
Department of Computer Engineering

University of Kurdistan

Computer Architecture
Pipelining

By: Dr. Alireza Abdollahpouri

Pipelined MIPS processor

Any instruction set can be implemented in

many different ways

MIPS ISA

Single Cycle Multi-Cycle Pipelined

Short CPI

Long CCT
Long CPI

Short CCT

Short CPI

Short CCT

2

Micro-Arch.

Getting the Best of Both Datapaths

Single-cycle:
Clock rate = 125 MHz

CPI = 1

Multicycle:
Clock rate = 500 MHz

CPI 4

Pipelined:
Clock rate = 500 MHz

CPI 1

3

4

Pipelining Analogy

 Car assembly

5

Pipelining Analogy

 Pipelined laundry: overlapping execution

 Parallelism improves performance

 Four loads:

 Speedup

= 8/3.5 = 2.3

 Non-stop loads:

 Speedup

= number of stages

 = 4

6

MIPS Pipeline

 Five stages, one step per stage

1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

7

Pipeline Performance

Assume time for stages is

• 100ps for register read or write

• 200ps for other stages

Compare pipelined datapath with single-cycle datapath

Instr Instr fetch Register

read

ALU op Memory

access

Register

write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

8

Pipeline Performance

Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

9

Pipeline Speedup

If all stages are balanced

i.e., all take the same time

If not balanced, speedup is less

Speedup due to increased throughput

Latency (time for each instruction) does not decrease

10

Pipelining and ISA Design

MIPS ISA designed for pipelining

All instructions are 32-bits

Easier to fetch and decode in one cycle

c.f. x86: 1- to 17-byte instructions

Few and regular instruction formats

Can decode and read registers in one step

Load/store addressing
Can calculate address in 3rd stage, access memory in 4th stage

Alignment of memory operands

Memory access takes only one cycle
11

MIPS stands for: Microprocessor without Interlocked Pipelined Stages

Hazards

 Situations that prevent starting the next
instruction in the next cycle

 Structure hazards

 A required resource is busy

 Data hazard

 Need to wait for previous instruction to complete
its data read/write

 Control hazard

 Deciding on control action depends on previous
instruction

12

Structure Hazards

 Conflict for use of a resource

 In MIPS pipeline with a single memory

 Load/store requires data access

 Instruction fetch would have to stall for that cycle

 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require separate

instruction/data memories

 Or separate instruction/data caches

13

Structural Hazards

14

If same memory is

used for Instruction

and Data

Data Hazards

An instruction depends on completion of data access by a

previous instruction

add $s0, $t0, $t1
sub $t2, $s0, $t3

15

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add $1,$3,$0

sub $4,$1,$3

and $6,$1,$7

or r$,$1,$9

xor $10,$1,$11

IF ID/RF EX MEM WB

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

16

Backward dependencies in time

Forwarding (aka Bypassing)

 Use result when it is computed

 Don’t wait for it to be stored in a register

 Requires extra connections in the datapath

17

New Paths to support Forwarding

M
E
M

/W
R

I
D
/E

X

E
X
/M

E
M

Data
Memory

A
L
U

m
ux

m
ux

R
e
giste

rs

NextPC

Immediate

m
ux

18

Load-Use Data Hazard

Can’t always avoid stalls by forwarding

 If value not computed when needed

 Can’t forward backward in time!

19

Code Scheduling to Avoid Stalls

 Reorder code to avoid use of load result in

the next instruction

 C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles

20

Control Hazards

 Branch determines flow of control

 Fetching next instruction depends on branch
outcome

 Pipeline can’t always fetch correct instruction

 Still working on ID stage of branch

 In MIPS pipeline

 Need to compare registers and compute target
early in the pipeline

 Add hardware to do it in ID stage

21

Stall on Branch

 Wait until branch outcome determined before

fetching next instruction

22

Branch Prediction

 Longer pipelines can’t readily determine branch

outcome early

 Stall penalty becomes unacceptable

 Predict outcome of branch

 Only stall if prediction is wrong

 In MIPS pipeline

 Can predict branches not taken

 Fetch instruction after branch, with no delay

23

MIPS with Predict Not Taken

Prediction

correct

Prediction

incorrect

24

More-Realistic Branch Prediction

 Static branch prediction

 Based on typical branch behavior

 Example: loop and if-statement branches

 Predict backward branches taken

 Predict forward branches not taken

 Dynamic branch prediction

 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the trend

 When wrong, stall while re-fetching, and update history

25

Pipeline Summary

 Pipelining improves performance by

increasing instruction throughput

 Executes multiple instructions in parallel

 Each instruction has the same latency

 Subject to hazards

 Structure, data, control

 Instruction set design affects complexity of

pipeline implementation

The BIG Picture

26

MIPS Pipelined Datapath

WB
Right-to-left

flow leads

to hazards

27

Pipeline registers

 Need registers between stages

 To hold information produced in previous cycle

28

Pipeline Operation

 Cycle-by-cycle flow of instructions through the

pipelined datapath

 “Single-clock-cycle” pipeline diagram

 Shows pipeline usage in a single cycle

 Highlight resources used

 c.f. “multi-clock-cycle” diagram

 Graph of operation over time

 We’ll look at “single-clock-cycle” diagrams for

load & store

29

IF for Load, Store, …

30

IF for Load, Store, …
PC+4 is computed,

stored back into the PC,

stored in the IF/ID buffer although it will not be needed in a

later stage for LW or SW

Instruction word is fetched from memory,

and stored in the IF/ID buffer because it will be needed in

the next stage.

Write into the buffer

31

32

• Instruction is read from memory using the

address in PC and is placed in the IF/ID pipeline

register

• PC address is incremented by 4 and then written

back into PC to be ready for the next clock cycle

• This incremented address is also saved in IF/ID

pipeline register in case it is needed later for an

instruction

IF for Load, Store, …

ID for Load, Store, …

33

ID for Load
Bits of load instruction are

taken from IF/ID buffer,

while

new instruction is being

fetched back in stage 1.

Read register #1 and #2

contents are fetched and stored

in ID/EX buffer until needed in

next stage… #2 won't be

needed.

PC+4 is passed forward to

ID/EX buffer...

16-bit field is fetched from IF/ID

buffer, then sign-extended, then

stored in the ID/EX buffer for use in

a later stage.

Read from the buffer

34

35

ID for Load, Store, …

• Instruction portion of IF/ID pipeline register

supplying 16-bit immediate field, which is sign-

extended to 32 bits, and the register numbers to

read the two registers

• All three values are stored in the ID/EX pipeline

register, along with incremented PC address

• Everything might be needed by any instruction

during a later clock cycle is transferred

EX for Load

36

EX for Load

PC+4 is taken from ID/EX

buffer and added to branch

offset…

Read register #1 contents

are taken from ID/EX buffer

and provided to ALU.

Read register #2 is passed

forward to EX/MEM buffer,

for possible use in later

stage… but won't be

needed.

Computed branch target

address is stored in

EX/MEM buffer to await

decision in next stage... but

won't be needed.

ALU result and Zero line

are stored in EX/MEM

buffer for use as memory

address in next stage.

16-bit literal is provided to

ALU as second operand

37

MEM for Load

38

MEM for Load

Zero line taken from

EX/MEM buffer for

branch control logic

in this stage…

ALU result is taken from

EX/MEM buffer and

passed to Address port of

data memory.

ALU result also stored in

MEM/WB buffer for

possible use in last stage…

Read register #2 contents

taken from EX/MEM buffer

and passed to Write data

port of data memory.

Value on Read data port of

data memory is stored in

MEM/WB buffer, awaiting

decision in last stage..

39

WB for Load

Wrong

register

number

40

WB for Load

Since load instruction,

value from data memory is

selected and passed back

to register file.

But the Write register port

is now seeing the register

number from a different,

later instruction.

41

Corrected Datapath for Load

42

So we fix the register number problem by passing the Write register # from the

load instruction through the various inter-stage buffers… …and then back, on the correct

clock cycle.

EX for Store

43

EX for Store

Almost the same as for LW…

Read register #2 is passed

forward to EX/MEM buffer,

for use in later stage… for

SW this will be needed.

44

MEM for Store

45

MEM for Store

Zero line taken from

EX/MEM buffer for

branch control logic

in this stage…

ALU result is taken from

EX/MEM buffer and

passed to Address port of

data memory.

ALU result also stored in

MEM/WB buffer for

possible use in last stage…

Read register #2 contents

taken from EX/MEM buffer

and passed to Write data

port of data memory.

Value on Read data port of

data memory is stored in

MEM/WB buffer, awaiting

decision in last stage..

46

WB for Store

47

WB for Store

Since SW instruction,

neither value will be written

to the register file… doesn't

really matter which value

we send back…

48

Multi-Cycle Pipeline Diagram

• Form showing resource usage

49

Multi-Cycle Pipeline Diagram

• Traditional form

50

Single-Cycle Pipeline Diagram

• State of pipeline in a given cycle

51

Pipelined Control (Simplified)

52

Pipelined Control

 Control signals derived from instruction (as in

single-cycle implementation)

53

Pipelined Control

54

Data Hazards in ALU Instructions

 Consider this sequence:

sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

 We can resolve hazards with forwarding

 How do we detect when to forward?

55

Dependencies & Forwarding

56

Detecting the Need to Forward

 Pass register numbers along pipeline
 e.g., ID/EX.RegisterRs = register number for Rs

sitting in ID/EX pipeline register

 ALU operand register numbers in EX stage
are given by
 ID/EX.RegisterRs, ID/EX.RegisterRt

 Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from

EX/MEM

pipeline reg

Fwd from

MEM/WB

pipeline reg

57

58

First hazard between sub $2, $1, $3 and and $12, $2, $5 is

detected when “and” is in EX and “sub” is in MEM because

EX/MEM.RegisterRd = ID/EX.RegisterRs = $2 (1a)

Similar to above this time dependency between “sub” and

“or” can be detected as

MEM/WB.RegisterRd = ID/EX.RegisterRt = $2 (2b)

Two dependencies between “sub” and

”add” are not hazard Another form of forwarding

but it occurs within reg file

There is no hazard between “sub” and “sw”

Detecting the Need to Forward

Detecting the Need to Forward

 But only if forwarding instruction will write to a

register!

 EX/MEM.RegWrite, MEM/WB.RegWrite

 And only if Rd for that instruction is not $zero

 EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

59

Forwarding Paths

60

Forwarding Conditions

 EX hazard

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

ForwardA = 10

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

ForwardB = 10

 MEM hazard

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

Forwards the

result from the

previous instr. to

either input of

the ALU

Forwards the

result from the

second previous

instr. to either

input of the ALU

61

62

sub $5, $1, $3

and $12, $2, $5

or $13, $5, $2

sub

Forwarding Example

63

sub $5, $1, $3

and $12, $2, $5

or $13, $5, $2

suband

Forwarding Example

64

sub $5, $1, $3

and $12, $2, $5

or $13, $5, $2

subandor

Forwarding Example

Double Data Hazard

 Consider the sequence:

add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

 Both hazards occur

 Want to use the most recent

 Revise MEM hazard condition

 Only fwd if EX hazard condition isn’t true

65

Revised Forwarding Condition

 MEM hazard

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

66

Datapath with Forwarding

67

Load-Use Data Hazard

Need to stall

for one cycle

68

Load-Use Hazard Detection

 Check when using instruction is decoded in ID stage

 ALU operand register numbers in ID stage are given
by:

 IF/ID.RegisterRs, IF/ID.RegisterRt

 Load-use hazard when

 ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

 If detected, stall and insert bubble

69

How to Stall the Pipeline

 Force control values in ID/EX register to 0

 EX, MEM and WB do nop (no-operation)

 Prevent update of PC and IF/ID register

 Using (current) instruction is decoded again

 Following instruction is fetched again

 1-cycle stall allows MEM to read data for lw

 Can subsequently forward to EX stage

70

Stall/Bubble in the Pipeline

Stall inserted

here

71

Stall Hardware

 Along with the Hazard Unit, we have to implement the stall

 Prevent the instructions in the IF and ID stages from progressing

down the pipeline – done by preventing the PC register and the IF/ID

pipeline register from changing

 Hazard detection Unit controls the writing of the PC (PC.write) and

IF/ID (IF/ID.write) registers

 Insert a “bubble” between the lw instruction (in the EX stage) and the

load-use instruction (in the ID stage) (i.e., insert a noop in the

execution stream)

 Set the control bits in the EX, MEM, and WB control fields of the ID/EX
pipeline register to 0 (nop). The Hazard Unit controls the mux that

chooses between the real control values and the 0’s.

 Let the lw instruction and the instructions after it in the pipeline

(before it in the code) proceed normally down the pipeline

72

Datapath with Hazard Detection

73

74

Pipeline with and without forwarding

Stalls and Performance

 Stalls reduce performance

 But are required to get correct results

 Compiler can arrange code to avoid hazards

and stalls

 Requires knowledge of the pipeline structure

75

Control Hazards

• When the flow of instruction addresses is not sequential (i.e., PC = PC
+ 4); incurred by change of flow instructions

– Conditional branches (beq, bne)

– Unconditional branches (j, jal, jr)

– Exceptions

• Possible approaches

– Stall (impacts CPI)

– Move decision point as early in the pipeline as possible, thereby reducing
the number of stall cycles

– Delay decision (requires compiler support)

– Predict and hope for the best !

• Control hazards occur less frequently than data hazards, but there is
nothing as effective against control hazards as forwarding is for data
hazards

76

Branch Hazards

 If branch outcome determined in MEM

PC

Flush these

instructions

(Set control

values to 0)

77

Reducing Branch Delay

 Move hardware to determine outcome to ID stage

 Target address adder

 Register comparator

 Example: branch taken
36: sub $10, $4, $8
40: beq $1, $3, 7
44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7

...
72: lw $4, 50($7) #44+7x4=72 (PC+4 + Imm*4)

78

Example: Branch Taken

79

Example: Branch Taken

80

Data Hazards for Branches

 If a comparison register is a destination of

2nd or 3rd preceding ALU instruction

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target

 Can resolve using forwarding

81

Data Hazards for Branches

 If a comparison register is a destination of

preceding ALU instruction or 2nd preceding load

instruction

 Need 1 stall cycle

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw $1, addr

beq $1, $4, target

82

Data Hazards for Branches

 If a comparison register is a destination of

immediately preceding load instruction

 Need 2 stall cycles

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw $1, addr

beq $1, $0, target

83

Dynamic Branch Prediction

 In deeper and superscalar pipelines, branch

penalty is more significant

 Use dynamic prediction

 Branch prediction buffer (aka branch history table)

 Indexed by recent branch instruction addresses

 Stores outcome (taken/not taken)

 To execute a branch

 Check table, expect the same outcome

 Start fetching from fall-through or target

 If wrong, flush pipeline and flip prediction

84

1-Bit Predictor: Shortcoming

 Inner loop branches mispredicted twice!

outer: …
…

inner: …
…

beq …, …, inner
…

beq …, …, outer

 Mispredict as taken on last iteration of inner loop

 Then mispredict as not taken on first iteration of

inner loop next time around

85

2-Bit Predictor

 Only change prediction on two successive mispredictions

86

00 01

1011

00 00 00 01 10 11 11 11 11 10 01 10 11 11 11 10 01 10 11 11 11 11 11 11

Calculate the correct

prediction rate for the

below branch. Assume

starting from state:00

N N N N N T T T T T T N T T T T T N T T T T T T T

N N N T T T T T T N N T T T T N N T T T T T T T T
Next state

Actual

Prediction

Calculating the Branch Target

 Even with predictor, still need to calculate the target address

 1-cycle penalty for a taken branch

 Branch target buffer

 Cache of target addresses

 Indexed by PC when instruction fetched

 If hit and instruction is branch predicted taken, can fetch

target immediately

87

mux

PC

Addresses of

Recent Branches
Target

Addresses
low-order bits

used as index

Predict

Bits
Inc

=
predict_taken

Exceptions and Interrupts

 “Unexpected” events requiring change

in flow of control

 Different ISAs use the terms differently

 Exception

 Arises within the CPU

 e.g., undefined opcode, overflow, syscall, …

 Interrupt

 From an external I/O controller

 Dealing with them without sacrificing performance is

hard

88

Exceptions in a Pipeline

 Another form of control hazard

 Consider overflow on add in EX stage
add $1, $2, $1

 Prevent $1 from being clobbered

 Complete previous instructions

 Flush add and subsequent instructions

 Set Cause and EPC register values

 Transfer control to handler

 Similar to mispredicted branch

 Use much of the same hardware

89

Pipeline with Exceptions

90

• New input value for PC holds the initial address to fetch instruction from in the event of an exception.

• A Cause register to record the cause of the exception.

• An EPC register to save the address of the instruction to which we should return.

Instruction-Level Parallelism (ILP)

 Pipelining: executing multiple instructions in parallel

 To increase ILP
 Deeper pipeline

 Less work per stage shorter clock cycle

 Multiple issue
 Replicate pipeline stages multiple pipelines

 Start multiple instructions per clock cycle

 CPI < 1, so use Instructions Per Cycle (IPC)

 E.g., 4GHz 4-way multiple-issue

 16 BIPS, peak CPI = 0.25, peak IPC = 4

 But dependencies reduce this in practice

91

Multiple Issue

 Static multiple issue

 Compiler groups instructions to be issued together

 Packages them into “issue slots”

 Compiler detects and avoids hazards

 Dynamic multiple issue

 CPU examines instruction stream and chooses

instructions to issue each cycle

 Compiler can help by reordering instructions

 CPU resolves hazards using advanced techniques at

runtime

92

Static Multiple Issue

 Compiler groups instructions into “issue

packets”

 Group of instructions that can be issued on a single

cycle

 Determined by pipeline resources required

 Think of an issue packet as a very long

instruction

 Specifies multiple concurrent operations

 Very Long Instruction Word (VLIW)

93

Scheduling Static Multiple Issue

 Compiler must remove some/all hazards

 Reorder instructions into issue packets

 No dependencies with a packet

 Possibly some dependencies between packets

 Varies between ISAs; compiler must know!

 Pad with nop if necessary

94

MIPS with Static Dual Issue

 Two-issue packets

 One ALU/branch instruction

 One load/store instruction

 64-bit aligned

 ALU/branch, then load/store

 Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

95

96

Dynamic Multiple issue (OoO execution)

Concluding Remarks

 ISA influences design of datapath and control

 Datapath and control influence design of ISA

 Pipelining improves instruction throughput

using parallelism

 More instructions completed per second

 Latency for each instruction not reduced

 Hazards: structural, data, control

 Multiple issue and dynamic scheduling (ILP)

 Dependencies limit achievable parallelism

 Complexity leads to the power wall

97

Single Cycle, Mult-Cycle, vs. Pipeline

Multiple Cycle Implementation:

Clk

Cycle 1

IFetch Dec Exec Mem WB

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9Cycle 10

IFetch Dec Exec Mem

lw sw

IFetch

R-type

lw IFetch Dec Exec Mem WB

Pipeline Implementation:

IFetch Dec Exec Mem WBsw

IFetch Dec Exec Mem WBR-type

Clk

Single Cycle Implementation:

lw sw Waste

Cycle 1 Cycle 2

98

Cortex-A77

Microarchitectures - ARM

• 6-way superscalar

• out-of-order

• 13-stage pipeline

Real Example

99

100

Questions

