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Introductions

– Formulas for determining normal and shearing 
stresses on a specific planes are:

Axially loaded bars

Circular shafts

Beams
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Introductions

Distribution of Normal Stress in a Beam Cross Section 

I
yM

x
⋅=σ

I
cM ⋅=maxσThe elastic flexural formula for 

normal stress is given by:
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Introductions

tI
QV
⋅
⋅=τ

The shearing stress at the same point on 
the cross section of the beam is given by:
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Introductions
the stress on circular shafts due to torsion 
is given by: J

T ρτ ρ
⋅=

J
cT ⋅=maxτ

Distribution of Normal Stress in a Beam Cross Section 
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State of Stress
Stress at a point in a material body has been defined as a force per unit 
area. But this definition is somewhat ambiguous since it depends upon 
what area we consider at the point.
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State of Stress

let us pass a cutting plane through point O perpendicular to 
the x axis.
If dA is the area, then by definition

dA
dFx

x =σ

dA
dFy

xy =τ

dA
dFz

xz =τ
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State of Stress

let us pass a cutting plane through point O perpendicular to 
the y axis.
If dA is the area, then by definition

dA
dFy

y =σ

dA
dFx

yx =τ

dA
dFz

yz =τ
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State of Stress

let us pass a cutting plane through point O perpendicular to 
the z axis.
If dA is the area, then by definition

dA
dFz

z =σ

dA
dFx

zx =τ

dA
dFy

zy =τ
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General or Triaxial State of stress
• Normal Stresses

• Shear Stress

zyx σσσ ,,

zxyzxy τττ ,,

),,  :(Note xzzxzyyzyxxy ττττττ ===
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General or Triaxial State of stress
Sign Conventions

Normal stresses indicated by the symbol and a single subscript to indicate the plane 
(actually the outward normal to the plane) on which he stress acts.

Normal stresses are positive if they point in the direction of the outward normal. Thus, 
normal stresses are positive if tensile and negative if compressive.

Shearing stresses are denoted by the symbol followed by two subscripts, the first 
subscript designates the normal to the plane on which the stress acts and the 
second designate the coordinate axis to which the stress is parallel.

A positive shearing stress points in the positive direction of the coordinate axis of 
the second subscript if it acts on a surface with an outward normal in the positive 
direction.
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Same state of stress is represented by a different set of components if 
axes are rotated. 
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• Plane Stress - state of stress in which two faces of 
the cubic element are free of stress.  

Plane Stress
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• Plane Stress - state of stress in which two faces of 
the cubic element are free of stress.  

Plane Stress

0,, xy ≠τσσ yx.0=== zyzxz ττσ
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Transformation of Plane Stress

Plane Stress Equations
Free-body Diagram

( ) ( )
( ) ( ) )cos()sin()sin()sin(

)sin()cos()cos()cos(0

θθτθθσ
θθτθθσσ

AA
AAAF

xyy

xyxxx

Δ−Δ−

Δ−Δ−Δ== ′′

( ) ( )
( ) ( ) )sin()sin()cos()sin(

)cos()cos()sin()cos(0

θθτθθσ
θθτθθστ

AA
AAAF

xyy

xyxyxy

Δ+Δ−

Δ−Δ+Δ== ′′′
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Transformation of Plane Stress
•The equations may be rewritten to yield

)2sin()2cos(
22

θτθ
σσσσ

σ xy
yxyx

x +
−

+
+

=′

)2sin()2cos(
22

90

θτθ
σσσσ

σ

θθ

xy
yxyx

y

if

−
−

−
+

=

+→

′

)2cos()2sin(
2

θτθ
σσ

τ xy
yx

yx +
−

−=′′

yxyx σσσσ +=+ ′′

For plane stress, the sum of the normal stresses on 
any two orthogonal planes through a point in a body 
is a constant or in invariant.
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Principal Stresses
The principal stresses are the maximum and minimum normal stress.

In general, the principal stresses can be determined by plotting curves. 

This process is time-consuming, and therefore, general methods are needed.

Variation of Stresses as Functions of 
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Principal Stresses
The previous equations are combined to 
yield parametric equations for a circle

where

( ) 222 Ryxavex =+− ′′′ τσσ

2
2

22 xy
yxyx

ave R τ
σσσσ

σ +
−

=
+

=



Transformations of Stress and Strain

19

Maximum normal stress

• Principal stresses occur on the principal 
planes of stress with zero shearing stresses.

2
2

minmax, 22 xy
yxyx τ

σσσσ
σ +

−
±

+
=

yx

xy
p σσ

τ
θ

−
=

2
2tan
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Notes on Principal Stresses Equation
I. The angle p and p + 90 between x-plane 

(or y-plane) and the mutually perpendicular 
planes on which the principal stresses act.

II. When tan 2 p is positive, p is positive, and 
the rotation is counterclockwise.

III. When tan 2 p is negative, p is negative, 
and the rotation is clockwise.

IV. The shearing stress is zero on planes 
experiencing maximum and minimum 
values of normal stresses.

V. If one or both of the principal stresses is 
negative, the algebraic maximum stress can 
have a smaller absolute value than the 
minimum stress.

2
2

minmax, 22 xy
yxyx τ

σσσσ
σ +

−
±

+
=

yx

xy
p σσ

τ
θ

−
=

2
2tan
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Maximum shear stress
Maximum shearing stress occurs for: 

2
yx

avex

σσ
σσ

+
==′

o

o

45by   fromoffset 
and 90by  separated angles  twodefines :Note

pθ

2
2

max 2 xy
yxR τ

σσ
τ +

−
==

xy

yx
s τ

σσ
θ

2
2tan

−
−=

2max
MinMax σστ −=
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Notes on Principal Stresses and Maximum In-
Plane Shearing Stress Equation

I. The two angles 2 p and 2 s differ by 90, 
therefore, p and s are 45 apart.

II. This means that the planes in which the 
maximum in-plane shearing stress occur are 
45 from the principal planes.

III. The direction of the maximum shearing 
stress can be determined by drawing a 
wedge-shaped block with two sides parallel 
to the planes having the maximum and 
minimum principal stresses, and with the 
third side at an angle of 45. The direction of 
the maximum shearing stress must oppose 
the larger of the two principal stresses.

2
2

max 2 xy
yxR τ

σσ
τ +

−
==

xy

yx
s τ

σσ
θ

2
2tan

−
−=
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Wedge-shaped Block
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Principal Stresses for Axially Loaded Bar

0

0
0

=

=
≠

xy

y

x

τ
σ
σ

( ))2cos(1
2

)2sin()0()2cos(
2

0
2

0)2sin()2cos(
22

θσσ

θθσσθτθ
σσσσ

σ

+=

+−++=+
−

+
+

=

′

′

x
x

xx
xy

yxyx
x

)2sin(
2

)2cos()0()2sin(
2

0)2cos()2sin(
2

θστ

θθσθτθ
σσ

τ

x
yx

x
xy

yx
yx

−=

+−−=+
−

−=

′′

′′



Transformations of Stress and Strain

25

Principal Stresses for Axially Loaded Bar
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Principal Stresses for Shaft under Pure Torsion
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Principal Stresses for Shaft under Pure Torsion

)2sin( θτσ xyx =′

)2cos( θττ xyyx =′′

J
cTor Max

MaxMax
xyMaxx

xyMaxyx ==
==
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=
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′′ τσ
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Example 1

Determine the normal and shearing stresses at this point on the 
inclined plane AB shown in the figure.
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Example 1
We have
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Example 1
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Example 2

The stresses shown act at a point on the free surface of a stressed 
body. Determine the normal stresses and the shearing stress at 
this point if they act on the rotated stress element.
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Example 2
We have
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Example 2

Transformations of Stress and Strain
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Example 3

Determine and show on a sketch the principal and maximum 
shearing stresses.
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Example 3
We have
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Example 3
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Example 4

For the state of plane stress shown,  determine:
(a) The principal planes
(b) The principal stresses
(c) The maximum shearing stress and the corresponding normal stress.
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Example 4

SOLUTION:

• Find the element orientation for the principal 
stresses from 
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Example 4

• Determine the principal stresses from
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Example 4
MPa10

MPa40MPa50

−=

+=+=

y

xyx

σ
τσ

• Calculate the maximum shearing stress with

• The corresponding normal stress is
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Example 5
A single horizontal force P of 150 lb magnitude is applied to end D of lever 
ABD.  Determine:

(a) The normal and shearing stresses on an element at point H having sides 
parallel to the x and y axes

(b) The principal planes and principal stresses at the point H.
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Example 5
SOLUTION:

• Determine an equivalent force-couple 
system at the center of the transverse 
section passing through H.
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Example 5

• Evaluate the normal and shearing stresses 
at H.
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Example 5 • Determine the principal planes and 
calculate the principal stresses.
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Homework-01

Introduction –Concept of Stress

Solve Problems:
6.1 to 6.4
6.22
6.25
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Mohr’s Circle for Plane Stress

• For a known state of plane stress
plot the points X and Y and construct the 
circle centered at C. 

xyyx τσσ ,,

2
2

22 xy
yxyx

ave R τ
σσσσ

σ +
−

=
+

=
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Mohr’s Circle for Plane Stress

yx

xy
p

ave R

σσ
τ

θ

σσ

−
=

±=
2

2tan

minmax,

• The principal stresses are obtained at A and B.

The direction of rotation of Ox to Oa is
the same as CX to CA.
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Mohr’s Circle for Plane Stress

• Mohr’s circle uniquely defines, the 
state of stress at other axes 
orientations.

• For the state of stress at an angle θ
with respect to the xy axes, construct 
a new diameter X’Y’ at an angle 2θ
with respect to XY.
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Mohr’s Circle for Plane Stress

• Mohr’s circle for centric axial loading:

=
=

=

=
0
0

,
0 yx

y

xy

x A
P

τ
σ

τ
σ

• Mohr’s circle for torsional loading:
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Example 6

For the state of plane stress shown, 

(a) Construct Mohr’s circle, determine 

(b) The principal planes, 

(c) The principal stresses, 

(d) The maximum shearing stress and the corresponding normal stress.
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Example 6

SOLUTION:

• Construction of Mohr’s circle

We have
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Example 6

• Principal planes and stresses



•Maximum shear stress
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Example 6
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Example 7

For the state of stress shown, determine

(a) The principal planes and the principal stresses.

(b) The stress components exerted on the element obtained by rotating the 
given element counterclockwise through 30 degrees.
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Example 7

SOLUTION:

• Construction of Mohr’s circle

We have
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Example 7

•Principal planes and stresses
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Example 7

•Stress components after rotation by 30o

Points X’ and Y’ on Mohr’s circle that 
correspond to stress components on the 
rotated element are obtained by rotating 
XY counterclockwise through °= 602θ
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General State of Stress

•State of stress at Q defined by: zxyzxyzyx τττσσσ ,,,,,

•Consider the general 3D state of stress 
at a point and the transformation of 
stress from element rotation

•Consider tetrahedron with face perpendicular to the 
line QN with direction cosines: 

zyx λλλ ,,
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General State of Stress

•The requirement leads to

= 0nF

xzzxzyyzyxxy

zzyyxxn

λλτλλτλλτ
λσλσλσσ

222

222

+++

++=
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General State of Stress

•Form of equation guarantees 
that an element orientation can 
be found such that

222
ccbbaan λσλσλσσ ++=

These are the principal axes and principal 
planes and the normal stresses are the 
principal stresses.

Principal axes and principal planes



•Transformation of stress for an element 
rotated around a principal axis may be 
represented by Mohr’s circle.
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Application of Mohr’s Circle to the Three- Dimensional Analysis of Stress

•The three circles represent the normal 
and shearing stresses for rotation 
around each principal axis.

•Points A, B, and C represent the 
principal stresses on the principal 
planes (shearing stress is zero)

•Radius of the largest circle yields the 
maximum shearing stress.
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Application of Mohr’s Circle to the Three- Dimensional Analysis of Stress

minmaxmax 2
1 σστ −=
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Application of Mohr’s Circle to the Three- Dimensional Analysis of Stress

•Circle AB corresponding to surfaces which 
rotates around c axis.
•Circle BC corresponding to surfaces which 
rotates around a axis.
•Circle CA corresponding to surfaces which 
rotates around b axis.

Transformations of Stress and Strain

64

Application of Mohr’s Circle to the Three- Dimensional Analysis of Stress

•In the case of plane stress, the axis 
perpendicular to the plane of stress is a 
principal axis (shearing stress equal zero).

•If the points A and B (representing the 
principal planes) are on opposite sides of the 
origin, then

c) Planes of maximum shearing stress are 
at 45o to the principal planes.

b) The maximum shearing stress for the 
element is equal to the maximum “in-
plane” shearing stress

a) The corresponding principal stresses 
are the maximum and minimum normal 
stresses for the element
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Application of Mohr’s Circle to the Three- Dimensional Analysis of Stress

•If A and B are on the same side of the 
origin (i.e., have the same sign), then

c) Planes of maximum shearing stress are 
at 45 degrees to the plane of stress

b) Maximum shearing stress for the 
element is equal to half of the maximum 
stress

a) The circle defining σmax, σmin, and 
τmax for the element is not the circle 
corresponding to transformations within 
the plane of stress
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Example 8
For the state of plane stress shown, determine (a) the three principal planes and 
principal stresses, (b) the maximum shearing stress.
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Example 8

Since the sides of the right triangle CFX are CF=6-4.75=1.25 ksi
and FX= 3 ksi, the radius of the circle is
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Example 8
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Example 8

Since points D’ and E’, which define the planes of maximum shearing stress, are
located at the ends of the vertical diameter of the circle corresponding to a
rotation about the b axis, the faces of the element can be brought to coincide with
the planes of maximum shearing stress through a rotation of 458 about the b axis.
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Yield Criteria for Ductile Materials Under Plane Stress

•Failure of a machine component subjected 
to uniaxial stress is directly predicted 
from an equivalent tensile test

The component is in a health condition.< yxif σσ

Uniaxial Stress 
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Yield Criteria for Ductile Materials Under Plane Stress

•Failure of a machine component subjected 
to plane stress cannot be directly 
predicted from the uniaxial state of stress 
in a tensile test specimen

•It is convenient to determine the 
principal stresses and to base the failure 
criteria on the corresponding biaxial stress 
state

Plane Stress 
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Yield Criteria for Ductile Materials Under Plane Stress
Maximum shearing stress criteria:

Based on slippage of the material along 
oblique surface and is due to shearing stress

Structural component is safe if the maximum shearing stress is less 
than the maximum shearing stress in a tensile test specimen at yield.

For centric axial loading we have 

2max
Y

Y
σττ =<=

2
Max

Max
στ
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Yield Criteria for Ductile Materials Under Plane Stress

Maximum shearing stress criteria:

For σa and σb with the same sign

For σa and σb with opposite signs

22
or

2max
Yba σσστ <=

22max
Yba σσστ <

−
=

<
<

Yb

Ya

σσ
σσ

Yba σσσ <−

Tresca’s hexagon
(Henri Edouard Tresca 1814-1885)

Safe Zone
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Yield Criteria for Ductile Materials Under Plane Stress
Maximum Distortion Energy Criterion

Based on the determination of the distortion energy in a given material
It means that determination of energy associated with changes in shape in that material.

Structural component is safe if the distortion energy per unit volume is 
less than the required distortion energy per unit volume in a tensile test 
specimen at yield.

Distortion energy per unit volume of Isotropic  material:

)(
6
1 22

bbaad G
u σσσσ +−= G: Modulus of Rigidity

Ydd uu )(<
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Yield Criteria for Ductile Materials Under Plane Stress
Maximum Distortion Energy Criterion

in a tensile test specimen at yield.

( )
GG

u Y
YYYd

b
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Yield Criteria for Ductile Materials Under Plane Stress
Maximum Distortion Energy Criterion

222
Ybbaa σσσσσ <+−

Von Mises criteria
(Richard Von Mises)
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Yield Criteria for Ductile Materials Under Plane Stress
Maximum Distortion Energy Criterion

2222 2)()()( Ycbcaba σσσσσσσ <−+−+−

Von Mises criteria for

principle stresses in 3D element
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Yield Criteria for Ductile Materials Under Plane Stress
Maximum Distortion Energy Criterion

2222222 2)(3)()()( Yyzxzxyzyzxyx στττσσσσσσ <+++−+−+−

Von Mises criteria for

the general 3D state of stress
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Yield Criteria for Ductile Materials Under Plane Stress

The Tresca criteria is more conservative than 
the Von Mises criterion

In torsional loading (pure shearing) the 
Von Mises is more accurate.

ba σσ −=
YYba to σσσσ 577.0)60.055.0( ≈=−=In Practice:
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Yield Criteria for Brittle Materials Under Plane Stress

Maximum Normal Stress Criterion
Coulomb’s Criterion

Maximum Normal Stress Criterion
Mohr’s Criterion

Uσ TUσ

CUσ
: Ultimate strength in tension and compression : Ultimate strength in tension

: Ultimate strength in compression

Brittle materials fail suddenly through rupture or fracture in a tensile test.  The failure 
condition is characterized by the ultimate strength.
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Yield Criteria

Determine the factor of safety with respect to yield, using:

(a) The maximum-shearing-stress criterion.

(b) The maximum-distortion-energy criterion.

Example 9

MpaY 250=σ
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Yield Criteria

Example 9

Construct Mohr Circle

Principle Stress
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Yield Criteria
Example 9

(a) The maximum-shearing-stress criterion.
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Yield Criteria
Example 9

(a) The maximum-distortion-energy criterion.
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Yield Criteria
Example 9

(a):

(b):
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Transformation of Plane Strain
•Plane strain :

I. Deformations of the material take 
place in parallel planes.

II. Deformations of the material are 
the same in each of those planes.

•Plane strain occurs in a plate subjected along 
its edges to a uniformly distributed load and 
restrained from expanding or contracting 
laterally by smooth, rigid and fixed supports

Components of Strain

0

0

===

≠==

zyzxz

xyyx

γγε
γεε
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Transformation of Plane Strain

•Example:  Consider a long bar subjected to 
uniformly distributed transverse loads.  State 
of plane stress exists in any transverse 
section not located too close to the ends of 
the bar.
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Transformation of Plane Strain

•State of strain at the point Q results 
in different strain components with 
respect to the xy reference frames.

)cos()sin()(sin)(cos)( 22 θθγθεθεθε xyyx ++=

)(2)(
2
1

)45( yxOBxyxyyxOB εεεγγεεεε +−=++==
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Transformation of Plane Strain

•Applying the trigonometric 
relations used for the 
transformation of stress,
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Mohr’s Circle for Plane Strain
•The equations for the transformation of plane strain are of the same form as the 
equations for the transformation of plane stress - Mohr’s circle techniques apply.

If the shear deformation causes a given side to rotate clockwise, the corresponding 
point on Mohr's circle for plane strain is plotted above the horizontal axis, and if 
the deformation causes the side to rotate counterclockwise, the corresponding 
point is plotted below the horizontal axis. We note that this convention matches the 
convention used to draw Mohr's circle for plane stress.
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Mohr’s Circle for Plane Strain
•The center C and radius R ,

22

222
+

−
=

+
= xyyxyx

ave R
γεεεε

ε

•Principal axes of strain and principal strains,
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Mohr’s Circle for Plane Strain
•The center C and radius R ,

22

222
+

−
=

+
= xyyxyx

ave R
γεεεε

ε

•Maximum in-plane shearing strain,

( ) 22
max 2 xyyxR γεεγ +−==
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Mohr’s Circle for Plane Strain

Determine

(a) The principal axes and principal strains, 

(b) The maximum shearing strain and the corresponding normal strain.

Example 10
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Mohr’s Circle for Plane Strain Example 10

Principal Axes and Principal Strains:
We first determine the coordinates of points X and Y

Since the side of the square associated with rotates clockwise, point X of 
coordinates      and         is plotted above the horizontal axis. Since and the 
corresponding side rotates counterclockwise, point Y is plotted directly below the 
origin

xε

xε 2/xyγ 0=yε
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Mohr’s Circle for Plane Strain Example 10

Principal Axes and Principal Strains:

Principle Strain
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Mohr’s Circle for Plane Strain Example 10

Principal Axes and Principal Strains:
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Mohr’s Circle for Plane Strain Example 10

Maximum Shearing Strain

The corresponding normal 
strains are equal to
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Three-Dimensional Analysis of Strain

Generalized Hooke’s law

Hooke’s law can be extended to include 
the biaxial and Triaxial states of stress 
that often encounter in engineering 
applications.

ε
σ=E
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Three-Dimensional Analysis of Strain

Generalized Hooke’s law

Let’s consider the differential 
element of the material subjected 
to biaxial state of normal stress
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Three-Dimensional Analysis of Strain

Generalized Hooke’s law

– Shearing stresses have not been shown in the 
differential element of because they do not 
produce changes in the lengths of sides of the 
element.

– They only produce distortion of the element 
(angle changes), that can contributes to the 
angular strain.
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Three-Dimensional Analysis of Strain

Generalized Hooke’s law

– The deformation of that element in the direction 
of the normal stresses, for a combined loading, can 
be determined by computing the deformations 
resulting from the individual stresses separately and 
adding the values obtained algebraically.

The principle of superposition.
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Three-Dimensional Analysis of Strain

Generalized Hooke’s law

– When applying the principle of superposition, the 
following conditions must be satisfied:

Each effect is linearly related to the load that 
produced it.
The effect of the first load does not scientifically 
change the effect of the second load.

The principle of superposition.
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Three-Dimensional Analysis of Strain

Generalized Hooke’s law

The first condition is satisfied if the stresses do not 
exceed the proportional limit of the material.

The second condition is also satisfied if the 
deformations small so that the small changes in the 
areas of the faces of the element do not produce 
significant changes in the stresses.

The principle of superposition.
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Three-Dimensional Analysis of Strain

Generalized Hooke’s law
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Three-Dimensional Analysis of Strain

Generalized Hooke’s law

xσ

Stress X: Direction Y: Direction Z: Direction
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Three-Dimensional Analysis of Strain

General State of Strain
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Three-Dimensional Analysis of Strain

General State of Stress
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Three-Dimensional Analysis of Strain
Plane State of Stress
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Three-Dimensional Analysis of Strain

Generalized Hooke’s Law for Shearing Stress and Strain in 
Isotropic Materials
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Three-Dimensional Analysis of Strain

•Three principal axes exist such that the 
perpendicular element faces are free of 
shearing stresses.
•By Hooke’s Law, it follows that the 
shearing strains are zero at the principal 
planes of strain.
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Three-Dimensional Analysis of Strain

Rotation about the principal axes 
may be represented by Mohr’s 
circles.

Mohr circle

Transformations of Stress and Strain

112

Three-Dimensional Analysis of Strain
Mohr circle

•For the case of plane strain where the x and y
axes are in the plane of strain, 

-The z axis is also a principal axis
-The corresponding principal normal strain 
is represented by the point Z = 0 or the 
origin.
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Three-Dimensional Analysis of Strain
Mohr circle

•If the points A and B lie on opposite sides of 
the origin, the maximum shearing strain is the 
maximum in-plane shearing strain, D and 
E.
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Three-Dimensional Analysis of Strain
Mohr circle

•If the points A and B lie on the same side of 
the origin, the maximum shearing strain is out 
of the plane of strain and is represented by 
the points D’ and E’.
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Three-Dimensional Analysis of Strain
Mohr circle

•Consider the case of plane stress,

0=== zbyax σσσσσ

•Corresponding normal strains,
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1•Strain perpendicular to the plane of stress is 
not zero.
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Three-Dimensional Analysis of Strain
Example 11

At a point on the surface of a structural steel machine part subjected 
to a biaxial state of stress, the measured strains are as follows:

Determine the Normal and shear stresses at the point.
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Example 11
Three-Dimensional Analysis of Strain
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Three-Dimensional Analysis of Strain
Example 12

Determine the state of strain that corresponds to the following state 
of stress at a point in a steel machine part.
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Three-Dimensional Analysis of Strain
Example 12

Transformations of Stress and Strain
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Three-Dimensional Analysis of Strain
Example 12
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Three-Dimensional Analysis of Strain
Example 13

The principal strains on the free surface are

Determine:
(a) the maximum in-plane shearing strain,
(b) the true value of the maximum shearing strain near the surface
of the component.

30.0=ν6

6

1050

10400
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−

×−=
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Three-Dimensional Analysis of Strain
Example 13
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Three-Dimensional Analysis of Strain
Example 13
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Three-Dimensional Analysis of Strain

Strain Measurement and Rosette Analysis

Electrical resistance strain gages 
provide accurate measurements of 
normal strain.
The gage may consist of a length of 
0.001 in-diameter wire arranged and 
cemented between two pieces of paper.
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Three-Dimensional Analysis of Strain

Strain Measurement and Rosette Analysis

The wire or foil gage is centered to the material 
for which the strain is to be determine.

As the material is strained, the wires are 
lengthened or shortened.

This lengthening and shortening will cause 
changes in the electrical resistance.
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Three-Dimensional Analysis of Strain

Strain Measurement and Rosette Analysis

The change in resistance can be measured and 
calibrated to provide normal strain

Shearing strains are often obtained by measuring 
normal strains in two or three different directions.

The shearing strains can be computed from normal 
strain data.
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Three-Dimensional Analysis of Strain

Strain Measurement and Rosette Analysis

Rosette 
Types
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Three-Dimensional Analysis of Strain

Strain Measurement and Rosette Analysis

•With a 45o rosette, εx and εy are measured 
directly.  γxy is obtained indirectly with,

( )yxOBxy εεεγ +−= 2
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Three-Dimensional Analysis of Strain

Strain Measurement and Rosette Analysis

•Normal and shearing strains may be obtained 
from normal strains in any three directions,
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At a point on the free surface of an aluminum alloy machine part, 
the strain rosette shown in following was used to obtain this 
normal strain data:

Determine:
(a) the strain components.
(b) the principal strains and maximum shearing strain.
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Three-Dimensional Analysis of Strain
Example 14
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Three-Dimensional Analysis of Strain
Example 14

Transformations of Stress and Strain
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Three-Dimensional Analysis of Strain
Example 14

Solving these equations yields

Principle Strains
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Three-Dimensional Analysis of Strain
Example 14

The strain rosette was used to obtain normal strain data at a point on 
the free surface of aluminum alloy structural component. rosette 
was used to obtain this normal strain data:

Determine:
(a) The strain components.
(b) The stress components.
(c) The principal stresses and maximum shearing stress at the point
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Three-Dimensional Analysis of Strain
Example 15

GpaG
GpaE

28
73

=
=

με
με
με

1425
450
525

+=
+=
+=

c

b

a



Transformations of Stress and Strain

135

Three-Dimensional Analysis of Strain
Example 15

Transformations of Stress and Strain
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Three-Dimensional Analysis of Strain
Example 15

Solving these equations yields

Principle Strains
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Three-Dimensional Analysis of Strain

Example 15

Transformations of Stress and Strain
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Three-Dimensional Analysis of Strain

Example 15
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Three-Dimensional Analysis of Strain
Example 16

με
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2
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Determine:
(a) The strain components.
(b) The principle strains.
(c) Maximum shearing strain.

Transformations of Stress and Strain

140

Three-Dimensional Analysis of Strain
Example 16
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Three-Dimensional Analysis of Strain
Example 16

Solving these equations yields
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Three-Dimensional Analysis of Strain
Example 16
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Three-Dimensional Analysis of Strain
Example 16

Transformations of Stress and Strain
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Three-Dimensional Analysis of Strain
Example 16
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Three-Dimensional Analysis of Strain
Example 16
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