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Inelastic (Plastic) Axial Deformation and Residual Stress

• Previous analyses based on 
assumption of linear stress-
strain relationship, i.e., 
stresses below the yield stress

• Assumption is good for 
brittle material which rupture 
without yielding

• If the yield stress of ductile 
materials is exceeded, then 
plastic deformations occur
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Inelastic (Plastic) Axial Deformation and Residual Stress

Bauschinger effect:
Yield point is not defined clearly
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Inelastic (Plastic) Axial Deformation and Residual Stress

• Analysis of plastic deformations is 
simplified by assuming an idealized 
Elastoplastic material

• Deformations of an Elastoplastic 
material are divided into elastic and 
plastic ranges

• Permanent deformations result from 
loading beyond the yield stress
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Stress Concentration

Consider now the case of a bar with a hole through it (a stress concentration). The stress 
distribution across section a-a is not uniform due to the stress concentration. The material 
closest to the hole reaches the yield stress first. Once the entire section reaches the yield 
stress the section can sustain no greater load.
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Stress Concentration

• Elastic deformation 
while maximum stress is 
less than yield stress

K
AAP ave

maxσσ ==

• Maximum stress is equal to 
the yield stress at the 
maximum elastic loading

K
AP Y

Y
σ=

• At loadings above the maximum 
elastic load, a region of plastic 
deformations develop near the hole

• As the loading increases, 
the plastic region expands 
until the section is at a 
uniform stress equal to the 
yield stress

YYU PKAP == σ
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Plastic Deformations due to axial force
Example 01

The bar is made of steel that is assumed to be elastic perfectly plastic, 

with Y = 250 MPa. Determine (a) the maximum value of the applied 
load P that can be applied without causing the steel to yield and (b) the 
maximum value of P that the bar can support. Sketch the stress 
distribution at the critical section for each case.
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Plastic Deformations due to axial force
Example 01
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Plastic Deformations due to axial force
Example 01
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Plastic Deformations due to axial force
Example 01
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Inelastic (Plastic) Axial Deformation and Residual Stress

• When a single structural element is loaded uniformly beyond its 
yield stress and then unloaded, it is permanently deformed but all 
stresses disappear.  This is not the general result.

• Residual stresses also result from the uneven heating or 
cooling of structures or structural elements

• Residual stresses will remain in a structure after 
loading and unloading if

- only part of the structure undergoes plastic 
deformation

- different parts of the structure undergo different 
plastic deformations
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Example 02

The rod shown below has a radius of 5 mm and is made of an elastic perfectly 

plastic material for which Y = 420 Mpa and E = 70 GPa. If a force of P = 60 kN
is applied to the rod and then removed, determine the residual stress in the rod.
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Example 02
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Example 02
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Example 02
BCAC

BCAC PPP
δδδ ==
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Example 02

• at a load of P = 60 kips, the 
portion AC has reached the 
plastic range while the portion 
BC is still in the elastic range
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Example 02
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Example 02
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Example 02

• The unloads along a line parallel 
to O-YAC
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Example 02

• calculate the residual 
stresses in the bar.
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Example 02
calculate the reverse stresses in the bar 
caused by unloading and add them to 
the maximum stresses.
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Example 03

A cylindrical rod is placed inside a tube of 
the same length.  The ends of the rod and 
tube are attached to a rigid support on one 
side and a rigid plate on the other.  The 
load on the rod-tube assembly is increased 
from zero to 5.7 kips and decreased back 
to zero. 

a) draw a load-deflection diagram for 
the rod-tube assembly

b) determine the maximum elongation

c) determine the permanent elongation

d) calculate the residual stresses in the 
rod and tube. 
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Example 03

a) draw a load-deflection diagram for the rod-tube 
assembly
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Example 03

a) draw a load-deflection diagram for the rod-tube 
assembly
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Example 03

a) draw a load-deflection diagram for 
the rod-tube assembly
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Example 03

• at a load of P = 5.7 kips, 
the rod has reached the 
plastic range while the tube 
is still in the elastic range

5.7 
C
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Example 03
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Example 03

5.7 
C
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Example 03

• the rod-tube assembly unloads 
along a line parallel to 0-Yr

36
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Example 03

• calculate the residual 
stresses in the rod and tube.

δ ′

δ ′
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Example 03
calculate the reverse stresses in the rod 
and tube caused by unloading and add 
them to the maximum stresses. δ ′

δ ′
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Example 04

The rigid beam ABC is suspended from 
two steel rods as shown and is initially 
horizontal. The midpoint B of the beam is 
deflected 10 mm downward by the slow 
application of the force Q, after which the 
force is slowly removed. Knowing that 
the steel used for the rods is Elastoplastic 
with E = 200 Gpa and y=300 MPa, 
determine 

(a) the required maximum value of Q and 
the corresponding position of the. beam, 
(b) the final position of the beam.
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Example 04

Since Q is applied at the midpoint of the beam, 
we have

The maximum value of Q and the maximum elastic 
deflection of point A occur when                    in rod AD.YAD σσ =
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Example 04

Since we must have                        , we conclude that plastic 
deformation will occur.

mmB 10
1

=δ
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Example 04

Plastic Deformation. For Q = 240 kN, plastic 
deformation occurs in rod AD, where                  , 
Since the stress in rod CE is within the elastic range,

remains equal to 6 mm. The deflection for 
which                       is obtained by writing

YAD σσ =

Cδ Aδ
mmB 10=δ
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Example 04
Unloading. As force Q is slowly removed, the 
force PAD decreases along line HI parallel to the 
initial portion of the load-deflection diagram of 
rod AD. The final deflection of point A is

Since the stress in rod CE remained within the elastic range, 
we note that the final deflection of point C is zero.
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Example 05
The steel rod ABC is attached to rigid supports and is unstressed at a temperature of 
. The steel is assumed Elastoplastic, with Y = 250 MPa and E = 200 GPa. The temperature 
of both portions of the rod is then raised to               . Knowing that                                  , 
determine (a) the stress in portion AC, (b) the deflection of point C.

assuming that the temperature of the rod is raised to 120°C and then returned to 20°C, 
determine (C) the stress in portion AC, (D) the deflection of point C.

co20

co120 Co/107.11 6−×=α
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Example 05

cT o20=

cT o120=

cT o120=



Introduction to Plasticity

39

Example 05

cT o20=

cT o120=

cT o120=
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Example 05

cT o20=

cT o120=

cT o120=
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Example 05

cT o20=

cT o120=

cT o20=

The temperature of the rod returned to 20°C

Introduction to Plasticity

42

Example 05

cT o20=

cT o120=

cT o20=

The temperature of the rod returned to 20°C
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Plastic Deformations due to torsion

max γργ
c

=

Shearing strain varies linearly regardless of 
material properties. 

• If the yield strength is exceeded or the material has 
a nonlinear shearing-stress-strain curve, this 
expression does not hold. 
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Plastic Deformations due to torsion

max γργ
c

=

•Application of shearing-stress-strain curve allows determination of 
stress distribution.
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Plastic Deformations due to torsion
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• The integral of the moments from the internal stress distribution is 
equal to the torque on the shaft at the section,
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CIRCULAR SHAFTS MADE OF AN ELASTOPlASTIC MATERIAL

• Considering the idealized case of a 
solid circular shaft made of an 
Elastoplastic material.
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Plastic Deformations due to torsion
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Plastic Deformations due to torsion

 ρ
ρ
ττ

Y

Y=

Stress distribution is linear then hooks law is justified

The angle of twist at onset of yield
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Plastic Deformations due to torsion
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• As , the torque approaches

a limiting value,

∞→φ

torque plastic TT YP == 3
4
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Plastic Deformations due to torsion

• Plastic region develops in a shaft when 
subjected to a large enough torque

• When the torque is removed, the 
reduction of stress and strain at each 
point takes place along a straight line  
to a generally non-zero residual stress
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Plastic Deformations due to torsion

• On a T-φ curve, the shaft 
unloads along a straight line to 
an angle greater than zero

• Residual stresses found from principle of 
superposition

0== dAT ρτ
J

Tc
m =′τ
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Example 06

A solid circular shaft is subjected to a 
torque                      at each end.  
Assuming that the shaft is made of an 
elastoplastic material with                          
and                   determine (a) the 
radius of the elastic core, (b) the 
angle of twist of the shaft.  

When the torque is removed, 
determine (c) the permanent twist, 
(d) the distribution of residual 
stresses.

MPa150=Yτ
GPa77=G

mkN6.4 ⋅=T
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Example 06

The radius of the elastic core
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Example 06

• The angle of twist
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Example 06

• The permanent twist is the 
difference between the angles of 
twist and untwist
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Example 06
• Find the residual stress distribution by 

a superposition of the stress due to 
twisting and untwisting the shaft
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Example 07

Shaft AB is made of a mild steel which 
is assumed to be elastoplastic with G = 
77 GPa and y = 145 MPa. A torque T is 
applied and gradually increased in 
magnitude. 
Determine the magnitude of T and the 
corresponding angle of twist (a) when 
yield first occurs, (b) when the 
deformation has become fully plastic.
(C) the residual stresses and the 
permanent angle of twist after the torque 
Tp = 5.32 kN. m has been removed.
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Example 07

The geometric properties of the cross 
section are
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Example 07
Onset of Yield

Introduction to Plasticity

60

Example 07
Fully Plastic Deformation

When yield first occurs on the inner surface, the 
deformation is fully plastic
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Example 07

For larger angles of twist, the torque remains 
constant; the T- diagram of the shaft is as shown.
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Example 07

Elastic Unloading. We unload the shaft by applying a 5.32 kN. m torque
in the sense shown in Fig. 2. During this unloading, the behavior of the material is 
linear.

+

Fig. 2Fig. 1 Fig. 3



Introduction to Plasticity

63

Example 07

Elastic Unloading. We unload the shaft by applying a 5.32 kN. m torque
in the sense shown in Fig. 2. During this unloading, the behavior of the material is 
linear.

Fig. 2
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Example 07

Residual Stresses and Permanent Twist. 
The results of the loading (Fig. 1) and the unloading (Fig. 2) are superposed (Fig. 3) to 
obtain the residual stresses and the permanent angle of twist p

Fig. 2Fig. 1 Fig. 3

+

111
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Plastic Deformations due to pure bending

• For any member subjected to pure bending

strain varies linearly 
across the section mx c

y εε −=

• If the member is made of a linearly 
elastic material, the neutral axis 
passes through the section centroid 
and

I
My

x −=σ

Introduction to Plasticity

66

Plastic Deformations due to pure bending

• For a member with vertical and horizontal planes
of symmetry and a material with the same tensile 
and compressive stress-strain relationship, the 
neutral axis is located at the section centroid and 
the stress-strain relationship may be used to map the 
strain distribution from the stress distribution.

• For a material with a nonlinear stress-strain curve, 
the neutral axis location is found by satisfying

−=== dAyMdAF xxx σσ 0
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Plastic Deformations due to pure bending

• When the maximum stress is equal to the ultimate 
strength of the material, failure occurs and the 
corresponding moment MU is referred to as the 
ultimate bending moment.

• The modulus of rupture in bending, RB, is 
found from an experimentally determined value 
of MU and a fictitious linear stress distribution.

I
cMR U

B =

• RB may be used to determine MU of any 
member made of the same material and with the 
same cross sectional shape but different 
dimensions.

• Rectangular beam made of an Elastoplastic material
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Plastic Deformations due to pure bending

Maximum Elastic Moment
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Plastic Deformations due to pure bending

• If the moment is increased beyond the 
maximum elastic moment, plastic 
zones develop around an elastic 
core.
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Plastic Deformations due to pure bending
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Plastic Deformations due to pure bending

• In the limit as the moment is increased 
further, the elastic core thickness goes to 
zero, corresponding to a fully plastic 
deformation.

shape)section  crosson only  (dependsfactor   shape 

moment plastic 
2
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σσ

Z : plastic modulus
“It can also be defined as the first moment 
of area about the neutral axis
when the areas above and below the neutral 
axis are equal.”
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Plastic Deformations due to pure bending
• Fully plastic deformation of a beam with only a 

vertical plane of symmetry.

• Resultants R1 and R2 of the elementary 
compressive and tensile forces form a couple.

212121 AAAARR YY === σσ

The neutral axis divides the section into equal 
areas.

• The plastic moment for the 
member,

dAM Yp = σ
2
1

• The neutral axis cannot be assumed to pass 
through the section centroid.



• Plastic zones develop in a member made of an 
Elastoplastic material if the bending moment is 
large enough.

• Since the linear relation between normal stress 
and strain applies at all points during the 
unloading phase, it may be handled by assuming 
the member to be fully elastic.

• Residual stresses are obtained by applying the 
principle of superposition to combine the stresses 
due to loading with a moment M (elastoplastic 
deformation) and unloading with a moment -M
(elastic deformation).

• The final value of stress at a point will not, in 
general, be zero.
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Plastic Deformations due to pure bending
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Example 08

A member of uniform rectangular cross section is subjected 
to a bending moment M = 36.8 kN-m. The member is 
made of an Elastoplastic material with a yield strength of 
240 MPa and a modulus of elasticity of 200 GPa.  

Determine

(a) the thickness of the elastic core, 

(b) the radius of curvature of the neutral surface.  

After the loading has been reduced back to zero, determine

(c) the distribution of residual stresses, 

(d) radius of curvature.
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Example 08

• Maximum elastic moment:
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Example 08

• Thickness of elastic core:
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Example 08

• Radius of curvature:

• M = 36.8 kN-m • M = -36.8 kN-m • M = 0
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Example 08
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Example 09

Beam AB has been fabricated from a high-
strength low-alloy steel that is assumed 
to be Elastoplastic with E = 200 GPa
and y = 350 MPa. Neglecting the 
effect of fillets, determine the bending 
moment M and the corresponding 
radius of curvature (a) when yield first 
occurs, (b) when the flanges have just 
become fully plastic. (c) determine the 
residual stresses and the permanent 
radius of curvature after couple M in 
part (b) has been removed.
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Example 09

a. Onset of Yield
The centroidal moment of inertia of the section is

Bending Moment.

Radius of curvature.
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Example 09

a. Onset of Yield
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Example 09
b. Flanges Fully Plastic
When the flanges have just become fully plastic, the strains and stresses in the section are as 
shown in the figure below. We replace the elementary compressive forces exerted on the top 
flange and on the top half of the web by their resultants Rl and R2, and similarly replace the
tensile forces by R3, and R4
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Example 09
b. Flanges Fully Plastic

Bending Moment.

Radius of curvature.
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Example 09

Elastic Unloading

The beam is unloaded by the application of 
a coupe of moment M = -1130 kN . m 
(which is equal and opposite to the couple 
originally applied).

c. Residual stress

c. Residual stress

+ =
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Example 09
c. Residual stress

Permanent Radius of Curvature. At y = 175 mm the residual stress is y= -20 MPa. 
Since no plastic deformation occurred at this point, Hooke's law can be used
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Example 10

Determine the plastic moment Mp of a 
beam with the cross section shown when 
the beam is bent about a horizontal axis. 
Assume that the material is Elastoplastic 
with a yield strength of 240 MPa.
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Example 10

Neutral Axis. When the deformation is 
fully plastic, the neutral axis divides the 
cross section into two portions of equal 
areas. Since the total area is
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Example 10

Plastic Moment
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Example 11

Determine the yield moment My, the plastic 
Mp, and the plastic modulus Z for the simply 
supported beam having the cross section 
shown in Figure. Also calculate the shape 
factor and plastic load Pn acting transversely 
through the midspan of the beam. Assume 
that Y = 50 ksi.
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Example 11

Elastic Calculations:
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Example 11

Plastic Calculations:
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Example 11

Plastic Calculations:



Introduction to Plasticity

93

Example 11
Plastic Calculations:

• For PL > MY , yield is initiated at B and B’.  
For an Elastoplastic material, the half-
thickness of the elastic core is found from
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IM σ• Recall:

• For  M = PL < MY , the normal stress does 
not exceed the yield stress anywhere along 
the beam.
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Plastic Deformations due to shearing



• The section becomes fully plastic at the wall 
when

0
2
3

3
213

2
3 =×−===

==

Y

Y
YpY M

McyMMPLIf

PLMLxat

• Maximum load which 
the beam can support is L

M
P p=max
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Plastic Deformations due to shearing

∞→∞==== My

YY

Y

ρ
ρ

εε
ρ 100

indicating the presence of a sharp bend in the 
beam at its fixed end, We say that a plastic 
hinge has developed at that point.

Introduction to Plasticity

96

Plastic Deformations due to shearing

• Preceding discussion was based on 
normal stresses only

• Consider horizontal shear force on an 
element within the plastic zone,

( ) ( ) 0=−−=−−=Δ dAdAH YYDC σσσσ

Therefore, the shear stress is zero in 
the plastic zone.
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Plastic Deformations due to shearing

• Shear load is carried by the elastic core,
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It can be shown that the distribution of the
shearing stresses over EE' is the same as in an 
elastic rectangular beam of the same width b as 
beam AB, and of depth equal to the thickness
2yY of the elastic zone. Denoting by A' the 
area 2byY of the elastic portion of the cross 
section. we have
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Example 12

Determine shear stress distribution at fixed 
point . Assume that Y = 240 Mpa.
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Example 12

• Maximum elastic moment:
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Example 12


