

#### Department of Computer and IT Engineering University of Kurdistan

# Advanced Computer Networks (Graduate level) Introduction

By: Dr. Alireza Abdollahpouri

#### **Course Info**

#### Instructor

Dr. Alireza Abdollahpouri Email: <u>abdollahpouri@gmail.com</u> Office: Room 219

#### Course Web Page

http://eng.uok.ac.ir/abdollahpouri/Advanced\_Net.html

#### Grading Policy

| <b>Homework and Projects</b> | 40% |
|------------------------------|-----|
| Final                        | 50% |
| <b>Class participation</b>   | 10% |



#### **Course Info. (Textbooks)**

Computer Networking: A Top-Down Approach, 6th Edition, James F. Kurose and Keith W. Ross, Pearson, 2013,



#### **Course Info**

#### Other useful books

- A. Tanenbaum, Computer Networks
- S. Keshav, An Engineering Approach to Computer Networking
- Peterson and Davie, Computer Networks: A Systems Approach, 4th Edition
- Abdollahpouri and Naseri, "Principles of Computer Networks" (in

Persian)







#### **Some Ground Rules**

- Let's make this educational and enjoyable.
- It's a big size class, I enjoy questions and ideas from the class.
  - Ask questions and raise points.
  - Listen to other people's questions.
  - Be here.
  - Be here on time.



#### **Course Info**

#### **Topics covered**

- Introduction: Overview, Network types, Protocol Layers
- Network Applications: Network applications and protocols, HTTP, DNS, Socket programming
- Transport Layer: Transport layer services and protocols, UDP, TCP, Flow and congestion control
- Network Layer: Routing algorithms, Forwarding and addressing in the Internet, IP, Router design
- Link Layer and Local Area Networks: Multiple access protocols, Error detection, Ethernet, Bridges



#### What is a Network?

There are many types of networks!

#### Transportation Networks

- Transport goods using trucks, ships, airplanes,
- Postal Services
  - Delivering letters, parcels, etc.
- Broadcast and cable TV networks
- Telephone networks
- Internet

. . .

Social/Human networks"

#### Many types of networks







A communications network is a network of links and nodes arranged so that messages may be passed from one part of the network to another

#### What are nodes and links?

- Wired or wireless
- Computers and network devices
- > What is a message?
  - Information



#### **Another definition**

A network can be defined as two or more computers ( or other devices such as cell phones) connected together (via a communication media) in such a way that they can share resources.











#### **History of communication**

# 2400 BC: Courier networks in Egypt 550 BC: Postal service invented in Persia



Problems:SpeedReliabilitySecurity



#### **Towards Electric Communication**

> 1837: Telegraph invented by Samuel Morse

- Distance: 10 miles
- Speed: 10 words per minute
- In use until 1985!
- Key challenge: how to encode information?
  - Originally used unary encoding
    - A B • C • D • E • •

Next generation: binary encoding

#### **Telephony**

- 1876 Alexander Graham Bell invents the telephone
- Key challenge: how to scale the network?
  - Originally, all phones were directly connected
    - O(n<sup>2</sup>) complexity; n\*(n–1)/2
  - 1878: Switching
  - 1937: Trunk lines + multiplexing



## **Telephony**

#### Advantages

- Easy to use
- Switching mitigates complexity
- Makes cable management tractable

#### Problems

- Manual switching
- 1918: cross country call took 15 minutes to set up





#### **Growth of the Telephone Network**

- 1881: Twisted pair for local loops
- 1885: AT&T formed
- 1892: Automatic telephone switches
- 1903: 3 million telephones in the US
- 1915: First transcontinental cable
- 1927: First transatlantic cable
- 1937: first round-the-world call
- 1946: National numbering plan





at&t



## **From Humans to Computers**

- > 1958: First use of a modem
  - Machine to machine communication
  - Analog vs. digital signals
- Many different computer networks
  - Local vs. global
    - LAN, WAN
  - > Private vs. public
    - Internet2, NIPRNet

- Technology
  - Satellite, Copper, Fiber
  - Circuit switched, packet switched
- General purpose vs. special purpose
  - E.g. credit cards, banks, defense



#### **History of the Internet**

1961: Kleinrock @ MIT: packet-switched network 1962: Licklider's vision of Galactic Network 1965: Roberts connects computers over phone line 1967: Roberts publishes vision of ARPANET 1969: BBN installs first InterfaceMsgProcessor at UCLA 1970: Network Control Protocol (NCP) 1972: Public demonstration of ARPANET 1972: Kahn @ DARPA advocates Open Architecture 1972: Vint Cerf @ Stanford writes TCP



Bob Kahn and Vint Cerf



## **More Internet History**

1974: Cerf and Kahn paper on TCP (IP kept separate) 1980: TCP/IP adopted as defense standard 1983: ARPANET and MILNET split 1983: Global NCP to TCP/IP flag day 198x: Internet melts down due to congestion 1986: Van Jacobson saves the Internet (BSD TCP) 1987: NSFNET merges with other networks 1988: Deering and Cheriton propose multicast 199x: QoS rises and falls, ATM rises and falls 1994: NSF backbone dismantled, private backbone 200x: The Internet boom and bust



## **Internet history**

#### 2005-present

- ~750 million hosts
  - Smartphones and tablets
- Aggressive deployment of broadband access
- Increasing ubiquity of high-speed wireless access
- Emergence of online social networks:
  - Facebook: soon one billion users
- Service providers (Google, Microsoft) create their own networks
  - Bypass Internet, providing "instantaneous" access to search, emai, etc.
- E-commerce, universities, enterprises running their services in "cloud" (eg, Amazon EC2)



#### The idea of packet switching



#### From circuit switching to packet switching

University of Kurdistan

Leonard Kleinrock

21

#### **Datagram Packet Switching**



#### Growth of the ARPANET (1969-1972)





University of Kurdistan

#### **4-node ARPANET diagram**





Leonard Kleinrock and the first Interface Message Processor



## Why Packet Switching?

- > Telephone networks are circuit switched
  - Each call reserves resources end-to-end
  - Provides excellent quality of service

#### Problems

- Resource intense (what if the circuit is idle?)
- Complex network components (per circuit state, security)

#### Packet switching

- No connection state, network is store-and-forward
- Minimal network assumptions
- Statistical multiplexing gives high overall utilization

#### **Growing Pains**

Problem: early networks used incompatible protocols



#### Kahn's Ground Rules

- 1.Each network is independent, cannot be forced to change
- 2.Best-effort communication (i.e. no guarantees)
- 3.Routers connect networks
- 4.No global control
- Principals behind the development of IP
- Led to the Internet as we know it
- Internet is still structured as independent networks



#### **The Birth of Routing**











## What's the Internet: "nuts and bolts" view



University of Kurdistan

## What's the Internet: a service view

- Infrastructure that provides services to applications:
  - Web, VoIP, email, games, ecommerce, social nets, …

#### provides programming interface to apps

- hooks that allow sending and receiving app programs to "connect" to Internet
- provides service options, analogous to postal service





### **Internet Applications Over Time**

- 1972: Email
- > 1973: Telnet remote access to computing
- > 1982: DNS "phonebook" of the Internet
- 1985: FTP remote file access
- 1989: NFS remote file systems
- > 1991: The World Wide Web (WWW) goes public
- > 1995: SSH secure remote shell access
- > 1995-1997: Instant messaging (ICQ, AIM)
- > 1998: Google
- > 1999: Napster, birth of P2P
- > 2001: Bittorrent
- > 2004: Facebook
- 2005: YouTube
- > 2007: The iPhone



## **Global Usage of Internet**

Developed world 72 74 76 77 80 81 Global Developing world 66 68 61 63 .43 12 ---- 17 14 16 18 12 -

Internet Users Per 100 Inhabitants



#### **Number of Internet users in 2017**

#### Number of internet users by country, 2017



Internet users are individuals who have used the Internet (from any location) in the last 3 months. The Internet can be used via a computer, mobile phone, personal digital assistant, games machine, digital TV etc.



Source: OWID based on World Bank & UN World Population Prospects (2017)

CC BY-SA
## **Applications of Computer Networks**

#### **Business Applications**

- Resource sharing (Programs, equipment, information)
- Communication medium (E-mail, Video-conference)
- E-commerce (Business to Business, Business to Customer)

#### **Home Applications**

- Access to remote information
- Person to person communication (E-mail, chat, peer to peer..)
- Interactive Entertainment
- E-commerce

#### **Mobile Applications**

- Portable office (access to internet, E-mail, information, etc)
- Access to information on the move
- Navigation and maps



## **Evolution of communication**

**Step 1:** Person to person (Direct communication, telephony, ..)

Step 2: Person to machine (Fax, PC usage, ...)

Step 3: Machine to machine (Grid Computing)

**Step 4:** Things to things (Internet of Things)





### Network categorization (based on scale)

- PAN (Personal Area Network)
- -LAN (Local Area Network)
- MAN (Metropolitan Area Network)
- WAN (Wide Area Network)
- Internet





WAN



#### **Network categorization (based on scale)**





#### **Types of Links**











#### **Baseband vs. Broadband**







#### Data flow (simplex, half-duplex, and full-duplex)





b. Half-duplex



#### **Client-Server**



#### **Server Hierarchy**

- Intermediate nodes or proxy servers may offload
   Intermediate nodes or proxy servers may offload
- Popularity of data: not all are equally popular – most request directed to only a few (Zipf distribution)

Straight forward hierarchy:

- popular data replicated and kept close to clients
  - locality vs. communication vs. node costs





#### Peer-to-Peer (P2P)



#### Mostly used network topologies



#### **Tree topology**





#### Fat tree topology



scale bandwidth per level



## **Complex problem of networking**



#### **Layering Concept**



#### Layered communication system



Entities from the same layers - peers



### Why layered communication?

- To reduce complexity of communication task by splitting it into several layered small tasks
- Functionality of the layers can be changed as long as the service provided to the layer above stays unchanged
  - makes easier maintenance & updating
- Each layer has its own task
- Each layer has its own protocol



# Why layering?



optical fiber coax wireless

Each new application has to be re-implemented for every network technology



#### **Benefit of layering**

Solution to the problem:

introduce an *intermediate layer* that provides a common abstraction for various network technologies



## **Examples of Layer Design Issues**

#### Addressing: specifying source and destination

#### Data transfer rules

simplex / half-duplex / duplex

logical channels per connection

priorities, e.g. one normal and one urgent channel

#### **Error control**

detection / correction / retransmission

#### Packet order and sequencing

#### **Flow control**

regulate traffic; avoid overflow

Message length: cannot be arbitrary long

(re)assembly needed!

niversity of Kurdistan

Multiplexing

#### Routing

multiple paths

#### Security



# Networking is more than connecting nodes!



#### **OSI reference model**



#### **Encapsulation and decapsulation**



### What is a protocol?

A protocol is an agreement between the communicating parties on how the communication is to proceed

Analogy: politician meeting, defense ceremony

A protocol is a set of rules that specify

- the format of the messages exchanged
- a number of different protocol states and what messages are allowed to be sent in each state;
- these states determine, among others, the order of the messages, timing constraints and other non-functional properties, if any

Example: HTTP, FTP, TCP...



### Why we need protocols?

# To enable understanding in communication, all communication partners Have to speak the same "language".

- Data formats and their semantics
- Control over media access
- Priorities
- Handling of transmission errors
- Sequence control
- Flow control mechanisms
- Segmentation and composition of long messages
- Multiplexing
- Routing





# **Physical layer**



#### Transporting bits from one end node to the next

- type of the transmission media (twisted-pair, coax, optical fiber, ether)
- bit representation (voltage levels of logical values)
- data rate (speed)
- synchronization of bits (time synchronization)



# Physical media

- bit: propagates between <sup>t</sup> transmitter/receiver pairs >
- physical link: what lies between transmitter & receiver
- guided media:
  - signals propagate in solid media: copper fiber, coax
- unguided media:
  - signals propagate
    - freely, e.g., radio

University of Kurdistan

#### twisted pair (TP)

- two insulated copper wires
  - Category 5: 100 Mbps, 1 Gpbs
    Ethernet
  - Category 6: 10Gbps
  - > CAT-5 is rated to 100 Mhz
  - CAT-5e is rated to 350 Mhz
  - CAT-6 and CAT6e is rated to 550
    Mbz or 1000 Mhz depending on source
    - -7 is rated to 700 Mhz or 1000
    - ...-8 is rated to 2GHz.

# Physical media: coax, fiber

#### coaxial cable:

- two concentric copper conductors
- bidirectional
- broadband:
  - multiple channels on



#### fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
  - high-speed point-to-point transmission (e.g., 10' s-100' s Gpbs transmission rate)
- Iow error rate:
  - repeaters spaced far apart
  - immune to electromagnetic noise





# Physical media: radio

- signal carried in electromagnetic spectrum
- > no physical "wire"
- bidirectional
- propagation environment effects:
  - reflection
  - obstruction by objects
  - interference

#### radio link types:

- terrestrial microwave
  - e.g. up to 45 Mbps channels
- ✤ LAN (e.g., WiFi)
  - IIMbps, 54 Mbps
- wide-area (e.g., cellular)
  - 3G cellular: ~ few Mbps
- ✤ satellite
  - Kbps to 45Mbps channel (or multiple smaller channels)
  - 270 msec end-end delay
  - geosynchronous versus low altitude

# **Data Link layer**



Transporting frames from one end node to the next one

- framing physical addressing
- flow control error control
- access control (broadcast networks)

# **Data Link layer**



#### hop-to-hop delivery



#### **Network layer**

#### End-to-End packet delivery

- From the original source to a destination
- Needed when 2 devices are attached to different networks
  - What is the network definition here?

#### Main duties:

- 1. Logical addressing
- 2. Routing
- 3. Congestion control and QoS



### **Network layer**



Source to destination delivery



#### **Network layer**



# **Routing:** determining the path from the source of a message to its destination

**Congestion Control:** handling traffic jams



#### **Network layer (example)**





### **Transport layer**





## **Transport layer**

- Process-to-Process delivery of the entire message
  - From the original source to destination
- Needed when several processes (running programs) active at the same time

#### Main tasks:

- Port addressing
- Segmentation and reassembly
- Congestion control
- Flow control
- Error control
## **Transport layer**



#### **Process-to-Process delivery**



## **Upper Layers**

#### Session Layer

- user-to-user connection
- synchronization, checkpoint, and error recovery

#### Presentation Layer

- data representation/compression
- cryptography and authentication



## **Application layer**

- Enables user to access the network
- Provides services to a user
  - E-mail
  - Remote file access and transfer (Telnet, FTP)
  - Access to WWW (HTTP)



🎔 University of Kurdistan

- There are no presentation and session layers in the Internet model.
- The internet layer is the equivalent of the network layer in the OSI model.
- The physical and data link layers in the OSI model are merged to the "Host to Network" layer.



# **OSI VS. TCP/IP**



🎔 University of Kurdistan

#### **Encapsulation**



#### The hourglass architecture of the Internet



🎔 University of Kurdistan

## **Implications of Hourglass**

A single Internet layer module:

- > Allows all networks to interoperate
  - all networks technologies that support IP can exchange packets
- Allows all applications to function on all networks
  - all applications that can run on IP can use any network
- Simultaneous developments above and below IP



#### Model in this class

#### Data unit





# Key design issue:

# How to divide the functionality among the layers?



#### **End-to-End argument**

- The application knows the requirements best, place functionality as high in the layer as possible
- If the application can implement a functionality correctly, implement it at a lower layer only as a performance enhancement
- Think twice before implementing a functionality that you believe that is useful to an application at a lower layer University of Kurdistan

# **Example: Reliability**



**Solution 1:** Make hop-to-hop delivery reliable and concatenate them

Solution 2: End-to-End control and retransmission

University of Kurdistan

# Example: Reliability (cnt'd)

- The receiver has to do the check anyway!
- Thus, full functionality can be entirely implemented at the upper layer; no need for reliability from lower layers
  - Is this always correct?



#### **Example: Reliable File Transfer**





#### **Network services**

#### Services provided by different layers

• Unconfirmed (Best effort) service: *no feedback if delivery occurs* 



• Confirmed (Acknowledged) service:

sender gets a confirmation (acknowledgment) of delivery



# **Network services (cnt'd)**

- Unreliable services
  - No guaranteed delivery (no acknowledgments)
  - > <u>An example:</u> a basic service of datagram networks
- Reliable services
  - Guaranteed delivery
  - Implementation of this service through combination of timers, acknowledgment and retransmission
  - An example: FTP, E-mail

#### Why would anyone use an unreliable service?

#### University of Kurdistan

# **Connection-oriented vs. services**

- Establish connection
- Use connection
- Release connection
- Protocol Data Units (PDUs) are delivered in-sequence of transmission without duplication
- Implementation of this service:
  - Virtual-circuit packet switched network
  - In datagram networks, a connection-oriented service can be accomplished by end systems with sequence numbers, retransmission, and other mechanisms

Example: Service of TCP protocol,

Frame relay – for connecting LANs

X.25 – Typically across telephone lines



University of Kurdistan

#### **Connectionless service**

Example: Postal system

>No guarantee of in-sequence delivery. Losses are possible.

Implementation of the service

- default service for datagram communication
- inefficient to implement in circuit-switching networks and virtual circuit packet switching networks

Example: services of both the IP and UDP protocol



#### **Network Devices- Repeater**

- Works at the Physical layer
- Regenerates received bits before it sends them out







#### **Network Devices- Hub**





- Multiport repeater (layer 1 device)
- Just knows bits



#### **Network Devices- Bridge**



#### **Network Devices- switch**



- (layer 2 device)
- Knows MAC addresses



#### **Network Devices- Router**



- (layer 3 device)
- Knows Logical addresses (e.g., IP)

#### <sup>•</sup> University of Kurdistan

#### Hub vs. Switch





#### **OSI Layers and Net. devices**



#### **Unicast, Multicast and Broadcast**





#### **Delay analysis**

#### Four sources of packet delay





# **Delay analysis**

#### d<sub>proc</sub>: processing delay

- check bit errors
- determine output link
- typically < msec</li>

#### d<sub>trans</sub>: transmission delay:

- L: packet length (bits)
- R: link bandwidth (bps)
- $d_{trans} = L/R$

#### **d**<sub>queue</sub>: queueing delay

- time waiting at output link for transmission
- depends on congestion level of router

#### **d**<sub>prop</sub>: propagation delay:

- d: length of physical link
- s: propagation speed in medium (~2x10<sup>8</sup> m/sec)

d<sub>prop</sub> = d/s



# **Queueing delay**

- R: link bandwidth (bps)
- L: packet length (bits)
- a: average packet arrival rate
- La/R ~ 0: avg. queueing delay small
- La/R -> I: avg. queueing delay large
- La/R > I: more "work" arriving than can be serviced, average delay infinite!



University of Kurdistan

# Packet Switching: queueing delay, loss



#### queuing and loss:

- If arrival rate (in bits) to link exceeds transmission rate of link for a period of time:
  - packets will queue, wait to be transmitted on link
  - packets can be dropped (lost) if memory (buffer) fills up



#### **Transmission and Propagation Delays (analogy)**



VUniversity of Kurdistan

