

Department of Computer and IT Engineering University of Kurdistan

Advanced Computer Networks Network Layer

By: Dr. Alireza Abdollahpouri

What's the Internet: "nuts and bolts" view

server

wireless

wired links

access points

- **laptop cellular handheld**
- \triangleright millions of connected computing devices: hosts = end systems
	- \triangleright running *network apps*

Q communication links

- fiber, copper, radio, satellite
- transmission rate = bandwidth

 routers: forward packets (chunks of data)

A closer look at network structure:

- network edge: applications and hosts
- \square access networks, physical media: wired, wireless communication links

network core:

- interconnected routers
- network of networks

The network edge:

- \triangleright end systems (hosts):
	- \triangleright run application programs
	- \triangleright e.g. Web, email
	- at "edge of network"

client/server model

- **↓** client host requests, receives service from always-on server
- e.g. Web browser/server; email client/server

peer-peer model:

- minimal (or no) use of dedicated servers
- e.g. Skype, BitTorrent

Access networks and physical media

- Q: How to connect end systems to edge router?
- \triangleright residential access nets
- \triangleright institutional access networks (school, company)
- mobile access networks

Wired access networks: xDSL (ADSL, VDSL, SDSL), FTTx (FTTH, FTTC, FTTP), …

Wireless access networks: WiFi, WiMAX, LTE, …

The Network Core

- \triangleright mesh of interconnected routers
- \triangleright the fundamental question: how is data transferred through net?
	- \triangleright circuit switching: dedicated circuit per call: telephone net
	- packet -switching: data sent thru net in discrete "chunks"

- \triangleright roughly hierarchical
- at center: "tier-1" ISPs (e.g., Verizon, Sprint, AT&T, Cable and Wireless), national/international coverage
	- \triangleright treat each other as equals

Tier-1 ISP: e.g., Sprint

> "Tier-2" ISPs: smaller (often regional) ISPs

 \triangleright Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

"Tier-3" ISPs and local ISPs

 \triangleright a packet passes through many networks!

Network Layer Functions

- \triangleright transport packet from sending to receiving hosts
- network layer protocols in **every** host, router

Three important functions:

- \triangleright *path determination:* route taken by packets from source to dest. (Routing Algorithms)
- \triangleright *forwarding:* move packets from router's input to appropriate router output
- \triangleright *call setup:* some network architectures require router call setup along path before data flows

The Internet Network layer

Host, router network layer functions:

Internet Protocol (IP)

Internet Protocol (IP)

- **Connectionless, unreliable transmission of packets**
- **"Best Effort" Service**
- **IP addressing (IPv4)**
	- Uses logical 32-bit addresses
	- Hierarchical addressing
- **Fragmenting and reassembling of packets**
	- Maximum packet size: 64 kByte
	- In practice: 1500 byte
- **At present commonly used: Version 4 of IP (IPv4)**

IP Addressing

An IP address is a 32-bit address (dotted decimal notation).

Hierarchical addressing in IP

Blocks in class A

Millions of class A addresses are wasted Millions of class A addresses are wasted

Blocks in class B

Many class B addresses are wasted.

Blocks in class C

2,097,152 blocks: 256 addresses in each block

The number of addresses in class C is smaller than the needs of most organizations 20 20

IP Addressing

How to find the networks?

- \triangleright Detach each interface from router, host
- \triangleright create "islands of isolated networks

223.1.1.1 223.1.1.3 223.1.1.4 223.1.2.1 223.1.2.2 223.1.2.6 223.1.3.1 223.1.3.2 223.1.3.27 223.1.1.2 223.1.7.0 223.1.7.1 223.1.8.1 223.1.8.0 223.1.9.1 223.1.9.2

21

Interconnected system consisting of six networks.

Address Space

Class C-networks (256 hosts) are very small and Class Bnetworks (65536 hosts) often too large. Therefore, divide a network into **subnets**

Subnetting (cnt'd)

Subnetting (Extended Network Prefix)

Hierarchical addressing- route aggregation

Hierarchical addressing allows efficient advertisement of routing information

Addressing - mask

- Routing is based on both network and subnetwork addresses
	- Analogy: Parcel delivery –> zip code and street address
- How can a router find the network or the subnetwork address to route the packet?
- Default mask: 32-bit binary number ANDed with the address in the block
	- if the bit in the mask $= 1$, then retain the bit in the address

• if the bit in the mask \pm 1, then put 0

number of 1's

Subnet Mask

ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20 ISP's subnet mask 11111111 11111111 11110000 00000000 255.255.240.0

Network part of an IP address= subnet mask & IP address

Classless addressing

- **Solving problems with classful addressing:**
	- 256 < the number of IP address < 16 777 216
	- what if one needs at home only 2 addresses? 254 wasted?
- **Solution: Classless addressing**
	- addresses provided by Internet Service Provider
	- ISP divides blocks of addresses into groups of 2, 4, 8 or 16
	- the household devices are connected to ISP via dial-up, DSL, …
- **Variable-length blocks that belong to no class**
	- the number of address block must be power of 2
- **Classless InterDomain Routing (CIDR**)

Longest prefix match forwarding

- Forwarding tables in IP routers
	- Maps each IP prefix to next-hop link(s)
- Destination-based forwarding
	- Packet has a destination address
	- Router identifies longest-matching prefix
	- Cute algorithmic problem: very fast lookups

forwarding table

IP Header

IP Header fields

- **Version number (4 bits)**
	- Indicates the version of the IP protocol
	- Necessary to know what other fields to expect
	- Typically "4" (for IPv4), and sometimes "6" (for IPv6)
- **IP Header length (4 bits)**
	- Number of 32-bit words in the header
	- Typically "5" (for a 20-byte IPv4 header)
	- Can be more when IP options are used
- **Total length (16 bits)**
	- Number of bytes in the packet
	- Maximum size is 65,535 bytes $(2^{16} 1)$
	- ... though underlying links may impose smaller limits

IP Header fields - protocol

- **Protocol (8 bits)**
	- Identifies the higher-level protocol
	- Important for demultiplexing at receiving host

IP Header fields

• **Two IP addresses**

- Source IP address (32 bits)
- Destination IP address (32 bits)

• **Type-of-Service (8 bits)**

- Allow packets to be treated differently based on needs
- E.g., low delay for audio, high bandwidth for bulk transfer
- Has been redefined several times, will cover late in QoS

• **Options**

IP Header fields - checksum

- **Header Checksum** for error detection
- •**If not correct, router discards packets**

IP Header fields - TTL

• **Forwarding loops cause packets to cycle forever**

• As these accumulate, eventually consume **all** capacity

- **Time-to-Live (TTL) Field (8 bits**)
	- Decremented at each hop, packet discarded if reaches 0
	- ...and "time exceeded" message is sent to the source

Fragmentation: when forwarding a packet, an Internet router can split it into multiple pieces ("fragments") if too big for next hop link

IP Header fields – fragmentation fields

- **Identifier (16 bits):** used to tell which fragments belong together
- **Flags (3 bits):**
	- **Don**'**t Fragment (DF):** instruct routers to not fragment the packet even if it won't fit
		- Instead, they drop the packet and send back a "Too" Large" ICMP control message
		- Forms the basis for "Path MTU Discovery", covered later
		- **More (MF):** this fragment is not the last one
- **Offset (13 bits):** what part of datagram this fragment covers in 8-byte units

Example of Fragmentation

• Suppose we have a 4000 byte datagram sent from host 1.2.3.4 to host 3.4.5.6 …

(3980 more bytes here)

... and it traverses a link that limits datagrams to 1,500 bytes

Datagram split into 3 pieces, for example:

Datagram split into 3 pieces. Possible first piece:

Possible second piece:

Possible third piece:

Where is Fragmentation done?

- **Fragmentation** can be done at the **sender** or at **intermediate routers**
- The same datagram can be fragmented **several times**.
- **Reassembly** of original datagram is only done at **destination hosts** !!

Address Resolution Protocol (ARP)

Address Resolution Protocol (ARP)

- \triangleright Two levels of addresses: IP and MAC
- \triangleright Need to be able to map an IP address to its corresponding MAC address
- \triangleright Two types of mapping : static and dynamic
- \triangleright Static mapping has some limitations and overhead against network performance
- \triangleright Dynamic mapping: ARP and RARP
- \triangleright ARP: mapping IP address to a MAC address
- \triangleright RARP (replaced by DHCP): mapping a MAC address to an IP address

ARP operation

- \triangleright ARP associates an IP address with its MAC addresses
- \triangleright An ARP request is broadcast; an ARP reply is unicast.

ARP packet format

Protocol Type: 0800 for IPv4, Hardware length: 6 for Ethernet, Protocol length: 4 for IPv4

Encapsulation of ARP packet

 ARP packet is encapsulated **directly** into a data link frame (example: Ethernet frame)

ARP Operation

- \triangleright The sender knows the IP address of the target
- \triangleright IP asks ARP to create an ARP request message
- \triangleright The message is encapsulated in a frame (destination address = broadcast address)
- \triangleright Every host or router receives the frame. The target recognizes the IP address
- \triangleright The target replies with an ARP reply message (unicast with its physical address)
- \triangleright The sender receives the reply message knowing the physical address of the target
- \triangleright The IP datagram is now encapsulated in a frame and is unicast to the destination

Four different cases using ARP

Case 1. A host has a packet to send to another host on the same network.

Case 2. A host wants to send a packet to another host on another network.

It must first be delivered to the appropriate router.

Case 3. A router receives a packet to be sent to a host on another network. It must first be delivered to the appropriate router.

Case 4. A router receives a packet to be sent to a host on the same network.

ARP: Example

University of Kurdistan

Internet Control Message Protocol (ICMP)

- \triangleright IP has no error-reporting or error-correcting mechanism
- \triangleright IP also lacks a mechanism for host and management queries
- \triangleright Internet Control Message Protocol (ICMP) is designed to compensate for two deficiencies, which is a companion to the IP
- Two types messages: error-reporting messages and query messages

- \triangleright ICMP always reports error messages to the original source.
- \triangleright Source quench: There is no flow control or congestion control mechanism in IP. Source Quench requests that the sender decrease the rate of messages
- \triangleright Time exceed: (1) TTL related, (2) do not receive all fragments with a certain time limit
- \triangleright Redirection: To update the routing table of a host

Redirection concept

Query messages

- \triangleright To diagnose some network problems
- \triangleright A node sends a message that is answered in a specific format by the destination node
- \triangleright Echo for diagnosis; Time-stamp to determine RTT or synchronize the clocks in two machines; Address mask to know network address, subnet address, and host id; Router solicitation to know the address of routers connected and to know if they are alive and functioning

University of Kurdistan

ICMP Query usage (Ping)

University of Kurdistan

Traceroute and ICMP

- \triangleright Source sends series of UDP segments to dest
	- \triangleright First has TTL = 1
	- \triangleright Second has TTL=2, etc.
	- Unlikely port number
- \triangleright When nth datagram arrives to nth router:
	- \triangleright Router discards datagram
	- \triangleright And sends to source an ICMP message (type 11, code 0)
	- \triangleright Message includes name of router& IP address
- \triangleright When ICMP message arrives, source calculates RTT
- \triangleright Traceroute does this 3 times

Stopping criterion

- UDP segment eventually arrives at destination host
- **►** Destination returns ICMP "host unreachable" packet (type 3, code 3)
- \triangleright When source gets this ICMP, stops.

"Real" Internet delays and routes

- \triangleright What do "real" Internet delay & loss look like?
- **► Traceroute** program: provides delay measurement from source to router along end-end Internet path towards destination. For all *:*
	- sends three packets that will reach router *i* on path towards destination
	- \triangleright router *i* will return packets to sender
	- \triangleright sender times interval between transmission and reply. **3 probes**

IP Version 6 (IPV6)

IPv6 address

- \triangleright The use of address space is inefficient
- Minimum delay strategies and reservation of resources are required to accommodate real-time audio and video transmission
- \triangleright No security mechanism (encryption and authentication) is provided
- IPv6 (IPng: Internetworking Protocol, next generation)
	- \triangleright Larger address space (128 bits)
	- \triangleright Better header format
	- \triangleright New options
	- \triangleright Allowance for extension
	- Support for resource allocation: flow label to enable the source to request special handling of the packet
	- \triangleright Support for more security

IPv6 address

CIDR address

IPv4 & IPv6 Header Comparison

- **- field's name kept from IPv4 to IPv6**
- **- fields not kept in IPv6**
- **- Name & position changed in IPv6**
- **- New field in IPv6**

Legend

University of Kurdistan

IPv6 Header

- Version: IPv4, IPv6
- \triangleright Priority (4 bits): the priority of the packet with respect to traffic congestion
- \triangleright Flow label (3 bytes): to provide special handling for a particular flow of data
- \triangleright Payload length
- \triangleright Next header (8 bits): to define the header that follows the base header in the datagram
- \triangleright Hop limit: TTL in IPv4
- \triangleright Source address (16 bytes) and destination address (16 bytes): if source routing is used, the destination address field contains the address of the next router

Three transition strategies from IPv4 to IPv6

 \triangleright Transition should be smooth to prevent any problems between IPv4 and IPv6 systems

Transition From IPv4 To IPv6

- \triangleright Not all routers can be upgraded simultaneous
	- no "flag days"
	- \triangleright How will the network operate with mixed IPv4 and IPv6 routers?
- \triangleright Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers

Tunneling

 \triangleright IPv6 packet is encapsulated in an IPv4 packet

Dual stack

 \triangleright All hosts have a dual stack of protocols before migrating completely to version 6

Header translation

- \triangleright Necessary when the majority of the Internet has moved to IPv6 but some systems still use IPv4
- \triangleright Header format must be changed totally through header translation

Network Address Translation (NAT)

NAT: Network Address Translation

Site using private addresses

University of Kurdistan

- \triangleright Motivation: local network uses just one IP address as far as outside word is concerned:
	- \triangleright no need to be allocated range of addresses from ISP: just one IP address is used for all devices
	- \triangleright can change addresses of devices in local network without notifying outside world
	- \triangleright can change ISP without changing addresses of devices in local network
	- \triangleright devices inside local net not explicitly addressable, visible by outside world (a security plus).

Implementation: NAT router must:

- ► *outgoing datagrams: replace* (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #) . . . remote clients/servers will respond using (NAT IP address, new port #) as destination addr.
- ► remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
- \triangleright *incoming datagrams: replace* (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

- 16-bit port-number field:
	- \triangleright 60,000 simultaneous connections with a single LAN-side address!
- \triangleright NAT is controversial:
	- \triangleright routers should only process up to layer 3
	- \triangleright violates end-to-end argument
		- \triangleright NAT possibility must be taken into account by app designers, eg, P2P applications
	- \triangleright address shortage should instead be solved by IPv6

Routing

Routing

determining the most favorable path from the source of a message to its destination

Routing – most favorable route

- **Short response times**
- **High throughput**
- **Avoidance of local overload situations**
- **Security requirements**
- **Shortest path**

Interplay between routing and forwarding

Routing & forwarding

- \triangleright Not the same thing!
- \triangleright Routing- filling the routing tables
- \triangleright Forwarding handling the packets based on routing tables
- \triangleright Routing differs in datagram and VC networks

Datagram Routing (The internet model)

- \triangleright routers: no state about end-to-end connections
	- no network-level concept of 'connection'
- \triangleright packets are typically routed using destination host ID
	- packets between same source-destination pair may take different paths

Jniversity of Kurdistan

Delivery with routing tables

University of Kurdistan

Routing - properties

- 1. correctness
- 2. simplicity
- 3. robustness
	- updating possibility
	- should cope with changes in the topology and traffic
- 4. stability
	- must converge to equilibrium
- 5. fairness
- 6. optimality
	- min mean packet delay
	- \triangleright max total network throughput
- \triangleright 5 & 6 often contradictory

Iniversity of Kurdistan

Routing algorithms

- **DYNAMIC**
	- change routing decisions to reflect changes in the topology
	- adapt for changes in the traffic (load change)
	- ALGORITHMS: where routers get the information from?
		- **locally**
		- from adjacent routers
		- from all routers
	- ALGORITHMS: when they change their routes?
		- every ΔT sec
		- when the load changes
		- when topology changes
- **STATIC**
	- routes computed in advance
		- node failures, current load etc. not taken into account

Global & decentralized routing algorithms

1. Global routing algorithm

- least-cost path calculated using global knowledge about network
- input: connectivity between all nodes & link costs nodes
- link state algorithms

2. Decentralized routing algorithm

- least-cost path calculated in an iterative, distributed manner
- no node has complete info about the cost of all network links
- begins with cost of directly attached links
- info exchange with neighbouring nodes
- distance vector algorithms

Two basic dynamic algorithms

• **Distance Vector Routing**

- routing protocols are like road signs
- used in the ARPANET

• **Link State Routing**

- routing protocols are more like a road map
- used in the newer Internet Open Short Path First (OSPF) protocol

The Distance Vector Routing

• **dynamic algorithm**

• takes current network load into account

• **distributed**

• each node receives information from its directly attached neighbours, performs a calculation, distribute the results back to neighbours

• **iterative**

- alg performed in steps until no more information to change
- initially, each node knows only about its adjacent nodes

• **asynchronous**

• nodes do not operate in lockstep with each other

The concept of distance vector routing

90

Routing Table Distribution

Updating Routing Table for Router A

Final Routing Tables

University of Kurdistan

Problems in distance vector routing

\triangleright Two problems

- 1. Link bandwidth not taken into account for metric, only the queue length
	- all the lines at that time 56 Kbps
- 2. Too long time to converge
	- QUESTION: when the algorithm converges?
	- ANSWER: when every node knows about all other nodes and networks and computes the shortest path to them

Two basic algorithms

▶ Distance Vector Routing

Link State Routing

A Link state routing algorithm

- \triangleright link state broadcast node learn about path costs from its neighbors
- \triangleright inform the neighbors whenever the link cost changes
	- \triangleright hence the name link state

The concept of link state routing

Link state routing

- Each router does the following (repeatedly):
	- 1- **discover neighbors**, particularly, learn their network addresses
		- A router learns about its neighbours by sending a special HELLO packet to each point-to-point line. Routers on the other end send a reply
	- 2- **measure cost** to each neighbor
		- e.g. by exchanging a series of packets
		- sending ECHO packets and measuring the average round-trip-time
		- include traffic-induced delay?
	- 3- construct a link state packet
	- 4- send this packet **to all other routers**
		- using what route information? chicken / egg
		- what if re-ordered? or delayed?

5- compute **locally** the shortest path to every other router when this information is received (**using dijkstra's algorithm**)

Constructing link state packets

 (a)

 (b)

subnet link state packets for this subnet

• **When to build these packets?**

- at regular time intervals
- on occurrence of some significant event

Distributing the link state packets

- Typically, flooding
	- routers recognize packets passed earlier
		- sequence number incremented for each new packet sent
		- routers keep track of the (source router, sequence) pair
		- thus avoiding the exponential packet explosion
	- first receivers start changes already while changes are being reported
	- sequence numbers wrap around or might be corrupted (a bit inversed – 65540 instead of 4)
		- 32 bit sequence number (137 years to wrap)
		- To avoid corrupted sequences (or a router reboot) and therefore prevent any update, the state at each router has an age field that is decremented once a second
		- but, need additional robustness in order to deal with errors on router-to-router lines

acknowledgements and the state of the state o

Jniversity of Kurdistan

Distributing the link state packets

Dijkstra's algorithm to compute the shortest path

- Initialization: 1
- $N = {A}$ 2
- 3 for all nodes v
- 4 if v adjacent to A
- 5 then $D(v) = c(A,v)$

```
6
else D(v) = infty
```
- $c(i, j)$ link cost from node *i* to *j*
- $c(i)$ = ∞ if i & j not directly conn
- $D(v)$ cost of the path from the source node to destination v
- N set of nodes whose leastcost path from the source is definitely known

8 Loop

 $\overline{7}$

- 9 find w not in N such that $D(w)$ is a minimum
- 10 add w to N
- 11 update $D(v)$ for all v adjacent to w and not in N:
- $12²$ $D(v) = min(D(v), D(w) + c(w, v))$
- 13 \prime^* new cost to v is either old cost to v or known
- 14 shortest path cost to w plus cost from w to v^*
- 15 until all nodes in N

Dijkstra's algorithm - sketch

University of Kurdistan

Dijkstra's algorithm - sketch

University of Kurdistan

Shortest path

Shortest path from A to F using Dijkstra's algorithm

Routing in the Internet

- What would happen if hundreds of millions of routers execute the same routing algorithm to compute routing paths through the network?
- **Scale**
	- large overhead
	- enormous memory space in the routers
	- no bandwidth left for data transmission
	- would DV algorithm converge?
- Administrative autonomy
	- an organization should run and administer its networks as wishes but must be able to connect it to "outside" networks

Jniversity of Kurdistan

Hierarchical routing

- \triangleright The Internet uses hierarchical routing
	- it is split into Autonomous Systems **(AS)**
		- \triangleright routers at the border: gateways
		- gateways must run both intra & inter AS routing protocols
	- \triangleright routers within AS run the same routing algorithm
		- \triangleright the administrator can chose any Interior Gateway Protocol
			- Routing Information Protocol **(RIP)**
			- Open Shortest Path First **(OSPF)**
	- ▶ between AS gateways use Exterior Gateway Protocol
		- Border Gateway Protocol **(BGP)**

Why do we have different protocols for inter & intra AS routing?

Autonomous Systems

- An **autonomous system** is a region of the Internet that is administered by a single entity.
- Examples of autonomous regions are:
	- UVA's campus network
	- MCI's backbone network
	- Regional Internet Service Provider
- Routing is done differently within an autonomous system (**intradomain routing**) and between autonomous system **(interdomain routing**).

Hierarchical routing (analogy)

Intra-AS and Inter-AS routing

Inter AS routing Border Gateway Protocol

it is *de facto* standard interdomain routing protocol in today's Internet

