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Introduction

In discussing the analysis and design of 
various structures in the previous chapters, 
we had two primary concerns: 

the strength of the structure, i.e. its ability to 
support a specified load without experiencing 
excessive stresses; 
the ability of the structure to support a specified 
load without undergoing unacceptable 
deformations.
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Introduction

Now we shall be concerned with stability of 
the structure, 

with its ability to support a given load without 
experiencing a sudden change in its 
configuration. 

Our discussion will relate mainly to columns, 
the analysis and design of vertical prismatic 

members supporting axial loads. 
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Introduction

Structures may fail in a variety of ways, 
depending on the :

Type of structure
Conditions of support
Kinds of loads
Material used
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Introduction

Failure is prevented by designing 
structures so that the maximum stresses 
and maximum displacements remain 
within tolerable limits.
Strength and stiffness are important factors 
in design as we have already discussed
Another type of failure is buckling
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Introduction

Buckling

– Buckling is a mode of failure generally 
resulting from structural instability due to 
compressive action on the structural member 
or element involved.
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Introduction
Buckling is not limited to columns.
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Introduction

Any thin-walled torque tube Step on empty aluminum can
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Introduction
A thin flange of an I-beam subjected to excessive 
compressive bending effects.
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Introduction

The thin web of an I-beam with excessive shear load
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Introduction

The distinctive feature of buckling is 
the catastrophic and often 
spectacular nature of failure.
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The Nature of Buckling

– In the previous chapters, we related load to 
stress and load to deformation.
– For these non-buckling cases of axial, 
torsional, bending, and combined loading, the 
stress or deformation was the significant 
quantity in failure.
– Buckling of a member is uniquely different in 
that the quantity significant in failure is the 
buckling load itself.
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The Nature of Buckling

– The failure (buckling) load bears no unique 
relationship to the stress and deformation at 
failure.
– Our usual approach of deriving a load stress 
and load-deformation relations cannot be used 
here, instead, the approach to find an expression 
for the buckling load Pcr.
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Mechanism of Buckling

• In Figure, some axial load P is 
applied to the column.
• The column is then given a small 
deflection by applying the small 
lateral force F.
• If the load P is sufficiently small, 
when the force F is removed, the 
column will go back to its original 
straight condition.
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Mechanism of Buckling

• The column will go back to its original 
straight condition just as the ball returns to 
the bottom of the curved container.
• In Figure of the ball and the curved 
container, gravity tends to restore the ball 
to its original position, while for the 
column the elasticity of the column itself 
acts as restoring force.
• This action constitutes stable equilibrium.
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Mechanism of Buckling

• The same procedure can be repeated for 
increased value of the load P until some 
critical value Pcr is reached.

• When the column carries this load, and a 
lateral force F is applied and removed, the 
column will remain in the slightly deflected 
position. The elastic restoring force of the 
column is not sufficient to return the column 
to its original straight position but is sufficient 
to prevent excessive deflection of the column.
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Mechanism of Buckling

• In Figure of the ball and the flat surface, the 
amount of deflection will depend on the 
magnitude of the lateral force F.

• Hence, the column can be in equilibrium in 
an infinite number of slightly bent positions.

• This action constitutes neutral or precarious 
equilibrium.
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Mechanism of Buckling

• If the column is subjected to an axial 
compressive load P that exceeds Pcr, as 
shown in Figure, and a lateral force F is 
applied and removed, the column will bend 
considerably.

• That is, the elastic restoring force of the 
column is not sufficient to prevent a small 
disturbance from growing into an 
excessively large deflection.
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Mechanism of Buckling

• Depending on the magnitude of P, the 
column either will remain in the bent 
position or will completely collapse and 
fracture, just as the ball will roll off the 
curved surface in Figure.

• This type of behavior indicates that for 
axial loads greater than Pcr, the straight 
position of a column is one of unstable 
equilibrium in that a small disturbance will 
tend to grow into an excessive deformation.
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The Nature of Buckling

Definition

“Buckling can be defined as the sudden
large deformation of structure due to a
slight increase of an existing load under
which the structure had exhibited little,
if any, deformation before the load was
increased.”
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Stability of Structures
• In the design of columns, cross-sectional area is 

selected such that

- allowable stress is not exceeded

• After these design calculations, may discover 
that the column is unstable under loading and 
that it suddenly becomes sharply curved or 
buckles. 

- deformation falls within specifications

allA
P σσ ≤=

specAE
PL δδ ≤=
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Stability of Structures
• Consider model with two rods and torsional 

spring.  After a small perturbation,

• Column is stable (tends to return to aligned 
orientation) if
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Stability of Structures
• Assume that a load P is applied.  After a 

perturbation, the system settles to a new 
equilibrium configuration at a finite 
deflection angle.

• Noting that  sinθ < θ , the assumed 
configuration is only possible if  P > Pcr. 
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Critical Buckling Load

– The purpose of this analysis is to determine the 
minimum axial compressive load for which a column 
will experience lateral deflection.

– Governing Differential Equation:

• Consider a buckled simply-supported column 
of length L under an external axial compression 
force P. The transverse displacement of the 
buckled column is represented by y.
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Critical Buckling Load

– Governing Differential Equation:

The figure shows the forces and moments acting on a 
cross-section in the buckled column. Moment 
equilibrium on the lower free body yields a solution 
for the internal bending moment M,

0
0

=+

=

MPy
M
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Critical Buckling Load

– Governing Differential Equation:

Recall the relationship between the moment M and 
the transverse displacement y for the elastic curve,

M
dx

ydEI =2

2

02

2

=+ y
EI
P

dx
yd The governing equation is a second order homogeneous 

ordinary differential equation with constant coefficients. 
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Critical Buckling Load

– Governing Differential Equation:

The solution is found to be,

)sin()cos()( xBxAxy αα +=

EI
P=2α

The coefficients A and B are constants, which can be determined 
using the column’s kinematic boundary conditions.

where
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Critical Buckling Load

– Governing Differential Equation:

Kinematic Boundary Conditions )sin()cos()( xBxAxy αα +=

)sin(00,
0,000,0

LByLxat
AthatgivingAyxat

α===
=+===

If B = 0, No bending moment exists, so the only logical solution 
is for sin( L) = 0 and the only way that this can happen is if :

πα nL = where n = 1,2,3, . . .
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Critical Buckling Load

– Governing Differential Equation:
Kinematic Boundary Conditions

2

2
2

2
2

L
EInP

L
n

EI
P ππα ===

2

2

111
L
EIPnMode π==

2

2

2
422

L
EIPnMode π==

2

2

2
933

L
EIPnMode π==

1Mode 2Mode 3Mode

Buckling of Columns 

30

Critical Buckling Load

The lowest load that causes buckling is called critical load (n = 1). 
The critical buckling load (Euler Buckling) for a long column is 
given by

2

2

L
EIPcr

π=

where
E = modulus of elasticity of the material
I = moment of inertia of the cross section
L = length of column
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Critical Buckling Load

2

2

L
EIPcr

π=

Equation 9 is usually called Euler's formula. Although 
Leonard Euler did publish the governing equation in 1744.
J. L. Lagrange is considered the first to show that a non-
trivial solution exists only when n is an integer. 
Thomas Young then suggested the critical load (n = 1) and 
pointed out the solution was valid when the column is slender 
in his 1807 book. 
The "slender" column idea was not quantitatively developed 
until A.Considère performed a series of 32 tests in 1889.
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Critical Buckling Stress

2
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where
r = radius of gyration
(L/r) = slenderness ratio of column

When calculating the critical buckling for columns, I (or r) should be 
obtained about the weak axis.
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Critical Buckling Stress

Example 01

Determine the Gyration 
Radius of the shown section.
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Critical Buckling Stress

Example 01
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Critical Buckling Stress

Example 02

A 3-m column with the cross section shown 
in Figure is constructed from two pieces of 
timber. The timbers are nailed together so 
that they act as a unit. 
Determine (a) the slenderness ratio, (b) the 
Euler buckling load (E = 13 GPa for 
timber), and (c) the axial stress in the 
column when Euler load is applied.
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Critical Buckling Stress

Example 02

Properties of the cross section:
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Critical Buckling Stress

Example 02
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Critical Buckling Stress

Example 02

(c) Axial Stress:
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Critical Buckling Stress

Example 03

A WT6 × 36 structural steel section is used for an 
18-ft column. Determine
(a) The slenderness ratio.
(b) The Euler buckling load. Use                        .
(c) The axial stress in the column when Euler load 
is applied. inr

inr
inI
inI

inA

y

x

y

x

04.3
48.1

5.97

2.23
6.10

4

4

2

=
=

=

=
=

ksiE 31029×=
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Critical Buckling Stress

Example 03
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Critical Buckling Stress

Example 04

Two C229 × 30 structural steel channels
are used for a column that is 12 m long.
Determine the total compressive load
required to buckle the two members if
(a) They act independently of each other.
Use E = 200 GPa.
(b) They are laced 150 mm back to back
as shown in Figure.

mmx
mmr
mmr

mmI
mmI

mmA

c

y

x

y

x

8.14
3.16
8.81

1001.1

103.25
3795

46

46

2

=

=
=

×=

×=
=

C229 × 30: 
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Critical Buckling Stress

Example 04
C229 × 30: 

(a) They act independently of each other
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Critical Buckling Stress

Example 04
C229 × 30: 

(b) They are laced 150 mm back to back mmx
mmr
mmr
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mmI
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Critical Buckling Stress

Example 05
A 2m long pin ended column of square cross section. Assuming E=12.5GPa,

allow=12MPa for compression parallel to the grain, and using a factor of safety of 2.5 in 
computing Euler’s critical load for buckling, determining the size of the cross section if the 
column is to safely support (a) a P = 100kN load and (b) a P = 200kN load.
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Critical Buckling Stress

Example 05
Second moment of area
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Critical Buckling Stress

Example 05
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Critical Buckling Stress

Example 06

A simple pin-connected truss is loaded 
and supported as shown in Figure. All 
members of the truss are WT 102 × 43 
sections made of structural steel with a 
modulus of elasticity of 200 GPa and a 
yield strength of 250 MPa. Determine (a) 
the factor of safety with respect to failure 
by slip, and (b) the factor of safety with 
respect to failure by buckling. WT 102 × 43: 

mmr
mmA
2.26

5515

min

2

=
=
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Critical Buckling Stress

Example 06

Free-body diagram:
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Critical Buckling Stress

Example 06

At pin C:

Buckling of Columns 

50

Critical Buckling Stress

Example 06

At pin B:

At pin A:
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Critical Buckling Stress

Example 06
Thus, the forces in the truss are as follows:
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Critical Buckling Stress

Example 06

(a) Factor of safety with respect to slip:

(b) Factor of safety with respect to failure by buckling:
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• The value of stress corresponding to 
the critical load,
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Euler’s Formula for Pin-Ended Beams

If this equation is plotted for 
steel it gives For a column not 
to fail by either yielding or 
buckling, its stress must remain 
underneath this diagram

• A column with one fixed and one free 
end, will behave as the upper-half of a 
pin-connected column.

• The critical loading is calculated from 
Euler’s formula,

( )
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Extension of Euler’s Formula
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Extension of Euler’s Formula

The Effective Length Concept
Definition:
The effective length (Le) of a column is defined as 
the distance between successive inflection points or 
points of zero moment.

( ) ( )2

2

2

2

rKL
E

rL
E

e
cr

ππσ ==
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Extension of Euler’s Formula
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Critical Buckling Stress

Example 07

What is the least thickness a rectangular 
wood plank 4 in. wide can have, if it is 
used for a 20-ft column with one end fixed 
and one end pivoted, and must support an 
axial load of 1000 lb? Use a factor of safety 
(FS) of 5. 

E = 1.5 x 106 psi
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Critical Buckling Stress

Example 07
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Critical Buckling Stress

Example 08
An aluminum column of length L and 
rectangular cross-section has a fixed end at B 
and supports a centric load at A.  Two smooth 
and rounded fixed plates restrain end A from 
moving in one of the vertical planes of 
symmetry but allow it to move in the other 
plane.

a) Determine the ratio a/b of the two sides of 
the cross-section corresponding to the most 
efficient design against buckling.

b) Design the most efficient cross-section for 
the column.

L = 20 in.

E = 10.1 x 106 psi

P = 5 kips

FS = 2.5
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Critical Buckling Stress
Example 08

SOLUTION:

The most efficient design occurs when the 
resistance to buckling is equal in both planes of 
symmetry.  This occurs when the slenderness 
ratios are equal.

• Buckling in xy Plane: • Buckling in xz Plane:
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Critical Buckling Stress
Example 08

• Most efficient design:
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Critical Buckling Stress
Example 08

L = 20 in.   E = 10.1 x 106 psi

P = 5 kips     FS = 2.5 &  a/b = 0.35

• Design:



Buckling of Columns 

63

Critical Buckling Stress

Example 09

A W 6x15 steel column is 24 ft long and is 
fixed at its ends as shown in Figure. Its load-
carrying capacity is increased by bracing it 
about the y - y (weak) axis using struts that are 
assumed to be pin-connected to its midheight. 
Determine the load it can support so that the 
column does not buckle nor the material 
exceed the yield stress. 

2

44

3

43.446.156.2

32.91.29

701029
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Critical Buckling Stress

Example 09
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Critical Buckling Stress

Example 09

Since this stress is less than the 
yield stress, buckling will occur 
before the material yields
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Buckling: Eccentric Loading

The Euler formula that was developed earlier was based on the assumption that
the concentrated compressive load P on the column acts though the centroid of 
the cross section of the column
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Buckling: Eccentric Loading

In many realistic situations, however, this is not the case. The load P applied to 
a column is never perfectly centric.
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Eccentric Loading;  The Secant Formula

As the eccentric load is increased, both the couple MA and the axial force P 
increase, and both cause the column to bend further.



Buckling of Columns 

69

Eccentric Loading;  The Secant Formula

Derivation of the formula
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Eccentric Loading;  The Secant Formula

Derivation of the formula

PePyMPyxM A −−=−−=)(
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dx
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Eccentric Loading;  The Secant Formula

Derivation of the formula

The general solution of the differential 
equation

epyp
dx

yd 22
2

2

−=+

epxBpxAy −+= )cos()sin(

Using the boundary condition y = 0, at x = 0, gives eB =

Using the other boundary condition
at the other end: y = 0, at x = L, gives )]cos(1[)sin( pLepLA −=
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Eccentric Loading;  The Secant Formula

Recalling that

=−

=

2
sin2)cos(1

2
cos

2
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Eccentric Loading;  The Secant Formula

−= 1
2
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setting x = L/2
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Eccentric Loading;  The Secant Formula

−= 1
2

secmax
L

EI
Pey

The maximum deflection is obtained by 
setting x = L/2
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Eccentric Loading;  The Secant Formula

The maximum stress occur at midspan of the column 
(at x = L/2), and can computed from

I
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P max
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Eccentric Loading;  The Secant Formula

+

=
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The secant formula for a column subjected to eccentric 
compressive load P is given by
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Eccentric Loading;  The Secant Formula

+

=

r
KL

EA
P

r
ecA

P

2
1sec1 2

maxσ

The formula is referred to as the secant 
formula; it defines the force per unit area, 
P/A, which causes a specified maximum 
stress max in a column of given effective 
slenderness ratio, KL/r, for a given value of 
the ratio            , where e is the eccentricity 
of the applied load.

2/ rec
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Eccentric Loading;  The Secant Formula
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Load per unit area, P/A, causing 
yield in column
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Eccentric Loading;  The Secant Formula

It should be noted that for small values 
of KL/r, the secant is almost equal to 
unity and P/A (or P) may be assumed 
equal to

2

max

1
r
ecA

P

+
= σ

2

max

1
r
ec
AP

+
= σ
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Eccentric Loading;  The Secant Formula

• For large value of KL/r, the curves 
corresponding to the various values of the 
ratio          get very close to Euler’s curve, 
and thus that the effect of the eccentricity 
of the loading on the value of P/A becomes 
negligible.
• The secant formula is mainly useful for 
intermediate values of KL/r.

2/ rec
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Critical Buckling Stress

Example 10
The uniform column consists of an 8-ft section 
of structural tubing having the cross-section 
shown.

a) Using Euler’s formula and a factor of safety 
of two, determine the allowable centric load 
for the column and the corresponding 
normal stress.

b) Assuming that the allowable load, found in 
part a, is applied at a point 0.75 in. from the 
geometric axis of the column, determine the 
horizontal deflection of the top of the 
column and the maximum normal stress in 
the column.
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Critical Buckling Stress

Example 10
SOLUTION:

• Maximum allowable centric load:

- Effective length,

- Critical load,
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Critical Buckling Stress

Example 10
SOLUTION:

• Maximum allowable centric load:

- Allowable load,
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Critical Buckling Stress

Example 10

• Eccentric load:

- End deflection,

- Maximum normal stress,



Buckling of Columns 

85

Critical Buckling Stress

Example 11

The axial load P is applied at a point located 
on the x axis at a distance e from the 
geometric axis of the W 250 × 58 rolled-steel 
column AB. When P = 350 kN, it is observed 
that the horizontal deflection of the top of the 
column is 5 mm. Using E = 200 GPa, 
determine (a) the eccentricity e of the load, (b) 
the maximum stress in the column.

mmbmAmS

mrmI
mrmI

y

yy

xx
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1085.01087
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−

−

b
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Critical Buckling Stress

Example 11
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Critical Buckling Stress

Example 11
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Critical Buckling Stress

Example 11

An alternate solution for Part (b):
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Critical Buckling Stress

Example 12

An axial load P is applied at a point located
on the x axis at a distance e = 0.60 in. from
the geometric axis of the W8 × 28 rolledsteel
column AC. Knowing that the column is free 
at its top B and fixed at its base A. Determine 
the allowable load P if a factor of safety of 2.5 
with respect to yield is required.

ksi
psiE

y 36
1029 6

=
×=

σ incinA
inrinI zz

2675.325.8
62.17.21

2

4
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==

Buckling of Columns 

90

Critical Buckling Stress

Example 12

One-end fixed, one-end free column
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Critical Buckling Stress

Example 12

ksi
psiE

y 36
1029 6

=
×=

σ
Since

can be used:
We read
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Critical Buckling Stress

Example 12

Suppose that we do not have the curves
provided in design curves, or we do have the
curves but our problem consists of a
column that has different material (e.g.,

y = 50 ksi), how can we evaluate the
eccentric load P for Example 12?
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Critical Buckling Stress

Example 12

A general trial and error (iterative) procedure can be used as follows:

we assume an initial (guess) value for P in the right-hand side of 
the equation; let it be 20 kips, hence
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Critical Buckling Stress

Example 12
The revised value P = 163.80 kips can now be substituted in the 
right-hand side of the same equation to produce yet another 
revised value as follows:
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Critical Buckling Stress

Example 12
A third iteration using a revised value for P= 103.01 kips, gives
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Critical Buckling Stress

Example 12

The iterative procedure is continued until
the value of the eccentric load P converges
to the exact solution of 123.53 kips, as
shown in the spreadsheet result of Table
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Design of Columns Under Centric Load

• Previous analyses assumed stresses 
below the proportional limit and 
initially straight, homogeneous columns

• Experimental data demonstrate

- for large Le/r, σcr follows 
Euler’s formula and 
depends upon E but not σY.

- for intermediate Le/r, 
σcr depends on both σY
and E.

- for small Le/r, σcr is 
determined by the yield 
strength σY and not E.

Structural Steel
American Inst. of Steel Construction

• For Le/r > Cc
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Aluminum
Aluminum Association, Inc.

• Alloy 6061-T6
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Le/r > 66:
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• Alloy 2014-T6
( )[ ]
( )[ ]MPa /585.1212

ksi /23.07.30
rKL
rKL

all

all

−=
−=

σ
σ

Le/r > 55:
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Le/r < 66:

Le/r < 55:
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Example 13

Using the aluminum alloy2014-T6, 
determine the smallest diameter rod 
which can be used to support the centric 
load P = 60 kN if  a) L = 750 mm,  
b) L = 300 mm
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Example 13

2
4 2

4 c
c

c
A
Ir ===

π
π

• For L = 750 mm, assume L/r > 55
• Determine cylinder radius:

• Check slenderness ratio assumption:

assumption was correct
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Example 13

2
4 2

4 c
c

c
A
Ir ===

π
π

• For L = 300 mm, assume L/r < 55

• Determine cylinder radius:

• Check slenderness ratio assumption:

assumption was correct



• Allowable stress method:

allI
Mc

A
P σ≤+

• Interaction method:

( ) ( ) 1≤+
bendingallcentricall

IMcAP
σσ

• An eccentric load P can be replaced by a 
centric load P and a couple M = Pe.

• Normal stresses can be found from 
superposing the stresses due to the centric 
load and couple,
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