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Introduction to Plasticity

U Inelastic (Plastic) Axial Deformation and Residual Stress
o

* Previous analyses based on _ .
: . astic
assumption of linear stress- elastic plastic
i ) o region region
strain relationship, i.e., '
stresses below the yield stress

« Assumption is good for A’
brittle material which rupture /
without yielding /

« If the yield stress of ductile load E /f
materials is exceeded, then
plastic deformations occur E / unload

/ ¢

)

?permanent(? elastic
! set " recovery ! (a)




Introduction to Plasticity

U Inelastic (Plastic) Axial Deformation and Residual Stress
o

C !
4

20y
D’ .
H ' V
Bauschinger effect:

Yield point is not defined clearly

Introduction to Plasticity

U Inelastic (Plastic) Axial Deformation and Residual Stress

* Analysis of plastic deformations is
simplified by assuming an idealized
FElastoplastic material

* Deformations of an Elastoplastic
material are divided into elastic and
plastic ranges

* Permanent deformations result from
loading beyond the yield stress




Introduction to Plasticity

U Stress Concentration

Consider now the case of a bar with a hole through it (a stress concentration). The stress
distribution across section a-a is not uniform due to the stress concentration. The material
closest to the hole reaches the yield stress first. Once the entire section reaches the yield

stress the section can sustain no greater load.
P

T

)
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(a)

Introduction to Plasticity

] Stress Concentration pre—
. Elqstic deformation o lpog 4o Omaxd I, S
while maximum stress 1s ave K (a)

less than yield stress

|
|
| _
: : | Py
* Maximum stress is equal to | _ |
. O-YA | _
the yield stress at the Py = e | -

. . . |
maximum elastic loading —

At loadings above the maximum
elastic load, a region of plastic
deformations develop near the hole

* As the loading increases,
the plastic region expands
until the section is at a
uniform stress equal to the
yield stress

P, =0,4 :KPY]




Introduction to Plasticity

U Plastic Deformations due to axial force
Example 01
The bar is made of steel that is assumed to be elastic perfectly plastic,

with Oy =250 MPa. Determine (a) the maximum value of the applied

load Pthat can be applied without causing the steel to yield and (b) the
maximum value of Pthat the bar can support. Sketch the stress
distribution at the critical section for each case.

40 mm

g-'l mm l

4 mm [

Introduction to Plasticity

40 mm

U Plastic Deformations due to axial force gt mm |
Example 01 . \;Jj

4 mm [ - 2mm
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(b) Flat bars with fillets
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] Plastic Deformations due to axial force

Example 01

ﬁ k_ (ory

40 mm

w-# mm l

4 mm l - 2 mm

Introduction to Plasticity

U Plastic Deformations due to axial force

Example 01

oy

40 mm

VH mm l

4 mm [ - 2mm

10




Introduction to Plasticity

O Inelastic (Plastic) Axial Deformation and Residual Stress

* When a single structural element is loaded uniformly beyond its
yield stress and then unloaded, it is permanently deformed but all
stresses disappear. This is not the general result.

* Residual stresses will remain in a structure after
loading and unloading if

- only part of the structure undergoes plastic
deformation

- different parts of the structure undergo different
plastic deformations

» Residual stresses also result from the uneven heating or
cooling of structures or structural elements

Introduction to Plasticity

Example 02

The rod shown below has a radius of 5 mm and is made of an elastic perfectly

plastic material for which Oy =420 Mpa and E = 70 GPa. If a force of P = 60 kN
is applied to the rod and then removed, determine the residual stress in the rod.

b A C P=60kN B .
. ___ e

| E

100 mm

300 mm

(a)
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Example 02 . A C P=60kN B.
e e
- 300 m———+
100 mm
(a)
Pac(kN)y
33 Y
Rod (AC)
13
Introduction to Plasticity
Example 02 « A C P=60kN B.
% ___. — v 4
i 300 mm———~+ ¢
100 mm
(a)
PBC(k-\')‘
33 —
I
I
I
|
gz (INM
0 1.8 Bc (InIn)

Rod (BC)

14




Introduction to Plasticity

Example 02 P=P,+ Py . A C P=60kN B.
[ T
5 - 5AC = 5BC p I-lm;[n 300 mm -
Pac(kN)y (a)
BL g P 5(kN)
| A Yoo
| 66 R BC
| -
dae
O 0.6 ac (mm) YA . |
Rod (AC) 44 N |
Pec(kN)4 | |
33 |— — i |
| |
> d, g (mm)
| AB
11 F | O 0.6 1.8
|
|
I Rod (AB
0 06 1|8 * dpc () od (AB)
Rod (BC)
Introduction to Plasticity
Example 02 « A C P=60kN B.
b — e
Im;[u 300 mm {

(a)

 at a load of P=60 kips, the
portion AC has reached the
plastic range while the portion
BC is still in the elastic range

= d,p (mm)

Rod (AB)
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Example 02 Pac(kN))
B3l
:
o 0|.6 > dac (mm)
Rod (AC)

Introduction to Plasticity

Example 02
Pac(kN)y
Wl Y H

/™
0 0.6 w ™ ¢ (mm)

Rod (AC)

Rod (AB)

™ dpc (mm)

Rod (BC)




Introduction to Plasticity

Example 02

* The unloads along a line parallel

- dAB (mm)
I
- 5‘0 t 0 +
4 CS:”m_:l,é]-Z
Rod (AB)
Introduction to Plasticity
Example 02 Pac(kN))
» calculate the residual Bl XY H
stresses in the bar. | |
| |
!
BC
60 g0’ Rod (AC)
44 Pec(kN)}
33— —
|
o |
E |
|
o s > dzc (mm)
o'

Rod (AB) — Rod (BC)




Introduction to Plasticity

Example 02 Pac(kN)y
calculate the reverse stresses in the bar Y H
caused by unloading and add them to 3
the maximum stresses. : :
/
0 0.6| : 1|4? " dac (mm)
gfo’ Rod (AC)
Ppc(kN)}
33— —
|
|
E |
|
R — > dgc (mnm)
Qo Rod (BC)
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Example 03

A cylindrical rod is placed inside a tube of Tube
the same length. The ends of the rod and
tube are attached to a rigid support on one
side and a rigid plate on the other. The
load on the rod-tube assembly is increased
from zero to 5.7 kips and decreased back
to zero. L 30 in. |

Plate

a) draw a load-deflection diagram for

. 2 )
the rod-tube assembly 4, =0.0751n. 4; =0.1001n.
: : : _ 6, _ 6
b) determine the maximum elongation E, =30x10"psi £y =15x107psi

: . =36ksi = 45ksi
¢) determine the permanent elongation oY.r St Oyt S1

d) calculate the residual stresses in the
rod and tube.

22




Introduction to Plasticity / inall

Example 03
a) draw a load-deflection diagram for the rod-tube
assembly
!f 30 in. |
P, (kips)
2.7
0 36 8, (10 in.)

23

Tube

Introduction to Plasticity

Example 03
a) draw a load-deflection diagram for the rod-tube
assembly
! 30 in. |
P, (kips)

Yt

45 F-—————mm - |

|

L8| =amsmmars !

: |

' |

i :

0 36 90 8, (1073 in.)

24




Introduction to Plasticity

Example 03 P=E+F
5=6,=6
a) draw a load-deflection diagram for
the rod-tube assembly
, (kips) i
' 5.7 i <k1552) Y,
8, (103 in.) Y, i
45 f------- | i
P, (kips) : I
Y, I |
Ll R | : :
ol | | |
i i = 0 36 90 & (10~ in.)
0 36 90 6, (10~ in.)
Introduction to Plasticity
Example 03
P, (ki
t ( pS) Yt
, - |
) N C
e at a load of P=5.7 kips, 5.7 N
the rod has reached the Y| /

plastic range while the tube
is still in the elastic range

0 36 90 & (107 in.)
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Example 03 P. (kips) .,
Pl Re— .
|
|
|
|
|
i
0 36 8, (102 in.)
27
Introduction to Plasticity
Example 03
P, (kips) y
"y W——— - , P (ki
: . (kips) Y,
L 1 | PO
| | |
| i |
o) 5. (10%in) ( S '7> __________ > i
36 R 15 8
0 W T - Yr : :
45F----=-- : 1
I ! i
P, (kips) : : |
Yt | 1 |
45 o s e | I I |
: : !
(3.0 > --------- : : : |
1 | | | |
1 ! | |
N . o N
| 0 36 \_60_/ 90 6 (10%in)

TN
0 36 \ 60 J 906, (10°in)

28




Introduction to Plasticity

Example 03

* the rod-tube assembly unloads
along a line parallel to 0- Y,

P (kips)

5.7

4.5

Yt
C
______________ 71 - L
Y, ‘a3
________ /
/]
36 // 1
I
// : Pmax
/ l
/ l
/ |
/ l
/
/E 24
D 8 (102 in.)
6p | 51

29

Introduction to Plasticity

Example 03

» calculate the residual

stresses in the rod and tube.

P (kips)

5.7

4.5

8 (1073 in.)

P, (kips)

S 60 8, (103 in.)

30




Introduction to Plasticity

P, (kips)

Example 03

calculate the reverse stresses in the rod
and tube caused by unloading and add
them to the maximum stresses.

8 (10 in.)
5 5

31
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Example 04

The rigid beam ABC is suspended from

two steel rods as shown and is initially -
horizontal. The midpoint B of the beam is a
deflected 10 mm downward by the slow
application of the force Q, after which the

force is slowly removed. Knowing that

the steel used for the rods is Elastoplastic

with E = 200 Gpa and 6y=300 MPa, ?
determine

_ 2
(a) the required maximum value of Q and AAD =400 mm

th i iti : _ 2
e correspondmg position of the. beam, A =500 mm
(b) the final position of the beam.

32




Introduction to Plasticity

Example 04

Since Q is applied at the midpoint of the beam,
we have Q

Q
The maximum value of QJ and the maximum elastic
deflection of point A occur when @ .p = 0, inrod AD, T**VA
120 — Y
I
o |3 > d (mm)
Rod (AD)
33
Introduction to Plasticity
Example 04 Pce(kN)y
120 'y
I
0 — > d (mm)
Rod (CE)

3 mm 45mm | gmm
A

B,
G

Since we must have 6, =10mm | we conclude that plastic |
deformation will occur. Q = 240 (kN)

34




Introduction to Plasticity

Example 04

45mm | gmm

Plastic Deformation. For Q= 240 kN, plastic

deformation occurs in rod AD, where O ,p =Oy

Since the stress in rod CE'is within the elastic range,
J. remains equal to 6 mm. The deflection 9, for

which &, =10mm is obtained by writing G
Y
Q =240 (KN)
14 mm 10 mm 6 mm
Pap(kN)y Per(kN)y
120 Y—|H 120 /v
| | |
[ | |
0 ,|3- l|4 * ] (mm) o tl =  (mm) A.g ‘
Rod (AD) Rad (CE) Q =240 (kN—)

Load-Deflection diagrams

35
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Example 04 Pan(iN)y
Unloading. As force Q is slowly removed, the v H
force PAD decreases along line AT parallel to the 120~
initial portion of the load-deflection diagram of I I
rod AD. The final deflection of point A is ! |
| Jp |
0 3 11 14 > d (mm)
Rod (AD)
¢, 0c=0 Pe(lN))
11 muy
6 mun 120 — Y
As |
3mm| /Bz :
A: Q=0 0 6 # d (mm)
Since the stress in rod CE remained within the elastic range, Rod (CE)

e note that the final deflection of point C is zero.
W P z Load-Deflection diagrams

36




Introduction to Plasticity

Example 05
The steel rod ABC'is attached to rigid supports and is unstressed at a temperature of 20°c

. The steel is assumed Elastoplastic, with Oy =250 MPa and £= 200 GPa. The temperature
of both portions of the rod is then raised to  120°¢ . Knowing that e¢=11.7x107°/°C |
determine () the stress in portion AC, (b) the deflection of point C.

assuming that the temperature of the rod is raised to 120°C and then returned to 20°C,
determine (C) the stress in portion AC, (D) the deflection of point C.

A = 450mm? A = 600mm?*

200 mm ) 400 mm

37
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Example 05

T=20°c
£
T=120°¢ f
T =120
P
L

38




Introduction to Plasticity

Example 05

200mm 400 mm

T=20°
| ‘ST!
T=120°¢ ﬁ
T=120°¢c
F
-~

39

Introduction to Plasticity

Example 05

200mm 400 mm

T=20°c
£
T=120°¢ f
T =120
P
L

40




Introduction to Plasticity

T=20°

Example 05 |
|
The temperature of the rod returned to 20°C 5TH
I : T=120%¢c
| T T
(. |
Sy—5; ) So—!
L T=20%c | q
-
41
Introduction to Plasticity r=20"c
Example 05 |
|
The temperature of the rod returned to 20°C 5r:—:
| i T=120°c
| I T
[T |
Sors; 5QH
L T=20 1

42




Introduction to Plasticity

[ Plastic Deformations due to torsion

Shearing strain varies linearly regardless of
material properties.

_P
7/ - 7/max
C
n
) i ) T=f{7y)
* If the yield strength is exceeded or the material has |
a nonlinear shearing-stress-strain curve, this !
expression does not hold. i
’)I,IYNL‘(
Introduction to Plasticity
O Plastic Deformations due to torsion
*Application of shearing-stress-strain curve allows determination of
stress distribution.
B T
7 =f<7) [ Timax
Tioma: s eoees
|
|
i =
;/mu_\: Y
Yo,




Introduction to Plasticity

] Plastic Deformations due to torsion

 The integral of the moments from the internal stress distribution is
equal to the torque on the shaft at the section,

7 A
T:jpTdA =
0

0

T= jpf(%fp dp) /

= [T:ZEIpzz'dpJ
0

45

/ p
Introduction to Plasticity

0 CIRCULAR SHAFTS MADE OF AN ELASTOPIASTIC MATERIAL

T

 Considering the idealized case of a L] i

solid circular shaft made of an
Elastoplastic material.

.
TIII.B.K =T
P

., =1 4
max ._] T—_,O TPZETY
T, = —TY=—7L'C T,

Plastic torque of the shaft

46




Introduction to Plasticity

] Plastic Deformations due to torsion

[ T= 27sz27 dp]
0

Py c
= Tzzﬁjpz(f—yp]dp+2ﬂjpzry dp =",
0 Py

Y

1 2 2
= T= Eﬂpfry +§7rc3ry —gﬂpfry

Plastic torque of the shaft

47
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U Plastic Deformations due to torsion

Stress distribution is linear then hooks law 1s justified

L
[py: 7YJ T
¢ T:TYp

The angle of twist at onset of yield

_Ly, Py _ P
Py ¢ ¢

= cC

48




Introduction to Plasticity

U Plastic Deformations due to torsion

T:ﬂT{l_i{]
3 4 ¢

* As ¢ — =, the torque approaches

a limiting value, 7, =371, = plastic torque

by

2¢y

3¢y ¢

49

Introduction to Plasticity

U Plastic Deformations due to torsion

T

* Plastic region develops in a shaft when
subjected to a large enough torque

* When the torque is removed, the
reduction of stress and strain at each
point takes place along a straight line
to a generally non-zero residual stress

2TY

50




Introduction to Plasticity

] Plastic Deformations due to torsion Ty

* On a 7T-¢ curve, the shaft
unloads along a straight line to
an angle greater than zero

0

» Residual stresses found from principle of

superposition

+ /’ \\\
# \\ : /’I / ‘
, Tc
z-m =
J
51
Introduction to Plasticity
Example 06
A solid circular shaft is subjected to a
torque 7 =4.6kN-m at each end. 4.60 kN - m

Assuming that the shaft is made of an
elastoplastic material with 7y =150MPa
and G =77GPa determine (a) the
radius of the elastic core, (b) the

angle of twist of the shaft.

When the torque is removed,
determine (c) the permanent twist,
(d) the distribution of residual
stresses.

4.60 kN - m

'50 mm

52




Introduction to Plasticity

Example 06

4.60 kN - m

4.60 kN - m
0 oo

The radius of the elastic core

53

Introduction to Plasticity

Example 06

* The angle of twist

4.60 kN - m

— 4.60 kN - m
e 50 mm

54




Introduction to Plasticity

Example 06

* The permanent twist is the

difference between the angles of

twist and untwist

0

55

Introduction to Plasticity

Example 06

 Find the residual stress distribution by
a superposition of the stress due to

twisting and untwisting the shaft

7 (MPa)

150 poas T

I
|
-‘—bl

15.8 mm

le———————l
25 mm

|
I
1
1
1
! 1
I
I
I
I
I
I

7(MPa)

-118.4

-187.3

7 (MPa)

15.8 mm

56




Introduction to Plasticity

Example 07

Shaft ABis made of a mild steel which
is assumed to be elastoplastic with G =

77 GPa and 7y = 145 MPa. A torque T is
applied and gradually increased in
magnitude.

Determine the magnitude of T and the
corresponding angle of twist (2) when
yield first occurs, (b) when the
deformation has become fully plastic.
(C) the residual stresses and the
permanent angle of twist after the torque
Tp = 5.32 kN. m has been removed.

57
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Example 07

The geometric properties of the cross
section are

T (Mpa)

145

58




Introduction to Plasticity

Example 07
Onset of Yield

T,=453 kN.m

Cc:=29mm

c1=19mm

59

Introduction to Plasticity

Example 07
Fully Plastic Deformation

When yield first occurs on the inner surface, the
deformation is fully plastic

Ty=145 Mpa

60




Introduction to Plasticity

Example 07

For larger angles of twist, the torque remains
constant; the 7-¢ diagram of the shaft is as shown.

Ty=145 Mpa

B =g 500

61

Introduction to Plasticity

Example 07

Elastic Unloading. We unload the shaft by applying a 5.32 kN. m torque
in the sense shown in Fig. 2. During this unloading, the behavior of the material is
linear.

T:=532 kN.m

»

T.=532 kN.m

T.=532 kN m

»

I5=5.32 KN.m

Fig. 1 Fig. 2 Fig. 3
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Introduction to Plasticity

Example 07

Elastic Unloading. We unload the shaft by applying a 5.32 kN. m torque
in the sense shown in Fig. 2. During this unloading, the behavior of the material is
linear-

T:=532 kN.m

T,=532 kKN.m

Fig. 2

&

63
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Example 07

Residual Stresses and Permanent Twist.
The results of the loading (Fig. 1) and the unloading (Fig. 2) are superposed (Fig. 3) to
obtain the residual stresses and the permanent angle of twist ¢p

T:=5.32 kN.m

/ 111 Mpa

1
Ty=145 Mpa

P =1.89°

Fig. 1 Fig. 2 Fig. 3
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Introduction to Plasticity

U Plastic Deformations due to pure bending

* For any member subjected to pure bending

strain varies linearly
across the section

* If the member 1s made of a linearly

elastic material, the neutral axis o, = _My
passes through the section centroid !
and

65

Introduction to Plasticity

U Plastic Deformations due to pure bending

* For a material with a nonlinear stress-strain curve,
the neutral axis location is found by satisfying

max

[Fx:jadi:O M:j—yO'di]

» For a member with vertical and horizontal planes
of symmetry and a material with the same tensile
y and compressive stress-strain relationship, the
neutral axis is located at the section centroid and
the stress-strain relationship may be used to map the
strain distribution from the stress distribution.

66




Introduction to Plasticity

U Plastic Deformations due to pure bending

When the maximum stress is equal to the ultimate
strength of the material, failure occurs and the
corresponding moment M, is referred to as the
ultimate bending moment.

» The modulus of rupture in bending, R, s
found from an experimentally determined value
of M, and a fictitious linear stress distribution.

* Rgmay be used to determine A, of any
member made of the same material and with the
same cross sectional shape but different
dimensions.

67
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U Plastic Deformations due to pure bending

* Rectangular beam made of an Elastoplastic material

Yy

0,.<0,

Mc
O-m :_:GY

1

1b(2c)3
M —£0' 12 o
Yy — Yy & Y
C C

Maximum Elastic Moment

2
=M, = gbc30'Y

68




Introduction to Plasticity

U Plastic Deformations due to pure bending

Yy
* If the moment is increased beyond the PLASTIC —9Y
maximum elastic moment, plastic e
zones develop around an elastic
core.

r

vy = elastic core half - thickness ]

.

0<y<y, = o© :—LO'Y PLASTIC =~ Orax = TY

69
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O Plastic Deformations due to pure bending PLASTIC —7y

M= —fcytfdi =- fcydx (bdy)

— [M = —2bJ: Yo, dy]

PLASTIC o

M=—2bjyyy —lO'Y dy—2br y(-0,)dy
0 Yy o

2 2
M =bc’o, 1y — M=3MY R
3 2 3

2
C

Yy = &P
C=E&ypPy

70




Introduction to Plasticity —

O Plastic Deformations due to pure bending

* In the limit as the moment is increased ~ PLASTIC !
further, the elastic core thickness goes to .
zero, corresponding to a fully plastic ¢ oy
deformation. dM=M

M, = éM , = plastic moment Z : plastic modulus

q “It can also be defined as the first moment
of area about the neutral axis

M M, when the areas above and below the neutral

-
_ 14 — 5
Z= S=—- axis are equal.”
.

M 7 )
v, = E =k | shape factor (depends only on cross section shape)
Y

Introduction to Plasticity

(O Plastic Deformations due to pure bending

* Fully plastic deformation of a beam with only a
vertical plane of symmetry.

» The neutral axis cannot be assumed to pass
through the section centroid.

* Resultants R, and R, of the elementary
compressive and tensile forces form a couple.

4 R =R, = Ao,=4,0, = A =4, N

-

The neutral axis divides the section into equal
areas.

- J

* The plastic moment for the M, = [l Ao, jd
member, 2




Introduction to Plasticity

O Plastic Deformations due to pure bending

Oy

—oy

* Plastic zones develop in a member made of an
Elastoplastic material if the bending moment is
large enough.

* Since the linear relation between normal stress
and strain applies at all points during the
unloading phase, it may be handled by assuming
the member to be fully elastic.

» Residual stresses are obtained by applying the
principle of superposition to combine the stresses
due to loading with a moment M (elastoplastic
deformation) and unloading with a moment -M
(elastic deformation).

 The final value of stress at a point will not, in
general, be zero.

73
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Example 08

A member of uniform rectangular cross section is subjected
to a bending moment M = 36.8 kN-m. The member is

made of an Elastoplastic material with a yield strength of
240 MPa and a modulus of elasticity of 200 GPa.

Determine

(a) the thickness of the elastic core,

(b) the radius of curvature of the neutral surface.

After the loading has been reduced back to zero, determine

(c) the distribution of residual stresses,

(d) radius of curvature.




Introduction to Plasticity

Example 08

e Maximum elastic moment:

b = 50 mm

75

Introduction to Plasticity

Example 08

» Thickness of elastic core:

b = 50 mm

76




Introduction to Plasticity

Example 08

» Radius of curvature:

b = 50 mm

77

Introduction to Plasticity

Example 08
y(mm)
60
40
: =
S
240 240 o (MPa)
|
-40
-60 Ty

* M=36.8 kN-m

60

40

1o
=

:k NS
w

%)

©

e

M=-36.8 kKN-m

y(mm)
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Introduction to Plasticity

Example 09

Beam AR has been fabricated from a high-
strength low-alloy steel that is assumed
to be Elastoplastic with £= 200 GPa
and oy =350 MPa. Neglecting the
effect of fillets, determine the bending
moment M and the corresponding
radius of curvature (2) when yield first
occurs, (b) when the flanges have just
become fully plastic. (¢) determine the
residual stresses and the permanent
radius of curvature after couple M in
part (b) has been removed.

400 mm

300 mm

25 mm,

Introduction to Plasticity

Example 09

25 mm,

a. Onset of Yield

The centroidal moment of inertia of the section is

400 mm

25 mmp,

300 mm

Bending Moment.

Radius of curvature.
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Introduction to Plasticity

o
Example 09
Oy =350MPa -
|
a. Onset of Yield |
E
T
0 |
£, =0.00175 £
Y A
g, =0.00175 Oy
T T T - - =
E -
E -
E
7 -=- [ U I E
£
=
=
| o _d__
Strain distribution Stress distribution

Introduction to Plasticity

Example 09
b. Flanges Fully Plastic

When the flanges have just become fully plastic, the strains and stresses in the section are as
shown in the figure below. We replace the elementary compressive forces exerted on the top
flange and on the top half of the web by their resultants Rl and R2, and similarly replace the

tensile forces by R3, and R4
Y A

&y =350MPa
______ o - Ry
.} - - -1 - —
g E e - R;
-
E = - e w;
0 S > =
s 7/ = 2
= E z - L]
2 E < >
m — p—
- =
= S PP PR = R
- 1 =™ == - - —

Strain distribution

Ry
Stress distribution Resultant Force
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-«
Bl R:
Example 09 < :S
b. Flanges Fully Plastic - . :
—— 1 =]
= R,

Stress distribution Resultant Force

Bending Moment.

Radius of curvature.
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Example 09

¢. Residual stress
Elastic Unloading

The beam is unloaded by the application of
a coupe of moment M =-1130 kN . m

(which is equal and opposite to the couple
originally applied).

; L

_] / _ ’

M=1130kN.an M=1130kN.m

c. Residual stress

\
\

>

<
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Example 09

c. Residual stress
VoA

Ty =-350 MPa

e +27MPa

__________________ |_p\ +20MPa

Permanent Radius of Curvature. At y= 175 mm the residual stress is cy=-20 MPa.
Since no plastic deformation occurred at this point, Hooke's law can be used

Introduction to Plasticity

Example 10
100 mm

=

=

ol
Determine the plastic moment Mp of a 20 mm
beam with the cross section shown when £
the beam is bent about a horizontal axis. é
Assume that the material is Elastoplastic
with a yield strength of 240 MPa. g

=

=

60 mm
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Example 10

Neutral Axis. When the deformation is
fully plastic, the neutral axis divides the
cross section into two portions of equal
areas. Since the total area is

100 mm

20 mm
+—F

20 mm

60 mm
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Example 10
100

Plastic Moment

20 20

oy =240 MPa

60

20
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Example 11 P,
| |
Determine the yield moment My, the plastic T o
Mp, and the plastic modulus Z for the simply ‘ 128 12 ft
supported beam having the cross section
shown in Figure. Also calculate the shape | iy
factor and plastic load Pn acting transversely | 15 1n. ‘ I -
through the midspan of the beam. Assume L I
that OY = 50 ksi.
1 in. 17 in.
15 in.
[ |
8 in. ~1in.
Introduction to Plasticity
Example 11 15 —| [1in
Elastic Calculations: I -
Lin. » F
17 in
9.974 in. 15 in
l | v

| <

8 1. | “1in.
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Example 11
Plastic Calculations: 4,
< \ 15 in. _1 111.
1 m.—™ l
N.A. ,
17 1n.
Y 15 in.
) |
Az = 8. 1 1n.
Introduction to Plasticity
A,

Example 11

Plastic Calculations:

< \ 15 in. > [1in.

17 in.

N 15 in.

Bein: = ~11in.
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Example 11 | -
Plastic Calculations: Lin—x L
- 17 in.
Y 15 in.
—_— = I
4 < 8in. ~1in.
2
P
n
12 ft
| I X

Introduction to Plasticity

O Plastic Deformations due to shearing

'{ﬁ L

1 : .
* Recall: [M y =— Oy =maximum elastic momentJ
c

A

* For M =PL <M,, the normal stress does
not exceed the yield stress anywhere along
the beam.

* For PL> My, yield is initiated at Band B".

thickness of the elastic core 1s found from

|
<
For an Elastoplastic material, the half- Pl

1y, 2P
sziMY __y_g = |yy=c.[31- a
2 3¢ M,

iy
-—
(
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U Plastic Deformations due to shearing

* The section becomes fully plastic at the wall
when

at x=L =|M =PL

3 2 3IM
If PL==M,=M = =c 3[1-=x="L|=0
f 2 Y P yY \/[ 3 ZMYJ

prad o[- 4o -
& & P

indicating the presence of a sharp bend in the
beam at its fixed end, We say that a plastic
hinge has developed at that point.

* Maximum load which P M,
l-‘;x -1 the beam can support is maxer
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U Plastic Deformations due to shearing

* Preceding discussion was based on
normal stresses only

* Consider horizontal shear force on an
element within the plastic zone,

AH =—(O'C —O'D)dA =—(O'Y —Gy)dA =0

Therefore, the shear stress is zero in
the plastic zone.
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O Plastic Deformations due to shearing

» Shear load is carried by the elastic core, Yy
PLASTIC

It can be shown that the distribution of the
shearing stresses over FE'1s the same as in an

elastic rectangular beam of the same width b as
beam AB, and of depth equal to the thickness

2yy of the elastic zone. Denoting by A "the
area 2byyv of the elastic portion of the cross
section. we have

2
ro=2 Py
Y24 Yy

where A" =2by,

PLASTIC
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Example 12

Determine shear stress distribution at fixed

point . Assume that GY = 240 Mpa. _
P=4kN

100 mm

98
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Example 12

e Maximum elastic moment:

100 mm

o™
99
Introduction to Plasticity
Example 12
y
________ —_— r:['
Vy =38_73mmI =1.55Mpa
T
Vy =38.73mmJ / :

100




