STATICS

- Vector Mechanics for Engineers: Statics, 9th edition. Ferdinand Beer- E. Russell Johnston Jr. - Phillip Cornwell.
- Engineering Mechanics-Statics, 5th Edition. J. L. Meriam, L. G. Kraige.
- Other Reference: Brain P.Self "Lectures notes on Statics"

Distributed Forces: Centroids and Centers of Gravity

By: Kaveh Karami

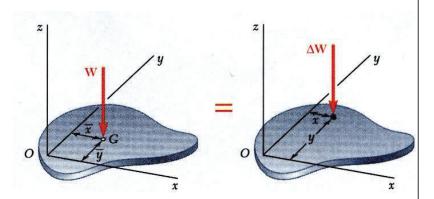
Associate Prof. of Structural Engineering

https://prof.uok.ac.ir/Ka.Karami

Distributed Forces: Centroids and Centers of Gravity

- **□** Introduction
 - The earth exerts a gravitational force on each of the particles forming a body. These forces can be replace by a single equivalent force equal to the weight of the body and applied at the *center of gravity* for the body.
 - The *centroid* of an area is analogous to the center of gravity of a body. The concept of the *first moment of an area* is used to locate the centroid.
 - Determination of the area of a *surface of revolution* and the volume of a *body of revolution* are accomplished with the *Theorems of Pappus-Guldinus*.

- ☐ Center of Gravity of a 2D Body
 - Center of gravity of a plate



$$\sum F_z$$
: \Rightarrow $W = \Delta W_1 + \Delta W_1 + \dots + \Delta W_n$

$$\sum M_y: \quad \Rightarrow \quad \overline{x}W = \sum x\Delta W \quad \Rightarrow \quad$$

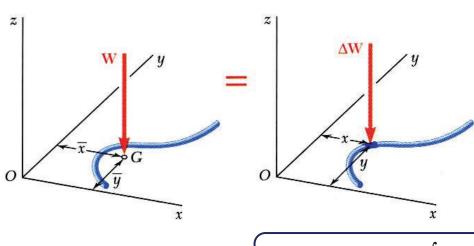
$$\sum M_y$$
: $\Rightarrow \bar{x}W = \sum x\Delta W \Rightarrow \left(\bar{x} = \frac{\sum x\Delta W}{W} \text{ or } \bar{x} = \frac{\int x dW}{W}\right)$

$$\sum M_x: \Rightarrow \bar{y}W = \sum y\Delta W \Rightarrow$$

$$\sum M_x$$
: $\Rightarrow \bar{y}W = \sum y\Delta W \Rightarrow \left[\bar{y} = \frac{\sum y\Delta W}{W} \text{ or } \bar{y} = \frac{\int y dW}{W}\right]$

Distributed Forces: Centroids and Centers of Gravity

- ☐ Center of Gravity of a 2D Body
 - Center of gravity of a wire



$$\sum M_y: \implies \bar{x}W = \sum x\Delta W \implies$$

$$\sum M_y$$
: $\Rightarrow \bar{x}W = \sum x\Delta W \Rightarrow \left(\bar{x} = \frac{\sum x\Delta W}{W} \text{ or } \bar{x} = \frac{\int x dW}{W}\right)$

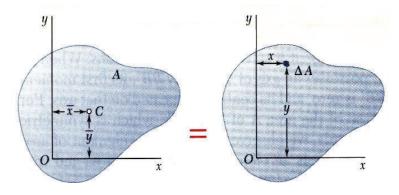
$$\sum M_x: \implies \bar{y}W = \sum y\Delta W \implies$$

$$\sum M_x$$
: $\Rightarrow \bar{y}W = \sum y\Delta W \Rightarrow \left(\bar{y} = \frac{\sum y\Delta W}{W} \text{ or } \bar{y} = \frac{\int y\,dW}{W}\right)$

☐ Centroids and First Moments of Areas

• Centroid of an area

$$\Delta W = \gamma t \, \Delta A \quad \Rightarrow \boxed{W = \gamma t \, A}$$



$$\bar{x} = \frac{\int x \, dW}{W} \quad \Rightarrow \quad \bar{x} = \frac{\int x \, (\gamma t) \, dA}{(\gamma A t)} \quad \Rightarrow \left(\bar{x} = \frac{\int x \, dA}{A} \right)$$

$$if \quad Q_y = \int x \, dA \quad \Rightarrow \qquad Q_y = \overline{x}A$$

 Q_{v} : First moment with respect to y axis

$$\bar{y} = \frac{\int y \, dW}{W} \quad \Rightarrow \quad \bar{y} = \frac{\int y(\gamma t) dA}{(\gamma A t)} \quad \Rightarrow \quad \boxed{\bar{y} = \frac{\int y \, dA}{A}}$$

$$if \quad Q_x = \int y \, dA \quad \Rightarrow \qquad Q_x = \overline{y}A$$

 Q_x : First moment with respect to x axis

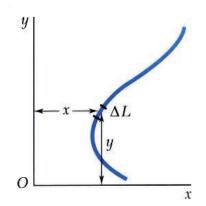
5

Distributed Forces: Centroids and Centers of Gravity

□ Centroids and First Moments of Lines

• Centroid of a line

 $C = \frac{1}{\overline{y}}$



a: Cross section area

 $\Delta W = \gamma \, a \, \Delta L \quad \Rightarrow \boxed{W = \gamma \, a \, L}$

$$\bar{x} = \frac{\int x \, dW}{W} \implies \bar{x} = \frac{\int x \, (\gamma a) \, dL}{(\gamma L a)} \implies \boxed{\bar{x} = \frac{\int x \, dL}{L}}$$

$$\bar{y} = \frac{\int y \, dW}{W} \implies \bar{y} = \frac{\int y \, (\gamma a) \, dL}{(\gamma L a)} \implies \bar{y} = \frac{\int y \, dL}{L}$$

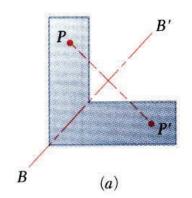
$$dL = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

$$dL = \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$$

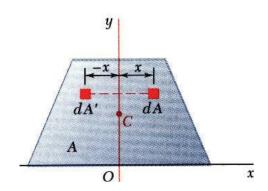
$$dL = \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$

☐ First Moments of Areas and Lines

• An area is symmetric with respect to an axis BB' if for every point P there exists a point P'such that PP' is perpendicular to BB' and is divided into two equal parts by BB'.



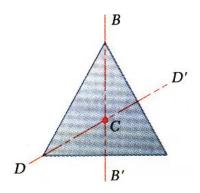
- The first moment of an area with respect to a line of symmetry is zero.
- If an area possesses a line of symmetry, its centroid lies on that axis

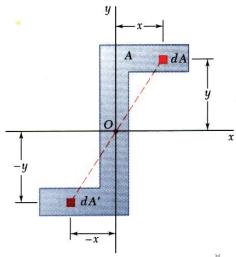


Distributed Forces: Centroids and Centers of Gravity

☐ First Moments of Areas and Lines

- If an area possesses two lines of symmetry, its centroid lies at their intersection.
- An area is symmetric with respect to a center O if for every element dA at (x, y) there exists an area dA' of equal area at (-x, -y).
- The centroid of the area coincides with the center of symmetry.





☐ Centroids of Common Shapes of Areas

Shape 1	The state of the second state of the	\overline{x}	\overline{y}	Area
Triangular area	$\frac{1}{1} \frac{\overline{y}}{1} \frac{b}{2} + \frac{b}{$		<u>h</u> 3	<u>bh</u> 2
Quarter-circular area		$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{4}$
Semicircular area	\overline{x}	0	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{2}$
Quarter-elliptical area	C = - T = C	<u>4a</u> 3π	$\frac{4b}{3\pi}$	$\frac{\pi ab}{4}$
Semielliptical area	$ \begin{array}{c c} \hline 0 & \overline{x} & \hline \end{array} $	0	$\frac{4b}{3\pi}$	$\frac{\pi ab}{2}$
Semiparabolic area		3 <i>a</i> 8	$\frac{3h}{5}$	2 <i>ah</i> 3
	$O = \overline{x}$	0	$\frac{3h}{5}$	4 <i>ah</i> 3

Distributed Forces: Centroids and Centers of Gravity

☐ Centroids of Common Shapes of Areas

Parabolic spandrel	$0 = x^{2}$ $y = kx^{2}$ h h	$\frac{3a}{4}$.	$\frac{3h}{10}$	<u>ah</u> 3
General spandrel	$ \begin{array}{c c} & a \\ & y = kx^n \\ \hline & \lambda \overline{y} \\ \hline & \lambda \overline{y} \\ \end{array} $	$\frac{n+1}{n+2}a$	$\frac{n+1}{4n+2}h$	$\frac{ah}{n+1}$
Circular sector		$\frac{2r\sin\alpha}{3\alpha}$	0	$lpha r^2$

☐ Centroids of Common Shapes of Lines

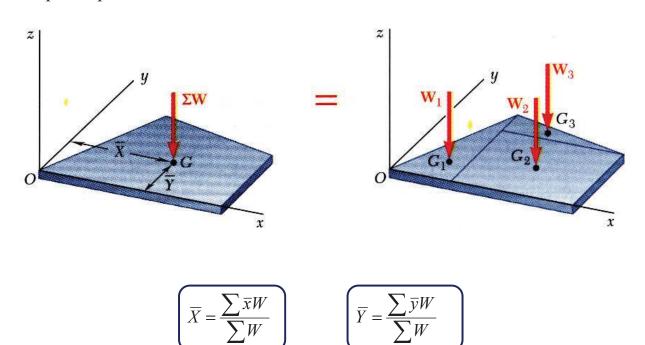
Shape	,	\overline{x}	\overline{y}	Length
Quarter-circular arc	O \overline{y} C \overline{y} C r	$\frac{2r}{\pi}$	$\frac{2r}{\pi}$	$\frac{\pi r}{2}$
Semicircular arc		0	$\frac{2r}{\pi}$	πτ
Arc of circle	$\frac{1}{\sqrt{\alpha}}$	$\frac{r \sin \alpha}{\alpha}$	0	$2\alpha r$

11

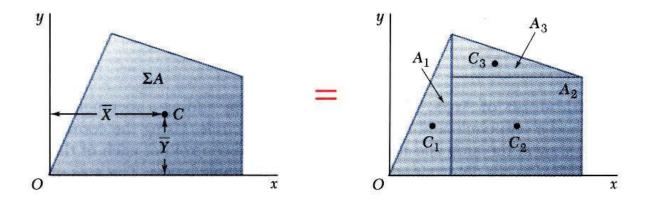
Distributed Forces: Centroids and Centers of Gravity

□ Composite Plates

• Composite plates



- **□** Composite Areas
- Composite area



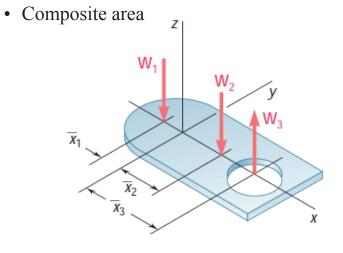
$$\overline{X} = \frac{\sum \overline{x} A}{\sum A}$$

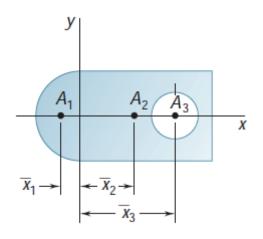
$$\overline{Y} = \frac{\sum \overline{y}A}{\sum A}$$

13

Distributed Forces: Centroids and Centers of Gravity

□ Composite Areas

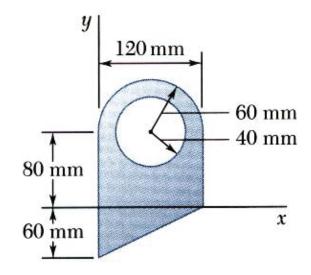




	<u></u>	Α	$\bar{x}A$
A ₁ Semicircle	_	+	-
A ₂ Full rectangle	+	+	+
A ₃ Circular hole	+	_	-

□ Sample Problem 01

For the plane area shown, determine the first moments with respect to the *x* and *y* axes and the location of the centroid.

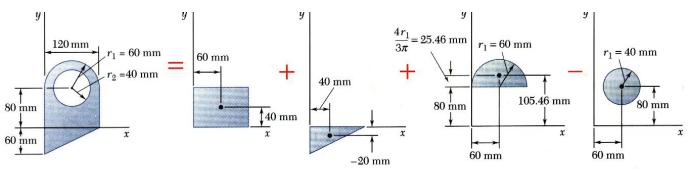


15

Distributed Forces: Centroids and Centers of Gravity

□ Sample Problem 01

SOLUTION:



Component	A, mm²	\bar{x} , mm	ӯ, mm	<i>xA</i> , mm³	<i>ӯA</i> , mm³
Rectangle Triangle Semicircle Circle					
03					

• Find the total area and first moments of the triangle, rectangle, and semicircle. Subtract the area and first moment of the circular cutout.

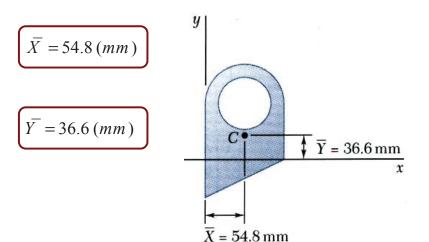
$$Q_x = +506.2 \times 10^3 \text{ mm}^3$$

 $Q_y = +757.7 \times 10^3 \text{ mm}^3$

□ Sample Problem 01

SOLUTION:

• Compute the coordinates of the area centroid by dividing the first moments by the total area.

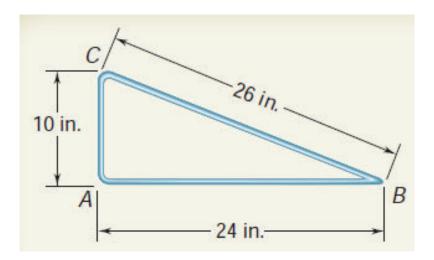


17

Distributed Forces: Centroids and Centers of Gravity

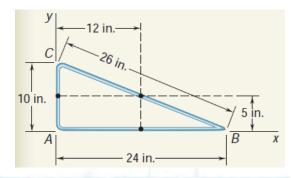
□ Sample Problem 02

The figure shown is made from a piece of thin, homogeneoius wire Determine the location of its center of gravity.



□ Sample Problem 02

SOLUTION:



Segment	L, in.	\bar{x} , in.	\bar{y} , in.	$\bar{x}L$, in ²	$\bar{y}L$, in ²
AB		4		Kap K	
AB BC CA				Van 1 14	
CA				The same of	
		19.9			

$$\overline{X} = 10 (in.)$$

$$\overline{Y} = 3 (in.)$$

19

Distributed Forces: Centroids and Centers of Gravity

□ Determination of Centroids by Integration

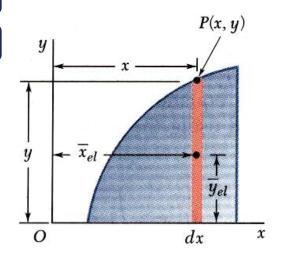
• Double integration to find the first moment may be avoided by defining dA as a thin rectangle or strip.

$$Q_y = \overline{x}A = \int x dA \implies Q_y = \iint x dx dy \quad or \quad Q_y = \int \overline{x}_{el} dA$$

$$Q_x = \overline{y}A = \int y dA \implies Q_x = \iint y dx dy \quad or \quad Q_x = \int \overline{y}_{el} dA$$

$$Q_y = \bar{x}A = \int \bar{x}_{el} dA \implies Q_y = \int x(ydx)$$

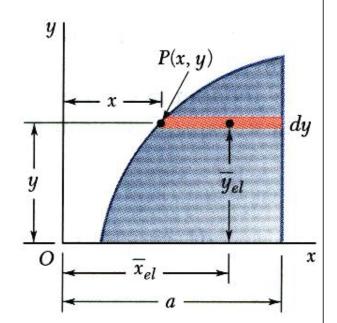
$$Q_x = \bar{y}A = \int \bar{y}_{el} dA \implies Q_x = \int \frac{y}{2} (ydx)$$



□ Determination of Centroids by Integration

$$Q_y = \overline{x}A = \int \overline{x}_{el} dA \implies Q_y = \int \frac{a+x}{2} [(a-x) dy]$$

$$Q_x = \bar{y}A = \int \bar{y}_{el} dA \implies Q_x = \int y[(a-x) dy]$$



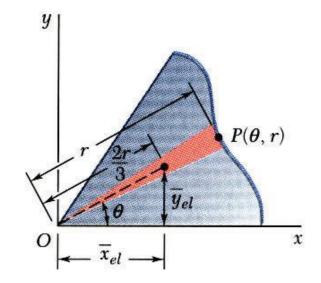
21

Distributed Forces: Centroids and Centers of Gravity

□ Determination of Centroids by Integration

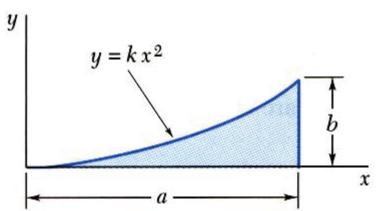
$$Q_y = \bar{x}A = \int \bar{x}_{el} dA \implies Q_y = \int \frac{2r}{3} \cos \theta \left(\frac{1}{2}r^2 d\theta\right)$$

$$Q_x = \bar{y}A = \int \bar{y}_{el} dA \implies Q_x = \int \frac{2r}{3} \sin\theta \left(\frac{1}{2}r^2d\theta\right)$$



□ Sample Problem 03

Determine by direct integration the location of the centroid of a parabolic spandrel.



23

Distributed Forces: Centroids and Centers of Gravity

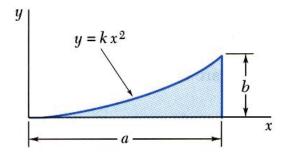
□ Sample Problem 03

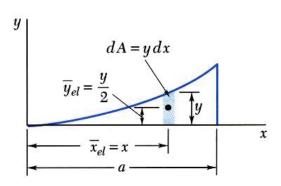
SOLUTION:

• Determine the constant k.

$$\Rightarrow \left(y = \frac{b}{a^2} x^2 \quad or \quad x = \frac{a}{b^{1/2}} y^{1/2} \right)$$

• Evaluate the total area.





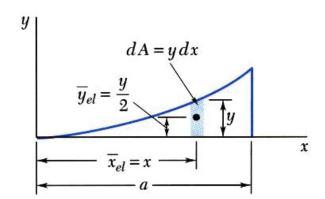
□ Sample Problem 03

SOLUTION:

• Using vertical strips, perform a single integration to find the first moments.

$$Q_y = \frac{a^2b}{4}$$

$$Q_x = \frac{ab^2}{10}$$



25

Distributed Forces: Centroids and Centers of Gravity

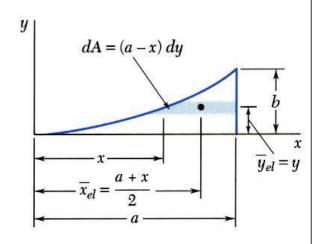
□ Sample Problem 03

SOLUTION:

• Or, using horizontal strips, perform a single integration to find the first moments.

$$Q_y = \frac{a^2b}{4}$$

$$Q_x = \frac{ab^2}{10}$$



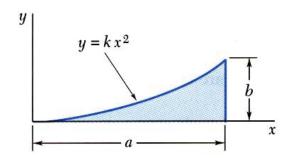
□ Sample Problem 03

SOLUTION:

• Evaluate the centroid coordinates.

$$\sqrt{x} = \frac{3}{4}a$$

$$\sqrt{\overline{y} = \frac{3}{10}b}$$

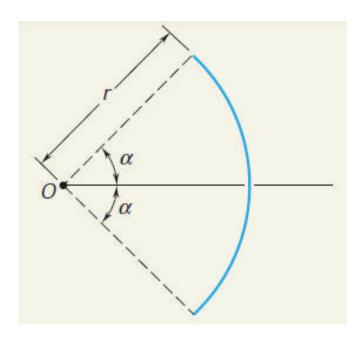


27

Distributed Forces: Centroids and Centers of Gravity

□ Sample Problem 04

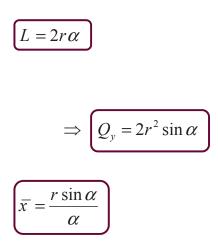
Determine the location of the centroid of the circular arc shown.

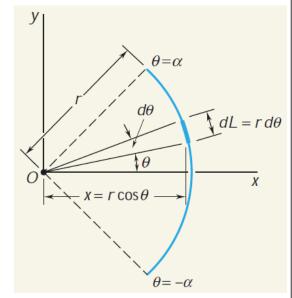


□ Sample Problem 04

SOLUTION:

• Since the arc is symmetrical with respect to the x axis, $\bar{y} = 0$. A differential element is chosen as shown, and the length or the arc L determined by integration

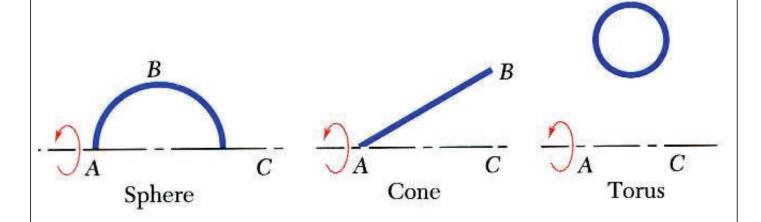




29

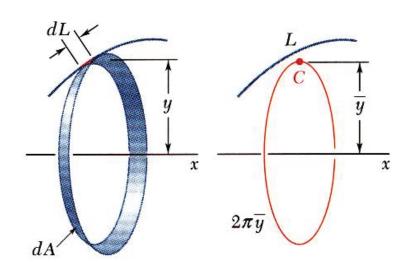
Distributed Forces: Centroids and Centers of Gravity

- **☐** Theorems of Pappus-Guldinus
- *Surface of revolution* is generated by rotating a plane curve about a fixed axis.



- **☐** Theorems of Pappus-Guldinus
- Area of a surface of revolution is equal to the length of the generating curve times the distance traveled by the centroid through the rotation.

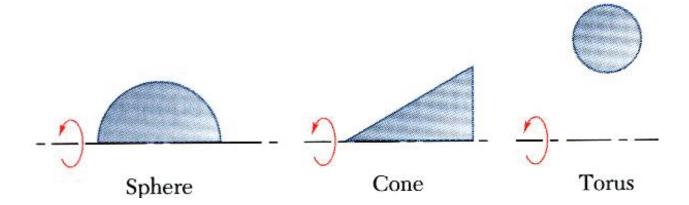
$$dA = 2\pi y \ dL \quad \Rightarrow \quad A = 2\pi \int y \ dL$$
$$\Rightarrow \boxed{A = 2\pi \bar{y}L}$$



31

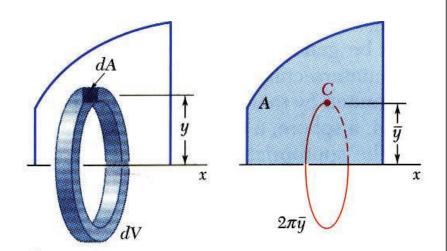
Distributed Forces: Centroids and Centers of Gravity

- **☐** Theorems of Pappus-Guldinus
 - Body of revolution is generated by rotating a plane area about a fixed axis.



- **☐** Theorems of Pappus-Guldinus
 - Volume of a body of revolution is equal to the generating area times the distance traveled by the centroid through the rotation.

$$dV = 2\pi y \, dA \quad \Rightarrow \quad V = 2\pi \int y \, dA$$
$$\Rightarrow V = 2\pi \bar{y} \, A$$

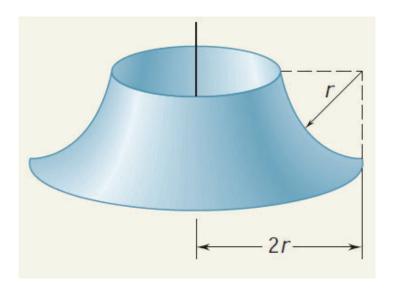


33

Distributed Forces: Centroids and Centers of Gravity

□ Sample Problem 05

Determine the area of the surface of revolution shown, which is obtained by rotating a quarter-circular arc about a vertical axis.



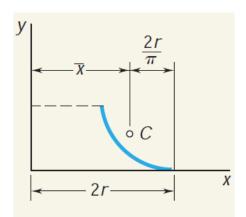
□ Sample Problem 05

SOLUTION:

According to Theorem I of Pappu -Guldinus, the area generated is equal to the product of tlle length of the arc and Ule distance traveled by its centroid.

$$\overline{x} = 2r\left(1 - \frac{1}{\pi}\right)$$

$$A = 2\pi r^2 (\pi - 1)$$

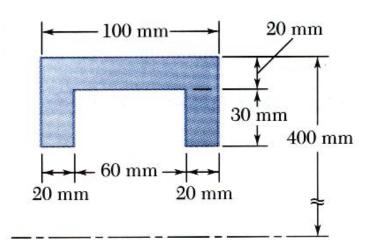


35

Distributed Forces: Centroids and Centers of Gravity

□ Sample Problem 06

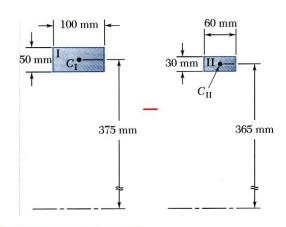
The outside diameter of a pulley is 0.8 m, and the cross section of its rim is as shown. Knowing that the pulley is made of steel and that the density of steel is $\rho = 7.85 \times 10^3 \text{ kg/m}^3$. determine the mass and weight of the rim.



□ Sample Problem 06

SOLUTION:

- Apply the theorem of Pappus-Guldinus to evaluate the volumes or revolution for the rectangular rim section and the inner cutout section.
- Multiply by density and acceleration to get the mass and weight.



	Area, mm²	<u></u> ȳ, mm	Distance Traveled by C, mm	Volume, mm ³
I II				
II			con.	

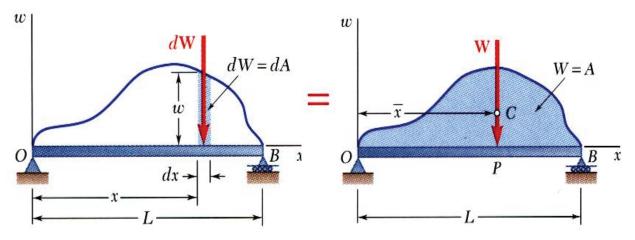
m = 60.0 kg

W = 589 N

37

Distributed Forces: Centroids and Centers of Gravity

□ Distributed Loads on Beams



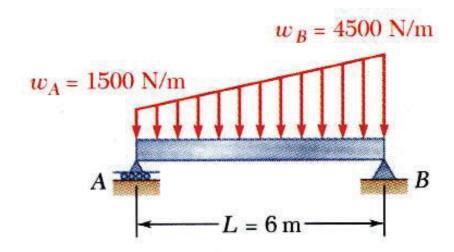
- A distributed load is represented by plotting the load per unit length, w (N/m). The total load is equal to the area under the load curve.
- $W = \int_{0}^{L} w dx = \int dA \quad \Rightarrow \boxed{W = A}$
- A distributed load can be replace by a concentrated load with a magnitude equal to the area under the load curve and a line of action passing through the area centroid.

$$(OP)W = \int x dW \Rightarrow$$

$$(OP)A = \int_{0}^{L} x dA = \overline{x}A \Rightarrow (OP) = \overline{x}$$

□ Sample Problem 07

A beam supports a distributed load as shown. Determine the equivalent concentrated load and the reactions at the supports.



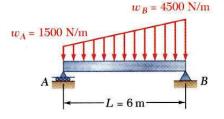
39

Distributed Forces: Centroids and Centers of Gravity

□ Sample Problem 07

SOLUTION:

Component	A, kN	<i>x</i> , m	<i>xA</i> , kN⋅m
Triangle I Triangle II			
0			



1.5 kN/m

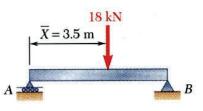
 $\overline{x} = 2 \text{ m}$

• The magnitude of the concentrated load is equal to the total load or the area under the curve.

$$F = 18.0 \text{ kN}$$

• The line of action of the concentrated load passes through the centroid of the area under the curve.

$$\overline{X} = 3.5 \text{ m}$$



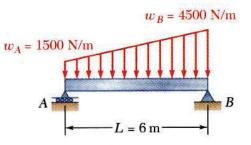
40

4.5 kN/m

□ Sample Problem 07

SOLUTION:

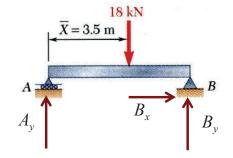
• Determine the support reactions by summing moments about the beam ends.



$$B_x = 0$$

$$\Rightarrow \boxed{B_y = 10.5 \, (\text{kN})}$$

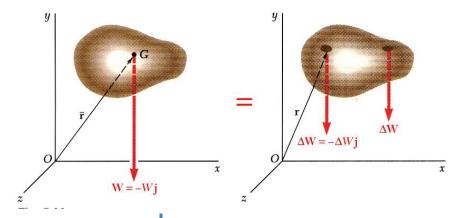
$$\Rightarrow A_y = 7.5 \text{ (kN)}$$



41

Distributed Forces: Centroids and Centers of Gravity

☐ Center of Gravity of a 3D Body: Centroid of a Volume



• Center of gravity G

$$-W\vec{j} = \sum (-\Delta W\vec{j})$$

$$\vec{r}_G \times (-W\vec{j}) = \sum [\vec{r} \times (-\Delta W\vec{j})]$$

$$\vec{r}_G W \times (-\vec{j}) = (\sum \vec{r} \Delta W) \times (-\vec{j})$$

$$W = \int dW \quad \Rightarrow \left[\vec{r}_G W = \int \vec{r} dW \right]$$

• Results are independent of body orientation,

• For homogeneous bodies,

$$W = \gamma V$$
 and $dW = \gamma dV \implies$

$$\bar{x}V = \int x dV \quad \bar{y}V = \int y dV \quad \bar{z}V = \int z dV$$

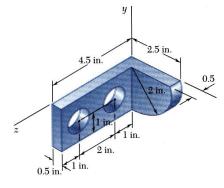
□ Composite 3D Bodies

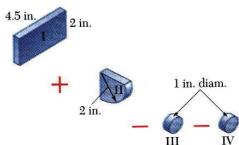
• Moment of the total weight concentrated at the center of gravity G is equal to the sum of the moments of the weights of the component parts.

$$\overline{X} \sum W = \sum \overline{x}W \quad \overline{Y} \sum W = \sum \overline{y}W \quad \overline{Z} \sum W = \sum \overline{z}W$$

• For homogeneous bodies,

$$\overline{X}\sum V = \sum \overline{x}V \quad \overline{Y}\sum V = \sum \overline{y}V \quad \overline{Z}\sum V = \sum \overline{z}V$$



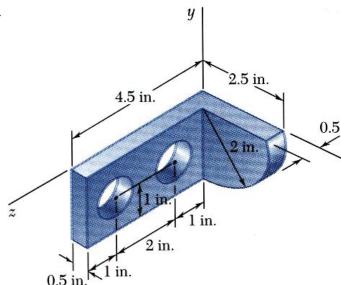


43

Distributed Forces: Centroids and Centers of Gravity

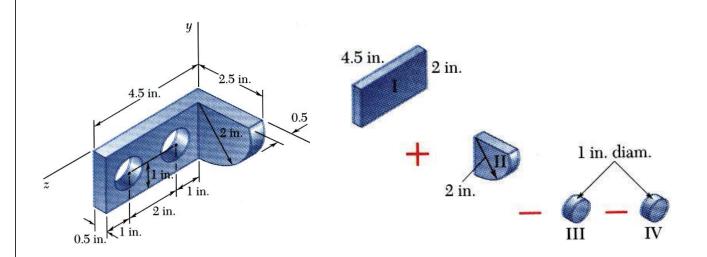
□ Sample Problem 08

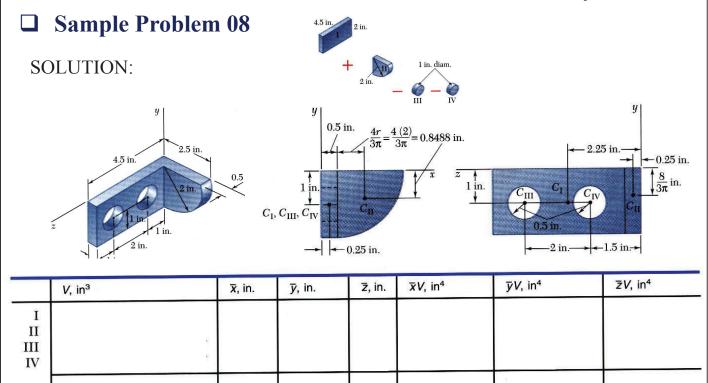
Locate the center of gravity of the steel machine element. The diameter of each hole is 1 in. y_1



□ Sample Problem 08

SOLUTION:





□ Sample Problem 08

SOLUTION:

	V, in ³	\overline{x} , in.	<u></u> ȳ, in.	₹, in.	$\bar{x}V$, in ⁴	$\bar{y}V$, in ⁴	₹V, in⁴
I II III IV	$(4.5)(2)(0.5) = 4.5$ $\frac{1}{4}\pi(2)^2(0.5) = 1.571$ $-\pi(0.5)^2(0.5) = -0.3927$ $-\pi(0.5)^2(0.5) = -0.3927$	0.25 1.3488 0.25 0.25	-1 -0.8488 -1 -1	2.25 0.25 3.5 1.5	1.125 2.119 -0.098 -0.098	-4.5 -1.333 0.393 0.393	10.125 0.393 -1.374 -0.589
	$\Sigma V = 5.286$				$\Sigma \overline{x}V = 3.048$	$\Sigma \overline{y}V = -5.047$	$\Sigma \overline{z}V = 8.555$

$$\bar{X} = 0.577 \text{ in.}$$

$$\overline{Y} = 0.577$$
 in.

$$\overline{Z} = 0.577$$
 in.