Mechanics of Materials

Ferdinand P.Beer, E.Russel Johnston, Jr., John T.Dewolf

Other Reference:

J.Wat Oler "Lectures notes on Mechanics od Materials" Ibrahim A.Assakkaf "Lectures notes on Mechanics od Materials"

Torsion

By: Kaveh Karami

Associate Prof. of Structural Engineering

https://prof.uok.ac.ir/Ka.Karami

Torsion

☐ Torsion of Noncircular Members

Introduction

- The analysis of a noncircular torsion structural member is far *more complicated* than a circular shaft.
- The major difficulty basically lies in *determining the shear-strain distribution*.
- In these noncircular members, the discussion presented previously for circular shafts is not applicable.

☐ Torsion of Noncircular Members

Deformation of a Bar of Square Cross Section Subjected to Torque T

Planar cross-sections of noncircular shafts do not remain planar and stress and strain distribution do not vary linearly

☐ Torsion of Noncircular Members

Determination of Shearing Stress

 Several rigorous methods have been derived to determine the shear strain distribution in noncircular torsion members.

- The solutions of many problems for solid noncircular torsion members can be found in several advanced books such as
 - Seely, F. B. and Smith, J. O., 1952. "Advanced Mechanics of Materials," 2nd edition, Wiley.
 - Timoshenko, S. P. and Goodier, J. N., 1970. "*Theory of Elasticity*," 3rd edition, McGraw-Hill, New York, section. 109.

5

Torsion

☐ Torsion of Noncircular Members

For uniform rectangular cross-sections,

TABLE 3.1. Coefficients for Rectangular Bars in Torsion

a/b	c ₁	c ₂
1.0	0.208	0.1406
1.2	0.219	0.1661
1.5	0.231	0.1958
2.0	0.246	0.229
2.5	0.258	0.249
3.0	0.267	0.263
4.0	0.282	0.281
5.0	0.291	0.291
10.0	0.312	0.312
∞	0.333	0.333

The maximum shearing stress occurs along the center line of the wider face of the bar and is equal to

$$\tau_{\text{max}} = \frac{T}{c_1 a b^2}$$

The angle of twist

If
$$\frac{a}{b} \ge 5 \Rightarrow C_1 = C_2 = \frac{1}{3} \left(1 - \frac{0.630}{(a/b)} \right)$$

$$\phi = \frac{TL}{c_2 a b^3 G}$$

☐ Torsion of Noncircular Members

Thin-Walled Member of Uniform Thickness and Arbitrary Shape

Torsion

☐ Torsion of Noncircular Members

Thin-Walled Member of Uniform Thickness and Arbitrary Shape

Based on the <u>membrane analogy</u> (Timoshenko and Goodier 1970), for a thin walled member of uniform thickness and arbitrary shape, the maximum shearing stress is the same as for a rectangular bar with a very large value of a/b

$$\frac{a}{b} \gg 5 \implies C_1 = C_2 = \frac{1}{3}$$

$$\Rightarrow \left(\tau_{\text{max}} = \frac{3Tb_{\text{max}}}{\sum_{i=1}^{n} a_i b_i^3}\right) \left(\phi = \frac{3TL}{G\sum_{i=1}^{n} a_i b_i^3}\right)$$

8

☐ Torsion of Noncircular Members

Thin-Walled Member of Uniform Thickness and Arbitrary Shape

Based on the <u>membrane analogy</u> (Timoshenko and Goodier 1970), for a thin walled member of uniform thickness and arbitrary shape, the maximum shearing stress is the same as for a rectangular bar with a very large value of a/b

$$\frac{a}{b} >> 5 \implies C_1 = C_2 = \frac{1}{3}$$

$$\Rightarrow \left(\tau_{\text{max}} = \frac{3Tb_{\text{max}}}{\sum_{i=1}^{n} a_i b_i^3}\right) \left(\phi = \frac{3TL}{G\sum_{i=1}^{n} a_i b_i^3}\right)$$

9

Torsion

☐ Torsion of Noncircular Members

Example 01

Determine the maximum shear stress due to exerted torque.

☐ Torsion of Noncircular Members

Example 01

11

Torsion

☐ Torsion of Noncircular Members

Thin-Walled Hollow Shafts

☐ Torsion of Noncircular Members

Thin-Walled Hollow Shafts

• Summing forces in the x-direction on AB,

$$\sum_{A} F_{x} = 0 = \tau_{A} (t_{A} \Delta x) - \tau_{B} (t_{B} \Delta x)$$
$$\tau_{A} t_{A} = \tau_{B} t_{B} = \tau t$$

$$\Rightarrow q = \tau t = \text{shear flow} = \text{cte}$$

shear stress varies inversely with thickness

$$\tau = \frac{q}{t} \neq \text{cte}$$

13

14

Torsion

☐ Torsion of Noncircular Members

Thin-Walled Hollow Shafts

• Compute the shaft torque from the integral of the moments due to shear stress

$$dM_0 = dF \cdot p = \tau t ds \cdot p = q ds \cdot p = q \cdot 2 dA$$

$$T = \oint dM_0 = \oint 2q dA = 2qA_m$$

$$T = \int dA = \int dA = 2qA_m$$

• Angle of twist

$$\phi = \frac{TL}{4A_m^2 G} \oint \frac{ds}{t}$$

☐ Torsion of Noncircular Members

Example 02

Using τ all = 40 MPa, determine the largest torque which may be applied to each of the brass bars and to the brass tube shown. Note that the two solid bars have the same cross-sectional area, and that the square bar and square tube have the same outside dimensions.

Torsion

☐ Torsion of Noncircular Members

Example 02

1. Bar with Square Cross Section:

15

☐ Torsion of Noncircular Members

Example 02

2. Bar with Rectangular Cross Section:

17

Torsion

☐ Torsion of Noncircular Members

Example 02

3. Square Tube:

☐ Torsion of Noncircular Members

Example 03

Structural aluminum tubing of 2.5×4 -in. rectangular cross section was fabricated by extrusion. Determine the shearing stress in each of the four walls of a portion of such tubing when it is subjected to a torque of 24 kip·in., assuming (a) a uniform 0.160- in. wall thickness, (b) that, as a result of defective fabrication, walls AB and AC are 0.120-in thick, and walls BD and CD are 0.200-in thick.

Torsion

☐ Torsion of Noncircular Members

Example 03

(a) Tubing of Uniform Wall Thickness:

20

19

☐ Torsion of Noncircular Members

Example 03

(b) Tubing with Variable Wall Thickness:

Observing that the area Am bounded by the center line is the same as in Part a

21

Torsion

☐ Torsion of Noncircular Members

R: Torsional resistance

$$au_{
m max} = \frac{T}{R}$$

$$\tau_{\text{max}} = \frac{T}{c_1 a b^2} \implies \boxed{R = c_1 a b^2}$$

$$\tau_{\text{max}} = \frac{3Tb_{\text{max}}}{\sum_{i=1}^{n} a_i b_i^3} \implies \left(R = \frac{\sum_{i=1}^{n} a_i b_i^3}{3b_{\text{max}}}\right)$$

$$\tau_{\text{max}} = \frac{T}{2t_{\text{min}}A_m} \implies \left[R = 2t_{\text{min}}A_m\right]$$

☐ Torsion of Noncircular Members

K: Torsional Rigidity

$$\phi = \frac{T}{K}$$

$$\phi = \frac{TL}{c_2 a b^3 G} \implies K = \frac{c_2 a b^3 G}{L}$$

$$\phi = \frac{TL}{c_2 a b^3 G} \implies K = \frac{c_2 a b^3 G}{L}$$

$$\phi = \frac{3TL}{G \sum_{i=1}^n a_i b_i^3} \implies K = \frac{G \sum_{i=1}^n a_i b_i^3}{3L}$$

$$\phi = \frac{TL}{4A_m^2 G} \oint \frac{ds}{t} \implies K = \frac{4A_m^2 G}{L \oint \frac{ds}{t}}$$

23

Torsion

☐ Torsion of Noncircular Members

$$R_1 = 0.208a^3$$

$$R_2 = \frac{4}{3}(a-t)t^2$$

$$R_3 = 2(a-t)^2 t$$

☐ Torsion of Noncircular Members

$$\frac{R_3}{R_1} > 1 \implies \frac{2(a-t)^2 t}{0.208a^3} > 1$$

$$\Rightarrow \boxed{2(a-t)^2t - 0.208a^3 > 0}$$

$$If = 40mm \implies 2(40-t)^2 t - 0.208(40)^3 > 0$$

25

Torsion

☐ Torsion of Noncircular Members

$$\frac{R_2}{R_1} > 1 \implies \frac{\frac{4}{3}(a-t)t^2}{0.208a^3} > 1$$

$$\Rightarrow \left[\frac{4}{3}(a-t)t^2 - 0.208a^3 > 0\right]$$

If =
$$40mm \implies \frac{4}{3}(40-t)t^2 - 0.208(40)^3 > 0$$

