STATICS

- Vector Mechanics for Engineers: Statics, 9th edition. Ferdinand Beer- E. Russell Johnston Jr. - Phillip Cornwell.
- Engineering Mechanics-Statics, 5th Edition. J. L. Meriam, L. G. Kraige.
- Other Reference: Brain P.Self "Lectures notes on Statics"

Equilibrium of Rigid Bodies

By: Kaveh Karami

Associate Prof. of Structural Engineering

https://prof.uok.ac.ir/Ka.Karami

Equilibrium of Rigid Bodies

□ Introduction

- For a rigid body in static equilibrium, the external forces and moments are balanced and will impart no translational or rotational motion to the body.
- The *necessary* and *sufficient* condition for the static equilibrium of a body are that the *resultant force and couple from all external forces form a system equivalent to zero*,

$$\boxed{\sum \vec{F} = 0} \boxed{\boxed{\sum \vec{M}_O = \sum (\vec{r} \times \vec{F}) = 0}}$$

• Resolving each force and moment into its rectangular components leads to 6 scalar equations which also express the conditions for static equilibrium,

$$\begin{cases} \sum F_x = 0 & \sum F_y = 0 \\ \sum M_x = 0 & \sum M_y = 0 \end{cases} \sum F_z = 0$$

☐ Free-Body Diagram

First step in the static equilibrium analysis of a rigid body is identification of all forces acting on the body with a *free-body* diagram.

- Select the extent of the free-body and detach it from the ground and all other bodies.
- Indicate point of application, magnitude, and direction of external forces, including the rigid body weight.
- Indicate point of application and assumed direction of unknown applied forces. These usually *consist of reactions* through which the ground and other bodies oppose the possible motion of the rigid body.
- Include the dimensions necessary to compute the moments of the forces.

3

Equilibrium of Rigid Bodies

☐ Reactions at Supports and Connections for a Two-Dimensional Structure

• Reactions equivalent to a force with known line of action.

- ☐ Reactions at Supports and Connections for a Two-Dimensional Structure
 - Reactions equivalent to a force with known line of action.

Collar on frictionless rod Frictionless pin in slot

5

Equilibrium of Rigid Bodies

- ☐ Reactions at Supports and Connections for a Two-Dimensional Structure
- Reactions equivalent to a force of unknown direction and magnitude.

• Reactions equivalent to a force of unknown direction and magnitude and a couple.of unknown magnitude

☐ Equilibrium of a Rigid Body in Two Dimensions

• For all forces and moments acting on a twodimensional structure,

 $F_z = 0 \quad M_x = M_y = 0 \quad M_z = M_O$

Equations of equilibrium become
$$\sum F_x = 0$$
 $\sum F_y = 0$ $\sum M_A = 0$

where A is any point in the plane of the structure.

• The 3 equations can not be augmented with additional equations, but they can be replaced

$$\sum F_x = 0 \quad \sum M_A = 0 \quad \sum M_B = 0$$

Equilibrium of Rigid Bodies

Statically Indeterminate Reactions

More unknowns than equations

Fewer unknowns than equations, partially constrained

• Equal number unknowns and equations but improperly constrained

□ Sample Problem 01

A fixed crane has a mass of 1000 kg and is used to lift a 2400 kg crate. It is held in place by a pin at A and a rocker at B. The center of gravity of the crane is located at G.

Determine the components of the reactions at *A* and *B*.

9

Equilibrium of Rigid Bodies

□ Sample Problem 01

SOLUTION:

- Create the free-body diagram.
- Determine *B* by solving the equation for the sum of the moments of all forces about *A*.

$$\Rightarrow B = +107.1 \text{ (kN)}$$

• Determine the reactions at A by solving the equations for the sum of all horizontal forces and all vertical forces.

$$\Rightarrow A_x = -107.1 \text{ (kN)}$$

$$\Rightarrow A_y = +33.3 \text{ (kN)}$$

10

□ Sample Problem 02

A loading car is at rest on an inclined track. The gross weight of the car and its load is 5500 lb, and it is applied at at *G*. The cart is held in position by the cable.

Determine the tension in the cable and the reaction at each pair of wheels.

11

Equilibrium of Rigid Bodies

□ Sample Problem 02

SOLUTION:

• Create a free-body diagram

$$W_x = 4980 \text{ (lb)}$$

 $W_y = -2320 \text{ (lb)}$

• Determine the reactions at the wheels.

$$\Rightarrow$$
 $R_2 = 1758 \text{ (lb)}$

$$\Rightarrow$$
 $R_1 = 562$ (lb)

• Determine the cable tension.

$$\Rightarrow T = 4980 \text{ (lb)}$$

☐ Sample Problem 03

The frame supports part of the roof of a small building. The tension in the cable is 150 kN.

Determine the reaction at the fixed end E.

13

Equilibrium of Rigid Bodies

□ Sample Problem 03

SOLUTION:

• Create a free-body diagram for the frame and cable.

$$l = 7.5 (m)$$

• Solve 3 equilibrium equations for the reaction force components and couple.

$$\Rightarrow$$
 $E_x = -90.0 \text{ (kN)}$

$$\Rightarrow E_y = 200 \text{ (kN)}$$

$$\Rightarrow M_E = 180 \text{ (kN} \cdot \text{m)}$$

- **□** Equilibrium of a Two-Force Body
 - Consider a plate subjected to two forces F₁ and F₂
 - For static equilibrium, the sum of moments about A must be zero. The moment of F_2 must be zero. It follows that the line of action of F_2 must pass through A.
 - Similarly, the line of action of F_I must pass through B for the sum of moments about B to be zero.
 - Requiring that the sum of forces in any direction be zero leads to the conclusion that F_1 and F_2 must have *equal magnitude but opposite sense*.

15

Equilibrium of Rigid Bodies

- **□** Equilibrium of a Three-Force Body
- Consider a rigid body subjected to forces acting at only 3 points.
- Assuming that their lines of action intersect, the moment of F_1 and F_2 about the point of intersection represented by D is zero.
- Since the rigid body is in equilibrium, the sum of the moments of F_1 , F_2 , and F_3 about any axis must be zero. It follows that the moment of F_3 about D must be zero as well and that the line of action of F_3 must pass through D.
- The lines of action of the three forces must be concurrent.

□ Sample Problem 04

A man raises a 10 kg joist, of length 4 m, by pulling on a rope.

Find the tension in the rope and the reaction at A.

17

Equilibrium of Rigid Bodies

□ Sample Problem 04

SOLUTION:

• Create a free-body diagram of the joist.

$$W = 98.1 (N)$$

$$l_1 = l_2 = \sqrt{2} (m)$$

$$h = 2\sqrt{2} (m)$$

$$\theta = 70^{\circ}$$

$$\Rightarrow (T\sin 70^{\circ})(2\sqrt{2}) - (98.1)(\sqrt{2}) - (T\cos 70^{\circ})(\sqrt{2} + \sqrt{2}) = 0$$

T = 82.07 (N)

18

□ Sample Problem 04

SOLUTION:

• Create a free-body diagram of the joist.

$$R = 147.58(N)$$

 $\alpha = 58.5^{\circ}$

19

Equilibrium of Rigid Bodies

□ Equilibrium of a Rigid Body in Three Dimensions

• Six scalar equations are required to express the conditions for the equilibrium of a rigid body in the general three dimensional case.

$$\sum_{x} F_{x} = 0 \qquad \sum_{x} F_{y} = 0 \qquad \sum_{x} F_{z} = 0$$
$$\sum_{x} M_{x} = 0 \qquad \sum_{x} M_{y} = 0 \qquad \sum_{x} M_{z} = 0$$

- These equations can be solved for no more than 6 unknowns which generally represent reactions at supports or connections.
- The scalar equations are conveniently obtained by applying the vector forms of the conditions for equilibrium,

$$\sum \vec{F} = 0 \quad \sum \vec{M}_O = \sum (\vec{r} \times \vec{F}) = 0$$

☐ Reactions at Supports and Connections for a Three-Dimensional Structure

21

Equilibrium of Rigid Bodies

□ Reactions at Supports and Connections for a Three-Dimensional Structure

□ Sample Problem 05

A sign of uniform density weighs 270 lb and is supported by a ball-and-socket joint at *A* and by two cables.

Determine the tension in each cable and the reaction at A.

23

Equilibrium of Rigid Bodies

□ Sample Problem 05

SOLUTION:

Create a free-body diagram for the sign.

$$\vec{T}_{BD} = T_{BD} \left(-\frac{2}{3}\vec{i} + \frac{1}{3}\vec{j} - \frac{2}{3}\vec{k} \right)$$

$$\vec{T}_{EC} = T_{EC} \left(-\frac{6}{7}\vec{i} + \frac{3}{7}\vec{j} + \frac{2}{7}\vec{k} \right)$$

□ Sample Problem 05

SOLUTION:

• Apply the conditions for static equilibrium to develop equations for the unknown reactions.

$$\sum \vec{F} = \vec{A} + \vec{T}_{BD} + \vec{T}_{EC} + \vec{W} = 0$$

$$\vec{i}: \sum F_x = 0 \implies A_x - \frac{2}{3}T_{BD} - \frac{6}{7}T_{EC} = 0$$

$$\vec{j}: \sum F_y = 0 \implies A_y + \frac{1}{3}T_{BD} + \frac{3}{7}T_{EC} - 270 \text{ lb} = 0$$

$$\vec{k}: \sum F_z = 0 \implies A_z - \frac{2}{3}T_{BD} + \frac{2}{7}T_{EC} = 0$$

25

Equilibrium of Rigid Bodies

□ Sample Problem 05

SOLUTION:

$$\vec{M}_{\vec{T}_{BD}/A} = \left(\frac{16}{3}T_{BD}\right)\vec{j} + \left(\frac{8}{3}T_{BD}\right)\vec{k}$$

$$\vec{M}_{\vec{T}_{EC}/A} = \left(-\frac{12}{7}T_{EC}\right)\vec{j} + \left(\frac{18}{7}T_{EC}\right)\vec{k}$$

$$\vec{M}_{\vec{W}/A} = (-1080) \, \vec{k}$$

□ Sample Problem 05

SOLUTION:

 $(I) & (II) \implies$ Solve the 5 equations for the 5 unknowns,

$$T_{BD} = 101.3 \text{ (lb)}$$

 $T_{EC} = 315 \text{ (lb)}$
 $\vec{A} = (338 \text{ lb})\vec{i} + (101.2 \text{ lb})\vec{j} - (22.5 \text{ lb})\vec{k}$

27