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Introduction

• The earth exerts a gravitational force on each of the particles 
forming a body.  These forces can be replace by a single 
equivalent force equal to the weight of the body and applied 
at the center of gravity for the body.

• The centroid of an area is analogous to the center of gravity 
of a body.  The concept of the first moment of an area is 
used to locate the centroid.

• Determination of the area of a surface of revolution and 
the volume of a body of revolution are accomplished 
with the Theorems of Pappus-Guldinus.
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Center of Gravity of a 2D Body

• Center of gravity of a plate
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Center of Gravity of a 2D Body
• Center of gravity of a wire
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Centroids and First Moments of Areas
• Centroid of an area

:yQ First moment with respect to y axis
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Centroids and First Moments of Lines
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First Moments of Areas and Lines

• An area is symmetric with respect to an axis BB’
if for every point P there exists a point P’ such 
that PP’ is perpendicular to BB’ and is divided 
into two equal parts by BB’.

• The first moment of an area with respect to a 
line of symmetry is zero.

• If an area possesses a line of symmetry, its 
centroid lies on that axis
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First Moments of Areas and Lines

• If an area possesses two lines of symmetry, its 
centroid lies at their intersection.

• An area is symmetric with respect to a center O
if for every element dA at (x,y) there exists an 
area dA’ of equal area at (-x,-y).  

• The centroid of the area coincides with the 
center of symmetry.
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Centroids of Common Shapes of Areas
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Centroids of Common Shapes of Areas
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Centroids of Common Shapes of Lines
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Composite Plates

• Composite plates
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Composite Areas

• Composite area
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Composite Areas
• Composite area
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Sample Problem 01

For the plane area shown, determine 
the first moments with respect to the 
x and y axes and the location of the 
centroid.

• Find the total area and first moments of the 
triangle, rectangle, and semicircle.  Subtract the 
area and first moment of the circular cutout.
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Sample Problem 01
SOLUTION:
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Sample Problem 01
SOLUTION:

54.8 ( )X mm=

36.6 ( )Y mm=

• Compute the coordinates of the area centroid 
by dividing the first moments by the total area.
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Sample Problem 02

The figure shown is made from a piece of thin, homogeneoius wire 
Determine the location of its center of gravity.
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Sample Problem 02
SOLUTION:

10 ( .)X in= 3 ( .)Y in=

Distributed Forces: Centroids and Centers of Gravity

20

Determination of Centroids by Integration
• Double integration to find the first moment may be avoided by 

defining dA as a thin rectangle or strip.
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Determination of Centroids by Integration
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Determination of Centroids by Integration

=== θθ drrQdAxAxQ yely
2

2
1cos

3
2

=== θθ drrQdAyAyQ xelx
2

2
1sin

3
2



Distributed Forces: Centroids and Centers of Gravity

23

Sample Problem 03

Determine by direct integration the 
location of the centroid of a parabolic 
spandrel.
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Sample Problem 03

SOLUTION:
• Determine the constant k.

• Evaluate the total area.
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Sample Problem 03

SOLUTION:
• Using vertical strips, perform a single integration 

to find the first moments.
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Sample Problem 03

SOLUTION:
• Or, using horizontal strips, perform a single 

integration to find the first moments.
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Sample Problem 03

SOLUTION:

• Evaluate the centroid coordinates.
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Sample Problem 04

Determine the location of the centroid of the circular arc shown.
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Sample Problem 04

SOLUTION:
• Since the arc is symmetrical with respect to the x axis,             . A differential 

element is chosen as shown, and the length or the arc L determined by 
integration
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Theorems of Pappus-Guldinus

• Surface of revolution is generated by rotating a 
plane curve about a fixed axis.
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Theorems of Pappus-Guldinus

• Area of a surface of revolution is equal to the length of the generating 
curve times the distance traveled by the centroid through the rotation.

== dLyAdLydA ππ 22
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Theorems of Pappus-Guldinus

• Body of revolution is generated by rotating a plane 
area about a fixed axis.
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Theorems of Pappus-Guldinus

• Volume of a body of revolution is equal to the generating area  times the 
distance traveled by the centroid through the rotation.

== dAyVdAydV ππ 22

AyV π2=
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Sample Problem 05

Determine the area of the surface of revolution shown, which is obtained by 

rotating a quarter-circular arc about a vertical axis.
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Sample Problem 05

SOLUTION:
According to Theorem I of Pappu -Guldinus, the area generated is equal to the product of 
tlle length of the arc and Ule distance traveled by its centroid.

12 1x r
π

= −

22 ( 1)A rπ π= −
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Sample Problem 06

The outside diameter of a pulley is 0.8 m, and the cross section of its rim is as 

shown.  Knowing that the pulley is made of steel and that the density of steel 

is .  determine the mass and weight of the rim.33 mkg 1085.7 ×=ρ
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Sample Problem 06

SOLUTION:
• Apply the theorem of Pappus-Guldinus to evaluate 

the volumes or revolution for the rectangular rim 
section and the inner cutout section.

• Multiply by density and acceleration to get the mass 
and weight.

60.0 kgm =

589 NW =
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Distributed Loads on Beams

• A distributed load is represented by plotting the load per 
unit length, w (N/m) .  The total load is equal to the area 
under the load curve.
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• A distributed load can be replace by a concentrated 
load with a magnitude equal to the area under the 
load curve and a line of action passing through the 
area centroid.
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Sample Problem 07

A beam supports a distributed load as shown.  Determine the equivalent 
concentrated load and the reactions at the supports.
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Sample Problem 07

SOLUTION:

• The magnitude of the concentrated load is equal to the total load 
or the area under the curve.

• The line of action of the concentrated load passes through the 
centroid of the area under the curve.

18.0 kNF =

3.5 mX =
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Sample Problem 07

SOLUTION:

• Determine the support reactions by summing 
moments about the beam ends.

yB
xB

yA

(kN) 5.10=yB

0xB =

(kN) 5.7=yA
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Center of Gravity of a 3D Body: Centroid of a Volume

• Center of gravity G
Δ−=− )( jWjW

)()()(

)]([)(

jWrjWr

jWrjWr

G

G

−×Δ=−×

Δ−×=−×

• Results are independent of body orientation,

== dVdWVW γγ   and  

• For homogeneous bodies,
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Composite 3D Bodies

• Moment of the total weight concentrated at the 
center of gravity G is equal to the sum of the 
moments of the weights of the component parts.

• For homogeneous bodies,

=== WzWZWyWYWxWX

=== VzVZVyVYVxVX
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Sample Problem 08

Locate the center of gravity of the steel machine element.  The 
diameter of each hole is 1 in.
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Sample Problem 08

SOLUTION:
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Sample Problem 08

SOLUTION:



Distributed Forces: Centroids and Centers of Gravity

47

Sample Problem 08

SOLUTION:

0.577 in.X =

0.577 in.Y =

0.577 in.Z =


