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Strain Energy

• A uniform rod is subjected to a slowly 
increasing load

• The elementary work done by the load P as 
the rod elongates by a small dx is

workelementarydxPdU  ==
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Strain Energy

workelementarydxPdU  ==

which is equal to the area of width dx
under the load-deformation diagram.
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Strain Energy

• The total work done by the load for a 
deformation x1,

which results in an increase of strain 
energy in the rod.
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Strain Energy

• In the case of a linear elastic 
deformation,
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Strain Energy Density

• To eliminate the effects of size, evaluate 
the strain- energy per unit volume,
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• The total strain energy density resulting 
from the deformation is equal to the area 
under the curve to ε1.

• As the material is unloaded, the stress returns 
to zero but there is a permanent deformation.  
Only the strain energy represented by the 
triangular area is recovered.

• Remainder of the energy spent in deforming 
the material is dissipated as heat.
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Strain Energy Density

• The strain energy density resulting 
from setting ε1 = εR is the modulus of 
toughness.

• The energy per unit volume required 
to cause the material to rupture is 
related to its ductility as well as its 
ultimate strength.
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Strain Energy Density

• If the stress remains within the 
proportional limit,

E
EdEu xx
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• The strain energy density resulting 
from setting σ1 = σY is the 
modulus of resilience.
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Elastic Strain Energy for Normal Stresses

• In an element with a Nonuniform 
stress distribution,
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• For values of u < uY , i.e., below the proportional 
limit,
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Elastic Strain Energy for Normal Stresses

• Under axial loading,
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Elastic Strain Energy for Normal Stresses

• For a beam subjected to a bending load,
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• Setting  dV = dA dx,
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Elastic Strain Energy for Normal Stresses

Example 01

• Determine the total strain energy due to 
exerted force on the cantilever beam.
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Elastic Strain Energy for Normal Stresses

• For an end-loaded cantilever beam,

Example 01

• For values of τxy within the proportional limit,
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Strain Energy For Shearing Stresses

• For a material subjected to plane shearing stresses,
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• The total strain energy is 
found from == dV
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Strain Energy For Shearing Stresses

• For a shaft subjected to a torsional load,

=
J

T
xy

ρτ == dV
GJ

TdV
G

U xy
2

222

22
ρτ

• Setting  dV = dA dx,
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Strain Energy For Shearing Stresses
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• In the case of a uniform shaft,
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Elastic Strain Energy for Normal Stresses

Example 02

a) Taking into account only the normal 
stresses due to bending, determine the 
strain energy of the beam for the loading 
shown.

b) Evaluate the strain energy knowing that the 
beam is a W10x45, P = 40 kips, L = 12 ft, 
a = 3 ft, b = 9 ft, and E = 29x106 psi.
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Elastic Strain Energy for Normal Stresses
Example 02
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Elastic Strain Energy for Normal Stresses
Example 02

v
L

PaM

x
L

PbM

=

=

2

1

BD,portion  Over the

AD,portion  Over the

• Integrate over the volume of the beam to find 
the strain energy.
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Elastic Strain Energy for Normal Stresses
Example 02
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Strain Energy for a General State of Stress
• Previously found strain energy due to uniaxial stress and plane 

shearing stress.  For a general state of stress,

( )zxzxyzyzxyxyzzyyxxu γτγτγτεσεσεσ +++++= 2
1

• With respect to the principal axes for an elastic, isotropic body,
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• Basis for the maximum distortion energy failure criteria,
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• Previously, we found the strain 
energy by integrating the energy 
density over the volume. 
For a uniform rod,
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Work and Energy Under a Single Load
• Strain energy may also be found from 

the work of the single load P1,
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• Knowing the relationship between 
force and displacement,
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Work and Energy Under a Single Load
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• Transverse load
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• Torsional couple

Energy Methods

24

Deflection Under a Single Load

• If the strain energy of a structure due to a single concentrated 
load is known, then the equality between the work of the 
load and energy may be used to find the deflection.

Work = Energy

Deflection



Energy Methods

25

Deflection Under a Single Load

Example 03

Determine vertical deflection at point B.
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Deflection Under a Single Load

Example 03

From the given geometry,

From statics,

• Strain energy of the structure,

• Equating work and strain energy,
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Deflection Under a Single Load

Example 04

Members of the truss shown consist of 
sections of aluminum pipe with the 
cross-sectional areas indicated.  Using 
E = 73 GPa, determine the vertical 
deflection of the point E caused by the 
load P.
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Deflection Under a Single Load

Example 04

SOLUTION:

• Find the reactions at A and B 
from a free-body diagram of the 
entire truss.
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Deflection Under a Single Load

Example 04
• Apply the method of joints to determine the 

axial force in each member.

• Evaluate the strain energy of the truss 
due to the load P.
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Deflection Under a Single Load
Example 04



• Equate the strain energy to the work by P
and solve for the displacement.

Energy Methods

31

Deflection Under a Single Load
Example 04
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Castigliano’s Theorem

• In the case of a beam,
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Deflection Under a Single Load

Example 05

Members of the truss shown 
consist of sections of aluminum 
pipe with the cross-sectional areas 
indicated.  Using E = 73 GPa, 
determine the vertical deflection of 
the joint C caused by the load P.
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Deflection Under a Single Load

Example 05

SOLUTION:

• Find the reactions at A and B due to a dummy load Q
at C from a free-body diagram of the entire truss.
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Deflection Under a Single Load

Example 05

• Apply the method of joints to determine the axial 
force in each member due to Q.

Energy Methods

36

Deflection Under a Single Load
Example 05
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Impact Loading

• Consider a rod which is hit at its 
end with a body of mass m moving 
with a velocity v0.

• Rod deforms under impact.  Stresses 
reach a maximum value σm and then 
disappear.

Energy Methods

38

Impact Loading

• To determine the maximum stress σm

- Assume that the kinetic energy is 
transferred entirely to the structure,

2
02

1 mvUm =

- Assume that the stress-strain 
diagram obtained from a static test 
is also valid under impact loading.
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• Maximum value of the strain energy,

• For the case of a uniform rod,
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Impact Loading

Example 06

Body of mass m with velocity v0 hits 
the end of the Nonuniform rod BCD.  
Knowing that the diameter of the 
portion BC is twice the diameter of 
portion CD, determine the maximum 
value of the normal stress in the rod.
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Impact Loading

Example 06

• Find the static load Pm which produces 
the same strain energy as the impact.

• Evaluate the maximum stress resulting 
from the static load Pm
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Impact Loading

Example 07

A block of weight W is dropped from a 
height h onto the free end of the cantilever 
beam.  Determine the maximum value of 
the stresses in the beam.
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Impact Loading

Example 07

• Find the static load Pm which produces 
the same strain energy as the impact.

For an end-loaded cantilever beam,
• Evaluate the maximum stress 

resulting from the static load Pm


