

Department of Computer and IT Engineering University of Kurdistan

Complex Networks

Introduction

By: Dr. Alireza Abdollahpouri

Course Info

Instructor

Dr. Alireza Abdollahpouri

Emails: abdollahpouri@gmail.com

Course Web Page

http://eng.uok.ac.ir/abdollahpouri/CN.html

Grading Policy

Homeworks	20%
Project	20%
Final Exam	55%
Class participation	5%

Teaching Materials – Textbooks

Barabási, Albert-László. "Network Science Book," 2015.

http://barabasi.com/networksciencebook/

Mark Newman, Networks: an Introduction

David Easley and Jon Kleinberg: "Networks Crowds and Markets. Reasoning about a Highly Connected World"

Course Overview

- Introduction
- Graph Theory
- Centrality and Ranking
- Communities
- Network Models
- Diffusion models and Influence Maximization
- Link Prediction
 - Network Robustness (if time allows)

Course Prerequisites

Good background in:

- Algorithms and graph theory
- Probability and statistics
- Linear algebra

> **Programming**:

- You should be able to write programs (in Python)

- Let's make this educational and enjoyable.
- It's a big size class, I enjoy questions and ideas from the class.
- Ask questions and raise points.
- Listen to other people's questions.
- Be here.
- Be here on time.

World economy

Metro map

Human brain

Family and firiends

Power lines

Printed circuit board (PCB)

Human diseases map

Transportation highways

Internet

Terrorism

Behind each complex system there is a NETWORK, that defines the interactions between the component.

We will never understand these systems unless we understand the networks behind them!

Universal language for describing complex data

Networks from science, nature, and technology are more similar than one would expect

Shared vocabulary between fields

Computer Science, Social science, Physics, Economics, Statistics, Biology

- A collection of nodes (vertices)
- And a collection of edges (links) connecting nodes
- A network model treats all nodes and links the same. But there are heterogeneous networks.
- The spatial location of nodes is arbitrary (in visualization)
- Networks are abstractions of connection and relation

Ubiquity of Networks

Age and size of networks

Many examples of networks

Social Networks

Technological Networks

Networks of Information

Biological Networks

□ And ...

Social Networks

Links denote a social interaction

- Networks of acquaintances
- collaboration networks
 - actor networks
 - co-authorship networks
 - director networks
- > phone-call networks
- e-mail networks
- Bluetooth networks
- home page/blog networks

Academic Network

104 countries d = 17.8

Assortativity = .005 non-assortative

clustering = .37 (random =.06)

- > Nodes: all persons in some community
- > A link exists between two persons if they are friends.

Online Social Networks

Network of actor co-starring in movies

Actor co-starring Network

- The collaboration graph of film actors
- Six Degrees of Kevin Bacon

Who is the co-star hub of Iranian movies?!

This slide is borrowed from Dr. Aliakbari (SBU)
University of Kurdistan

The Oracle of Bacon

Time-Lords Rea... 🛐 Latest Headlines 👻 😫 Air Ride Tec

Co-authorship Network

Nodes: all publication authors

A link exists between two authors if they are coauthors in a publication

Co-authorship Network

• Erdős number: is the collaboration distance with mathematician Paul Erdős.

Small world network

Distribution in Dec.2010

Erdös number	0	 1 person
Erdös number	1	 504 people
Erdös number	2	 6593 people
Erdös number	3	 33605 people
Erdös number	4	 83642 people
Erdös number	5	 87760 people
Erdös number	6	 40014 people
Erdös number	7	 11591 people
Erdös number	8	 3146 people
Erdös number	9	 819 people
Erdös number	10	 244 people
Erdös number	11	 <mark>68</mark> people
Erdös number	12	 23 people
Erdös number	13	 5 people

* Two persons are linked if they are coauthors of an article.

Phone-call networks

Technological networks

Networks built for distribution of commodity

- > The Internet
 - router level, AS level
- > Power Grids
- > Airline networks
- > Telephone networks
- Transportation Networks
 - > roads, railways, pedestrian traffic

Routers

Internet Core Networks (AS level)

Internet Map

Internet as measured by Hal Burch and Bill Cheswick's Internet Mapping Project.

Note: Internet != Web

Power networks

Subway maps

Source: TRTA, March 2003 - Tokyo rail map
Railway Maps

Airline network

Biological systems represented as networks

- Protein-Protein Interaction Networks
- Gene regulation networks
- Gene co-expression networks
- Metabolic pathways
- The Food Web
- Neural Networks

Protein-Protein Interactions

Classifying the function of proteins in the interactome!

Image from: Ganapathiraju et al. 2016. <u>Schizophrenia interactome with</u> 504 novel protein–protein interactions. *Nature*.

Protein binding networks

The Protein Network of Drosophila

CuraGen Corporation Science, 2003

University of Kurdistan

Gene regulatory networks

- Humans have 30,000 genes
- The complexity is in the interaction of genes
- Can we predict what result of the inhibition of one gene will be?

C. Elegans neurons network

The map of all 302 neurons in the C. elegans nervous system

Human disease network

Food Chain Network

Food web is an important conceptual tool for illustrating the feeding relationships among species within a community, revealing species interactions and community structure, and understanding the dynamics of energy transfer in an ecosystem

Knowledge (Information) Networks

Nodes store information, links associate information

- Citation network (directed acyclic)
- The Web (directed)
- Peer-to-Peer networks
- Word networks
- Networks of Trust
- Software graphs

Citation Network

Natural language processing

Wordnet

Source: http://wordnet.princeton.edu

World Wide Web

Hierachical topology of the international Web cache (Bradley Huffaker, http://www.calda.org/tools/visualization/plankton)

Networks of personal homepages

Stanford

MIT

Source: Lada A. Adamic and Eytan Adar, 'Friends and neighbors on the web', Social Networks, 25(3):211-230, July 2003

European University Web Pages

Links among blogs (2004 presidential election)

Product recommendations

Webpages

Webpages connected by hyperlinks

THE IMPACT OF NETWORK SCIENCE

Economic Impact

licensed under (CC) Attribution-NonCommercial-ShareAlike 2.0 Germany | Ludwig Gatzke | http://flickr.com/photos/stabilo-boss/

Google Market Cap(2010 Jan 1): *\$189 billion*

Cisco Systems networking gear Market cap (Jan 1, 2019): *\$112 billion*

> Facebook market cap: *\$50 billion*

www.bizjournals.com/austin/news/2010/11/ 15/facebooks... - Cached

Drug Design, Metabolic Engineering

Reduces

Inflammation Fever Pain

Prevents Heart attack Stroke

Reduces the risk of Alzheimer's Disease

Reduces the risk of

breast cancer ovarian cancers colorectal cancer Causes Bleeding Ulcer

Human Disease Network

Network Biology/Network Medicine

to south and year these

Non-seal Weight with the control Regressive process partners.

Fighting Terrorism and Military

http://www.slate.com/id/2245232

Rential total transfer

THE ADVENT OF NETWAR

> JOHN ARQUILLA DAVID RONFELDT

Example: the use of social networks to capture Saddam Hussein

Fighting Terrorism and Military

"Six degrees of Mohammed Atta"

Uncloaking Terrorist Networks, by Valdis Krebs

66

The network behind a military engagement

Predicting the H1N1 pandemic

68

COVID 19 Pandemic

In September 2010 the National Institutes of Health awarded \$40 million to researchers at Harvard, Washington University in St. Louis, the University of Minnesota and UCLA, to develop the technologies that could systematically map out brain circuits.

The Human Connectome Project (HCP) with the ambitious goal to construct a map of the complete structural and functional neural connections in vivo within and across individuals.

http://www.humanconnectomeproject.org/overview/

- 1. If you were to understand the spread of diseases, can you do it without networks?
- 2. If you were to understand the WWW structure, searchability, etc, hopeless without invoking the Web's topology.
- 3. If you want to understand human diseases, it is hopeless without considering the wiring diagram of the cell.

• 1998: Watts-Strogatz paper in the most cited Nature publication from 1998; highlighted by ISI as one of the ten most cited papers in physics in the decade after its publication.

•1999: Barabasi and Albert paper is the most cited Science paper in 1999; highlighted by ISI as one of the ten most cited papers in physics in the decade after its publication.

•2001: Pastor -Satorras and Vespignani is one of the two most cited papers among the papers published in 2001 by Physical Review Letters.

•2002: Girvan-Newman is the most cited paper in 2002 Proceedings of the National Academy of Sciences.

BOOKS

Handbook of Graphs and Networks From the Genume to the Internet

WILEY-VCH

Stefan Bornholdt, Heinz Georg Schuster (Eds.

Handbook of Graphs and Networks: From the Genome to the Internet (Wiley-VCH, 2003).

P. Csermely, Weak Links: The Universal Key to the Stability of Networks and Complex Systems (The Frontiers Collection) (Springer, 2006), rst edn.

S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford University Press, 2003).

M. Newman, A.-L. Barabasi, D. J. Watts, The Structure and Dynamics of Networks: (Princeton Studies in Complexity) (Princeton University Press, 2006), rst edn.

S. Goldsmith, W. D. Eggers, Governing by Network: The New Shape of the Public Sector (Brookings Institution Press, 2004).

L. L. F. Chung, Complex Graphs and Networks (CBMS Regional Conference Series in Mathematics) (American Mathematical Society, 2006).

BOOKS

Heratika Status Accessed Accessed

R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach (Cambridge University Press, 2007), rst edn.

F. Kopos, Biological Networks (Complex Systems and Interdisciplinary Science) (World Scientic Publishing Company, 2007), rst edn.

ANALYSIS OF BIOLOGICAL NETWORKS B. H. Junker, F. Schreiber, Analysis of Biological Networks (Wiley Series in Bioinformatics) (Wiley-Interscience, 2008).

T. G. Lewis, Network Science: Theory and Applications (Wiley, 2009).

	IN PHYSICS
	2 E Ben Halm 3 M. Fasenfielder 4 Fasenfielder 1 May 2 Torochal May 2 Torochal 1 May 2 Torochal
Comp	olex Networks
	- 2 35 G (2r
	c ⊃a @secon r)*tz Masza

E. Ben Naim, H. Frauenfelder, Z.Torotzai, Complex Networks (Lecture Notes in Physics) (Springer, 2010), rst edn.

M. O. Jackson, Social and Economic Networks (Princeton University Press, 2010).

SOCIAL AND ECONOMIC NETWORKS Matthew 0: Jackson

General Audience

How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life

"Linked could alter the way we think about all of the networks that affect our lives." -- The New York Times

Albert-László Barabási

With a New Afterword

University of Kurdistan

A Simple Story(2): August 15, 2003 blackout

August 15, 2003: 9:14pm EDT 7 hours after

A Simple Story(2): August 15, 2003 blackout

This reveals two important themes of this class:

• We must understand how network structure affects the robustness of a system

 Develop quantitative tools to assess the interplay between network structure and the dynamical processes on the networks, and their impact on failures

The History of Network Analysis

- Graph theory: 1735, Euler
- Social Network Research: 1930s, Moreno
- Communication networks/internet: 1960s
- > Ecological Networks: May, 1979.

The History of Network Analysis

University of Kurdistan

The Emergence of Network Maps

- Movie Actor Network, 1998
- World Wide Web, 1999
- C-elegans neural wiring diagram 1990
- Citation Network, 1998
- Metabolic Network, 2000;
- PPI network, 2001

Reasoning about networks

- How do we reason about networks?
 - Empirical: Study network data to find organizational principles
 - Mathematical models: Probabilistic, graph theory
 - Algorithms: analyzing graphs
- What do we hope to achieve from studying networks?
 - Patterns and statistical properties of network data
 - Design principles and models
 - Understand why networks are organized the way they are
 - Predict behavior of networked systems

What do we study in networks?

- Structure and evolution
 - What is the structure of a network?
 - Why and how did it become to have such structure?
- Processes and dynamics
 - Networks provide a "skeleton" for spreading of information, behavior, diseases
 - How do information and diseases spread?

Why to analyze networks?

- Predict the type/color of a given node Node classification
- Predict whether two nodes are linked
 Link prediction
- Identify densely linked clusters of nodes
 Community detection
- Measure similarity of two nodes/networks
 Network similarity

Networks in complex systems

- Complex systems
 - Large number of components interacting with each other
 - All components and/or interactions are different from each other
 - Paradigms:
 - 10⁴ types of proteins in an organism,
 - 10⁶ routers in the Internet
 - > 10⁹ web pages in the WWW
 - 10¹¹ neurons in a human brain
- The simplest property:
 - who interacts with whom?
 - can be visualized as a network
- Complex networks are just a backbone for complex dynamical systems

Why study the topology of Complex Networks?

- Lots of easily available data
- Large networks may contain information about basic design principles and/or evolutionary history of the complex system
- This is similar to paleontology:
 - learning about an animal from its backbone

A Multidisciplinary Research Field

Network Questions: Structural

- 1. How many connections does the average node have?
- 2. Are some nodes more connected than others?
- 3. Is the entire network connected?
- 4. On average, how many links are there between nodes?
- 5. Are there clusters or groupings within which the connections are particularly strong?
- 6. What is the best way to characterize a complex network?
- 7. How can we tell if two networks are "different"?
- 8. Are there useful ways of classifying or categorizing networks?

Network Questions: Communities

- 1. Are there clusters or groupings within which the connections are particularly strong?
- 2. What is the best way to discover communities, especially in large networks?
- 3. How can we tell if these communities are statistically significant?
- 4. What do these clusters tell us in specific applications?

Network Questions: Dynamics of

- 1. How can we model the growth of networks?
- 2. What are the important features of networks that our models should capture?
- 3. Are there "universal" models of network growth? What details matter and what details don't?
- 4. To what extent are these models appropriate null models for statistical inference?
- 5. What's the deal with power laws, anyway?

Network Questions: Dynamics on

- 1. How do diseases/computer viruses/innovations/ rumors/revolutions propagate on networks?
- 2. What properties of networks are relevant to the answer of the above question?
- 3. If you wanted to prevent (or encourage) spread of something on a network, what should you do?
- 4. What types of networks are robust to random attack or failure?
- 5. What types of networks are robust to directed attack?

How are dynamics of and dynamics on coupled?

Network Questions: Algorithms

- 1. What types of networks are searchable or navigable?
- 2. What are good ways to visualize complex networks?
- 3. How does google page rank work?
- 4. If the Internet were to double in size, would it still work?

Network Questions: Algorithms

There are also many domain-specific questions:

- 1. Are networks a sensible way to think about gene regulation or protein interactions or food webs?
- 2. What can social networks tell us about how people interact and form communities and make friends and enemies?
- 3. Lots and lots of other theoretical and methodological questions...
- 4. What else can be viewed as a network? Many applications await.

Network Questions: Outlook

- Advances in available data, computing speed, and algorithms have made it possible to apply network analysis to a vast and growing number of phenomena.
 - > This means that there is lots of exciting, novel work being done
 - This work is a mixture of awesome, exploratory, misleading, irrelevant, relevant, fascinating, ground-breaking, important, and just plain wrong
- It is relatively easy to fool oneself into seeing thing that aren't there when analyzing networks.
 - This is the case with almost anything, not just networks
- For networks, how can we be more careful and scientific, and not just descriptive and empirical?

A Common Language

University of Kurdistan

Network	Nodes	Edges
biochemical	molecules	chemical reactions
neural	neurons	synaptic connections
epidemiological	healthy, infected individuals	infectious contacts
world wide web	web pages	hyperlinks
trophic	predators, prey	predation interactions
power grid	electrical generators, end users	power lines, substations, transformers
collaborative	scientists, engineers	collaborations
social	people	friendships
internet	computers	routers, ethernet cables

Property of Friendship

Six Degrees of Separation

Milgram (1967)

The experiment:

- Random people from Nebraska were to send a letter (via intermediaries) to a stock broker in Boston.
- Could only send to someone with whom they know.

Stanley Milgram (1933-1984)

Small world experiment

Milgram's experiment (1960's):

 Given a target individual and a particular property, pass the message to a person you correspond with who is "closest" to the target.
 "Six degrees of separation"

Small World Network

"A small world network is a type of mathematical graph in which most nodes are not neighbors of one another, but most nodes can be reached from every other by a small number of hops or steps." - Wikipedia

Some Famous Researchers

Mark Newman, 146, 55

University of Michigan

Steven H. Strogatz, 107, 29 • Cornell University

- Albert Laszlo Barabasi, 198, 72
- Harvard University

Duncan Watts, 43, 25 • Yahoo Research Labs

Jon Kleinberg, 150, 40

· Cornell University

Alex Arenas, 92, 27 • University of Zaragoza

Réka Albert, 78, 31

Pennsylvania State University

Jure Leskovec, 54, 19

Stanford University

Santo Fortunato, 65, 23

 Institute for Scientific Interchange Foundation

David Kempe, 53, 17 • University of Southern California

University of Kurdistan

Wrap up

- networks are everywhere and can be used to describe many, many systems
- Network science research studies physical, biological, social, artificial, engineered, and other phenomena that arise in systems made of a large number of mutually interacting components whose macroscopic properties are not easy to understand or explain
- by modeling networks we can start to understand their properties and the implications those properties have for processes occurring on the network

Final Word

