaving the vertex from which v was discovered (its *predecessor*).
- "Search as deep as possible first."
- Continue until all vertices reachable from the original source are discovered.
- If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source.

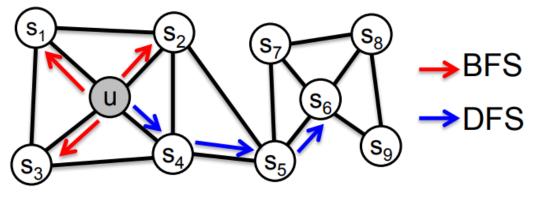
Depth-first Search

DFS is better for learning global variables



BFS and DFS for node embedding

Node2vec (node embedding using biased random walk)

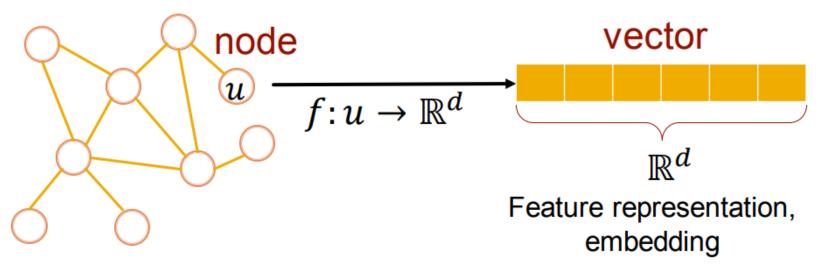


Walk of length 3 ($N_R(u)$ of size 3):

 $N_{BFS}(u) = \{ s_1, s_2, s_3 \}$ Local microscopic view $N_{DFS}(u) = \{ s_4, s_5, s_6 \}$ Global macroscopic view

Trade off between **local** and **global** views of the network

BFS and DFS for node embedding



Applications:

- Node classification
- Link prediction
- Graph classification
- Anomalous node detection
- Clustering

University of Kurdistan

Network Analysis

- > What is a network?
 - a bunch of nodes and edges
- > How do you characterize it?
 - > with some basic network metrics
- How did network analysis get started?
 - it was the mathematicians
- How do you analyze networks today?
 - > with network analysis tools (pajek, Gephi, ...)

Some network analysis tools

Pajek	Pajek	network analysis and visualization, menu driven, suitable for large networks	platforms: Windows (on linux via Wine) <u>download</u>
	Netlogo	agent based modeling recently added network modeling capabilities	platforms: any (Java) <u>download</u>
	GUESS	network analysis and visualization, extensible, script-driven (jython)	platforms: any (Java) download

Other useful software tools:

visualization and analysis:

UCInet - user friendly social network visualization and analysis software (suitable smaller networks)

iGraph - if you are familiar with R, you can use iGraph as a module to analyze or create large networks, or you can directly use the C functions

Jung - comprehensive Java library of network analysis, creation and visualization routines

Graph package for Matlab (untested?) - if Matlab is the environment you are most comfortable in, here are some basic routines

SIENA - for p* models and longitudinal analysis

SNA package for R - all sorts of analysis + heavy duty stats to boot

<u>NetworkX</u> - python based free package for analysis of large graphs

InfoVis Cyberinfrastructure - large agglomeration of network analysis tools/routines, partly menu driven

visualization only:

GraphViz - open source network visualization software (can handle large/specialized networks)

TouchGraph - need to quickly create an interactive visualization for the web?

yEd - free, graph visualization and *editing* software

specialized:

fast community finding algorithm

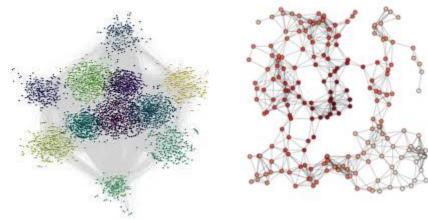
motif profiles

TAIR library, -NLP and IR library (Perl Based) includes network analysis routines

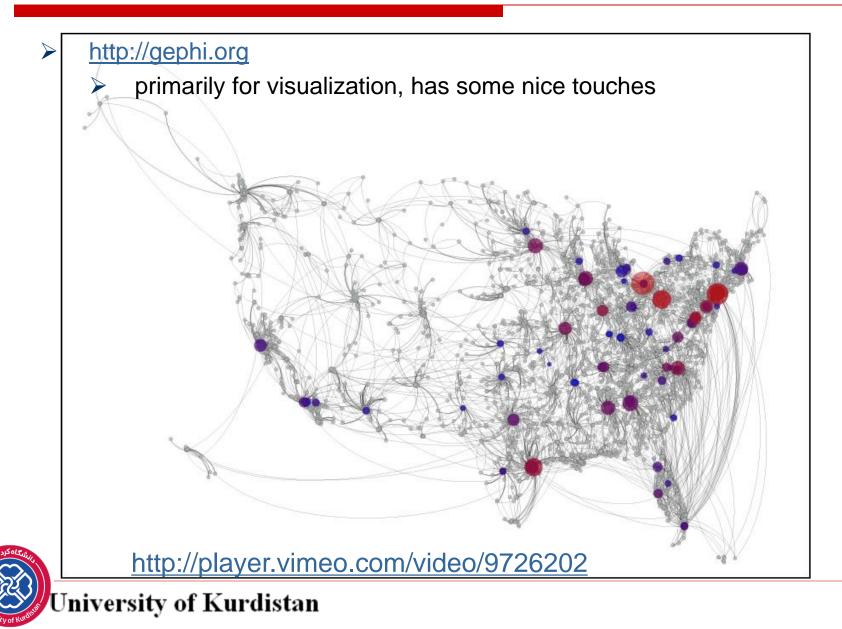
finally: INSNA long list of SNA packages

NetworkX

- NetworkX (<u>http://networkx.lanl.gov/</u>)
 - It is a Python language software package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks.
- Just run:
 - easy_install networkx

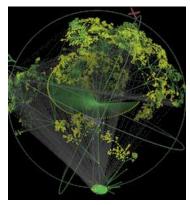


Other visualization tool: gephi



Other visualization tool: Walrus

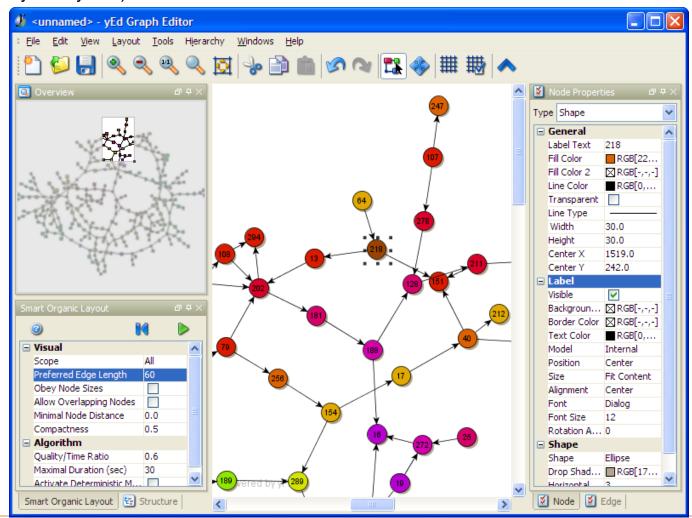
- developed at CAIDA available under the <u>GNU GPL</u>.
- "…best suited to visualizing moderately sized graphs that are nearly trees. A graph with a few hundred thousand nodes and only a slightly greater number of links is likely to be comfortable to work with."
- Java-based
- Implemented Features
 - > rendering at a guaranteed frame rate regardless of graph size
 - coloring nodes and links with a fixed color, or by RGB values stored in attributes
 - Iabeling nodes
 - picking nodes to examine attribute values
 - displaying a subset of nodes or links based on a user-supplied boolean attribute
 - > interactive pruning of the graph to temporarily reduce clutter and occlusion
 - zooming in and out



Source: CAIDA, http://www.caida.org/tools/visualization/walrus/

Other visualization tool: YEd

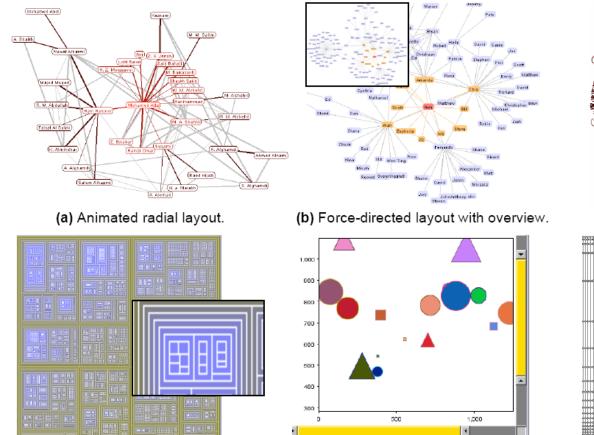
http://www.yworks.com/en/products_yed_about.htm
(good primarily for layouts)



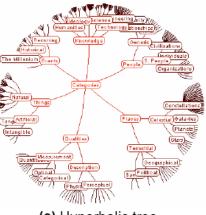
Other Visualization tool: Prefuse

- user interface toolkit for interactive information visualization
 - built in Java using Java2D graphics library
 - data structures and algorithms
 - > pipeline architecture featuring reusable, composable modules
 - animation and rendering support
 - architectural techniques for scalability
- requires knowledge of Java programming
- website: <u>http://prefuse.sourceforge.net</u>

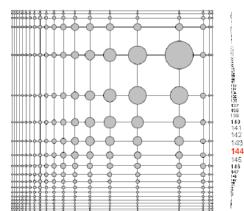
Simple Prefuse visualizations



(e) SpotPlot scatterplot.



(c) Hyperbolic tree.



(f) Fisheye graph. (g) Fisheye menu.

Source: Prefuse, https://github.com/prefuse

University of Kurdistan

(d) TreeMap.

