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Transformations of Stress and Strain

] Introductions

— Formulas for determining normal and shearing
stresses on a specific planes are:

» Axially loaded bars
» Circular shafts

> Beams




Transformations of Stress and Strain

] Introductions

The elastic flexural formula for o = M-y o - M-c
normal stress is given by: Y

Centroidal axis

Neutral axis
....... N / T
e

Transformations of Stress and Strain
] Introductions

The shearing stress at the same point on
the cross section of the beam 1s given by:
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Transformations of Stress and Strain

] Introductions

the stress on circular shafts due to torsion [

_Ip ;L
is given by: &= J g
Distribution of Normal Stress in a Beam Cross Section
T /
\
r, \
P Fi P
Transformations of Stress and Strain
(] State of Stress
Stress at a point in a material body has been defined as a force per unit
area. But this definition is somewhat ambiguous since it depends upon
what area we consider at the point.
»
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Transformations of Stress and Strain

(1 State of Stress

let us pass a cutting plane through point O perpendicular to
the x axis.
If dA is the area, then by definition

)
dF.
(02 .=
\ A
0 de = deA
dF,
Xy =
/ \ dﬂ = rﬂ_dfi \—dA/
\ dF
\ dF, =t,.d4 7, =—
dA

Transformations of Stress and Strain

(] State of Stress

let us pass a cutting plane through point O perpendicular to
the y axis.
If dA is the area, then by definition

)
F
d.F:}:JJ(f..:‘iI Gy:d Y
dA
dF
dF. = 7,.dA T=
dF. =t _dA —
< M)
/ h dF’,
\‘ Tyz = dA
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Transformations of Stress and Strain

(1 State of Stress

let us pass a cutting plane through point O perpendicular to

the zaxis.
If dA is the area, then by definition

dF.
2 Y
dF. d. 4 a7,
bt AN A zx
dA
)
g5 dF
dF:—D-:(fA dFI:rIdA T = Y
b 2 Zy dA
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Transformations of Stress and Strain

] General or Triaxial State of stress

* Normal Stresses

Y
yz ' [ O-X’O-y’o-z ]

e Shear Stress

[ Txy’ Tyz’ sz J
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Transformations of Stress and Strain

( General or Triaxial State of stress
Sign Conventions
» Normal stresses indicated by the symbol @ and a single subscript to indicate the plane
(actually the outward normal to the plane) on which he stress acts.

» Normal stresses are positive if they point in the direction of the outward normal. Thus,
normal stresses are positive if tensile and negative if compressive.

» Shearing stresses are denoted by the symbol T followed by two subscripts, the first
subscript designates the normal to the plane on which the stress acts and the
second designate the coordinate axis to which the stress is parallel.

» A positive shearing stress points in the positive direction of the coordinate axis of

the second subscript if it acts on a surface with an outward normal in the positive
direction.

1

Transformations of Stress and Strain

J General state of stress

Same state of stress is represented by a different set of components if
axes are rotated.
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Transformations of Stress and Strain

(JPlane Stress

e Plane Stress - state of stress in which two faces of
the cubic element are free of stress.

13

Transformations of Stress and Strain

(JPlane Stress

» Plane Stress - state of stress in which two faces of
the cubic element are free of stress.

14




Transformations of Stress and Strain

Transformation of Plane Stress

AA cos 0) W o
Plane Stress Equations e &t | g

Free-body Diagram

Ty (AA cos 9)‘
7, (AA sin 6)
, ay (A4 sin 6)
Y F,=0=0,A4d-0 (Adcos(8))cos(8) -7, (A4 cos(6))sin(6)
—0,(A4sin(0))sin(6) - 7,, (Adsin(6) )cos(0)

Z F,=0=1,Ad+0, (AA cos(H))sin(é?) -7, (AA cos(H))cos(H)
— 0, (A4sin(8))cos(0) + 7, (A4sin(8))sin(6)

Transformations of Stress and Strain

Transformation of Plane Stress

*The equations may be rewritten to yield

c.+0, O0.—0O ,
[ o, = Y+ 5 =cos(20) +7,, sin(20) ]

if 6-560+90 =
_o0.t0, 0.-0

o, = S - 5 *cos(26) -7, sin(26)

c.—0, .
Ty =— 5 sin(260) +7,, cos(20)

For plane stress, the sum of the normal stresses on
any two orthogonal planes through a point in a body [ o,+t0,=0,+0, ]
is a constant or in invariant.




Transformations of Stress and Strain

U Principal Stresses

» The principal stresses are the maximum and minimum normal stress.
» In general, the principal stresses can be determined by plotting curves.

» This process is time-consuming, and therefore, general methods are needed.
40
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Transformations of Stress and Strain

Principal Stresses

xy'
= The previous equations are combined to
yield parametric equations for a circle o >
£
¢
2 ) . ) min M
[(O-x' o O-ave) + Tx'y' =R J 'y
Txvy'

where

2
o.+to O —0O
_ Y _ X y 2
am——z R= [—j +7




Transformations of Stress and Strain 5y

dMaximum normal stress

 Principal stresses occur on the principal

planes of stress with zero shearing stresses.

2
S _o.to, [fo.-0, g
max,min 2 2 Xy

Tin

Transformations of Stress and Strain

1 Notes on Principal Stresses Equation

I.  The angle 6p and 0p + 90 between x-plane
(or y-plane) and the mutually perpendicular
planes on which the principal stresses act.

II.  When tan 20p is positive, Op is positive, and
the rotation is counterclockwise.

III. When tan 20p is negative, Op is negative,
and the rotation is clockwise.

g,

min

IV. The shearing stress is zero on planes
experiencing maximum and minimum
values of normal stresses.

V. [If one or both of the principal stresses is
negative, the algebraic maximum stress can
have a smaller absolute value than the

2
o - o,+0, N 0,—0, g
max,min 2 2 Xy
27
tan 26, = a
o,—0,

minimum stress.




Transformations of Stress and Strain i

S

dMaximum shear stress

Maximum shearing stress occurs for:

O-x +0
— — Yy
Gx' - O-ave - 7
~N
2 Oax
o.—0 O — Oy
=R = Y 2 — _Max ~ Min
Tmax =R= \/ ( 7 ] + Txy Tmax 7
J
)
-0
tan26, = ———=
27,
J

Note : defines two angles separated by 90° and
offset from 6, by 45°

Transformations of Stress and Strain

y y
U Notes on Principal Stresses and Maximum In- /
Plane Shearing Stress Equation

I.  The two angles 20p and 26s differ by 90,
therefore, Op and Os are 45 apart.

II. This means that the planes in which the
maximum in-plane shearing stress occur are
45 from the principal planes.

ITII. The direction of the maximum shearing

stress can be determined by drawing a
wedge-shaped block with two sides parallel
to the planes having the maximum and

minimum principal stresses, and with the

third side at an angle of 45. The direction of o
the maximum shearing stress must oppose tan 26, = —

the larger of the two principal stresses. x




Transformations of Stress and Strain

dWedge-shaped Block

¥y o

23

Transformations of Stress and Strain

Principal Stresses for Axially Loaded Bar

)
o, #0
o, =0 a5 .
/ Inclined Area, 4,
Txy =0 Original Area, A 0
O +0 O._—0 —
0, = T eos(20) +7,, 5in(26) = Gx;O + 970 0s26) + (0)sin(26)

= [O'X, = % (1+ cos(26’)ﬂ

o,—0, . o -0 .
Ty == 5 =sin(20) +7,, cos(20) = — x2 sin(26) +(0) cos(26)

- [rx,y, — 02 sin(26) ]

24




Transformations of Stress and Strain

Principal Stresses for Axially Loaded Bar

[O'x» = % (1 + cos(2¢9))] P

™~

O n / Inclined Area, 4,
Ty =~ 5 sin(20) Original Area, 4 0

0=0"0orl80°=>0.=0_, = [O'Max =0,
v P)
) = Max — O-Max =
o . o, 2 Lﬂ
0=45 or135 =7, =7, = TMax_7
J

Transformations of Stress and Strain

Principal Stresses for Shaft under Pure Torsion

y . )
\ " O-x =
T o, =0
T \ Xy Y
xy Hoth
A 7., #0
‘ LN
.
X
o.+to, 0. -0 -
o, =— 5 e 5 > c0s(26) + 7, sin(20) = ?+ 0 5 0 cos(20)+ 7, sin(20)

= (o, =7, sin(20)|

c.—0, .
Ty =— 5 sin(260)+7,, cos(20) = —

sin(20) + 7, cos(26)

= [Tx'y' =7, cos(29)]




Transformations of Stress and Strain

Principal Stresses for Shaft under Pure Torsion

[ax, =7, sin(29)]

[Tx,y, =7, cos(26’)]

O-x' = O-Max - Txy

) T =Ty =T T,,.c
0=45 orl135 = " R :[aMax:TMax: Mo ]

Transformations of Stress and Strain

dExample 1

Determine the normal and shearing stresses at this point on the
inclined plane AB shown in the figure.

70MPa

‘ 40MPa

B’;

{7101\4%
A A 62°




Transformations of Stress and Strain

dExample 1

We have

29

Transformations of Stress and Strain

dExample 1

70 MPa

4OMPa

~‘—10MP3
A 620

o

/ 47.2MPa
; 5 4

56.4MPa

n

30




Transformations of Stress and Strain

dExample 2

The stresses shown act at a point on the free surface of a stressed
body. Determine the normal stresses and the shearing stress at
this point if they act on the rotated stress element.

70MPa

| 40MPa
4‘71 OMPa

T

31

) . 70MPa
Transformations of Stress and Strain
40MPa

JExample 2 4} %IOMPH
We have
—

32




Transformations of Stress and Strain

dExample 2

70MPa

| 40MPa
{71 OMPa

B

33

Transformations of Stress and Strain

dExample 3

Determine and show on a sketch the principal and maximum
shearing stresses.

4ks1

1

AT_ 6ksi

34




Transformations of Stress and Strain 4ks1

dExample 3 —l_

12ksi1
We have |

_T_. 60ks1

35

Transformations of Stress and Strain
dExample 3

W 4ksi

6 ksi1

“7 12ks1
4 ksi

‘ 6 ksi
T, = 10ksi=7_,_ /

36




Transformations of Stress and Strain

dExample 4

For the state of plane stress shown, determine:
(a) The principal planes
(b) The principal stresses
(¢) The maximum shearing stress and the corresponding normal stress.

10 MPa

—F = 40 MPa

ik 50 MPa

37

Transformations of Stress and Strain

dExample 4

10 MPa

—% o 40 MPa

50 MPa

SOLUTION:

 Find the element orientation for the principal
stresses from

38




Transformations of Stress and Strain 10 MPa

dExample 4

—F o 40 MPa

20 MPa

» Determine the principal stresses from

= 30 MPa

\ B .= T0MPa

rr‘.lllll

39

Transformations of Stress and Strain 10 MPa

JExample 4 e

o, =-10MPa

50 MPa

* Calculate the maximum shearing stress with

o'= 20 MPa

 The corresponding normal stress is

> Tnax = 90 MPa

x
6,= —184

a'= 20 MPa

40




Transformations of Stress and Strain

dExample 5

A single horizontal force Pof 150 Ib magnitude is applied to end D of lever
ABD. Determine:

(a) The normal and shearing stresses on an element at point A having sides
parallel to the x and y axes

(b) The principal planes and principal stresses at the point H.

41

Transformations of Stress and Strain

HdExample 5 \

10 in.

SOLUTION:

* Determine an equivalent force-couple
system at the center of the transverse
section passing through H.

P =1501b

fl M. = 1.5kip - in.

n

42




Transformations of Stress and Strain

P=1501b

DExample 5 T = 2.7 kip - in.

TS
I M = 15kip - in.
* Evaluate the normal and shearing stresses :

at H.

2

43

Transformations of Stress and Strain

DEXample 5 * Determine the principal planes and

o = 8.84 ksi calculate the principal stresses.
1 , = 8.84k

- = 7.96 ksi

... = 13.52 ksi

max

\; EOP = — 30.5°

o = 4.68 ksi

44




Introduction —Concept of Stress

J Homework-01

Solve Problems:

= 6.1t06.4
= 0.22
"= 6.25
Transformations of Stress and Strain o,
d Mohr’s Circle for Plane Stress l =

» For a known state of plane stress 0x,0y,7y, .
plot the points X'and Y and construct the
circle centered at C.

Tx_‘.'
2
o+ 0, oO.—0,
[%_ Bl RZ\/[ B J ”QJ i l
. g

(b) Counterclockwise — Below




Transformations of Stress and Strain
L Mohr’s Circle for Plane Stress

|

» The principal stresses are obtained at A and B.

O-max,min = O-ave i R

| Y<0-y , +Txy) " 29 2Txy
| A an » =
Bl o o,-0,

T in

™ 303 —a,)

The direction of rotation of Oxto Oais
the same as CX'to CA.

(0] C 20p : Tey
Xle . — ’Txy)

Omnin

Transformations of Stress and Strain
L Mohr’s Circle for Plane Stress b

min

Yo+,

y" x'y ) max

~

o,

X' (0, = Tyyy) o, \
(a) o
* Mohr’s circle uniquely defines, the * For the state of stress af an angle 6
state of stress at other axes with respect to the xy axes, construct
orientations. a new diameter XY’ at an angle 20

with respect to XY.




Transformations of Stress and Strain
L Mohr’s Circle for Plane Stress

» Mohr’s circle for centric axial loading:

(08

min

T
[o-Max = TMax = Af;xc}

49

Transformations of Stress and Strain

0 Example 6

100 MPa

——a 40 MPa

For the state of plane stress shown, kg

(a) Construct Mohr’s circle, determine
(b) The principal planes,
(¢) The principal stresses,

(d) The maximum shearing stress and the corresponding normal stress.

50




. . 100 MPa
Transformations of Stress and Strain

O Example 6 — 4 0 MPa

SOLUTION:

» Construction of Mohr’s circle

We have

7(MPa))
Transformations of Stress and Strain

0 Example 6

* Principal planes and stresses

/

70 MPa )

Omnax =

O = 30MPa

min




Transformations of Stress and Strain

O Example 6 /” del

@ = Oave =
o'= 20 MPa D

o'= 20 MPa
€ _ Y /“‘ =
Toax = 90 MPa
Tnm.\' 50
90°
_ 5 N
0] C og(MPa)
/ 26,=53.1°
O = 70 MPa
. Pl X
0 = 30 MPa E p=50
(J;]IZAX:'TO
x = =FA0
)
*Maximum shear stress
53
Transformations of Stress and Strain
O Example 7
X

For the state of stress shown, determine
(a) The principal planes and the principal stresses.

(b) The stress components exerted on the element obtained by rotating the
given element counterclockwise through 30 degrees.

54




Transformations of Stress and Strain

O Example 7

SOLUTION:

» Construction of Mohr’s circle

We have

.

T (MPa) )

Te = 80 MPa

O

min :_J
28 MPa b——l

Y(60, —48)
<~ 0, = 132 MPa—>
55
Transformations of Stress and Strain
a Example 7 7 (MPa) )
0, = 80 MPa

Opnin = 28 MPa

min

Omax = 132 MPa

max

T,

a

*Principal planes and stresses

0
t_
rens |
Y(60, —48) e
s = 132 MPa—

56




Transformations of Stress and Strain

O Example 7
r (MPa)) A

207) = 67.4°
o (MPa)

*Stress components after rotation by 30°
Points X’and Y’ on Mohr’s circle that
correspond to stress components on the
rotated element are obtained by rotating
XY counterclockwise through 26 = 60°

Transformations of Stress and Strain
J General State of Stress

! ~ *Consider the general 3D state of stress
at a point and the transformation of
stress from element rotation

*State of stress at Q defined by: o,,0,,

/\x y

*Consider tetrahedron with face perpendicular to the
line QN with direction cosines:

O,,Tyy>

T yzo Tox

Ao ) :




Transformations of Stress and Strain
d General State of Stress y

*The requirement leads to

SF, =0

o, = O'x/ﬁ + O'yﬂg, + O'Z/lg

+ 27, A Ay, + 27 A A + 2T, A A,

Transformations of Stress and Strain
J General State of Stress

Principal axes and principal planes

*Form of equation guarantees
a that an element orientation can
be found such that

0n=0¢%41nj%+a@ﬁ

These are the principal axes and principal
planes and the normal stresses are the
principal stresses.




Transformations of Stress and Strain

O Application of Mohr’s Circle to the Three- Dimensional Analysis of Stress

*Transformation of stress for an element
rotated around a principal axis may be
represented by Mohr’s circle.

61

Transformations of Stress and Strain

O Application of Mohr’s Circle to the Three- Dimensional Analysis of Stress

7) *Points A, B, and Crepresent the
principal stresses on the principal
planes (shearing stress 1s zero)

*The three circles represent the normal
and shearing stresses for rotation
around each principal axis.

*Radius of the largest circle yields the
< o, >| maximum shearing stress.

1

Tmax = 5 ‘O-max ~ Omin

62




Transformations of Stress and Strain

0 Application of Mohr’s Circle to the Three- Dimensional Analysis of Stress

)

b

\

2
= Omax / gy,

*Circle AB corresponding to surfaces which
rotates around c axis.

Circle BC corresponding to surfaces which
rotates around a axis.

Circle CA corresponding to surfaces which
rotates around b axis.
63

Transformations of Stress and Strain

O Application of Mohr’s Circle to the Three- Dimensional Analysis of Stress
T)

*In the case of plane stress, the axis
perpendicular to the plane of stress is a
principal axis (shearing stress equal zero).

K *If the points A and B (representing the
principal planes) are on opposite sides of the

origin, then

a) The corresponding principal stresses
are the maximum and minimum normal
stresses for the element

a

min

b) The maximum shearing stress for the
element is equal to the maximum “in-
plane” shearing stress

c) Planes of maximum shearing stress are
at 45° to the principal planes.

64




Transformations of Stress and Strain

0 Application of Mohr’s Circle to the Three- Dimensional Analysis of Stress

[f A and B are on the same side of the
origin (i.e., have the same sign), then

a) The circle defining o, ., 0,,,. and
7.« for the element is not the circle
corresponding to transformations within

the plane of stress

b) Maximum shearing stress for the
element is equal to half of the maximum
stress

c) Planes of maximum shearing stress are
at 45 degrees to the plane of stress

65

Transformations of Stress and Strain
0 Example 8

For the state of plane stress shown, determine (&) the three principal planes and
principal stresses, (5) the maximum shearing stress.

Y
3.5 ksi g
P 3 ksi
s
. || 6ksi
A > x
v l

ta

66




Transformations of Stress and Strain

d Example 8 ksi[
P j 3 ksi

T)

g i 6 ksi
-q—Gks.i.-j‘x —H (;———l—

[ ¢
o| B\ F /A a
" /
3.5 ksi

Since the sides of the right triangle CFX are CF=6-4.75=1.25 ksi
and FX= 3 ksi, the radius of the circle is

67

Transformations of Stress and Strain
d Example 8 3.5 ki)

T)

-—Blcsi—-|
X

¥
,' .
s ,

3 ksi

68




Transformations of Stress and Strain

O Example 8

Since points D’ and E’, which define the planes of maximum shearing stress, are
located at the ends of the vertical diameter of the circle corresponding to a
rotation about the b axis, the faces of the element can be brought to coincide with
the planes of maximum shearing stress through a rotation of 458 about the b axis.

69

Transformations of Stress and Strain

[ Yield Criteria for Ductile Materials Under Plane Stress

Failure of a machine component subjected
to uniaxial stress is directly predicted
from an equivalent tensile test

Pf

T,

Uniaxial Stress

l.f 0.<0 ) — The component is in a health condition.

70




Transformations of Stress and Strain

[ Yield Criteria for Ductile Materials Under Plane Stress

Plane Stress P

*Failure of a machine component subjected
to plane stress cannot be directly
predicted from the uniaxial state of stress
in a tensile test specimen

*It is convenient to determine the
principal stresses and to base the failure
criteria on the corresponding biaxial stress
state

71

Transformations of Stress and Strain
[ Yield Criteria for Ductile Materials Under Plane Stress
Maximum shearing stress criteria:

> Based on slippage of the material along
oblique surface and is due to shearing stress

Structural component is safe if the maximum shearing stress is less
than the maximum shearing stress in a tensile test specimen at yield.

For centric axial loading we have

(0] (0}
Titax = peE Z-rnax<TY:7Y

)

72




Transformations of Stress and Strain

[ Yield Criteria for Ductile Materials Under Plane Stress

ap

Safe Zone

Maximum shearing stress criteria:

For o, and o), with the same sign

0a| 1ol _ov
= —
fmax =55 0T 0,| <0,

For o, and o, with opposite signs

Tresca’s hexagon

(Henri Edouard Tresca 1814-1885)
— ‘O-a - O-b‘ < Oy
Tmax =
2 2

= |lo,-0,|<0,

73

Transformations of Stress and Strain

[ Yield Criteria for Ductile Materials Under Plane Stress
Maximum Distortion Energy Criterion

» Based on the determination of the distortion energy in a given material
It means that determination of energy associated with changes in shape in that material.

Structural component is safe if the distortion energy per unit volume is
less than the required distortion energy per unit volume in a tensile test
specimen at yield.

[ u, <(uy)y ]

Distortion energy per unit volume of Isotropic material:

1 2 2
u, = E(O'a —0,0,+0,7) | G:Modulus of Rigidity

74




Transformations of Stress and Strain

1 Yield Criteria for Ductile Materials Under Plane Stress
Maximum Distortion Energy Criterion

in a tensile test specimen at yield.

2
_O-Y

%= W), =6, ~5,0)+(0))
“roegt T 6G

o,=0

2

u, <(u = —(0,6 —00,+0, )< =
(<), > (07-0,0,+0)< %

2 2 2 . .
o, —0,0,+0, <Oy Ellipse equation

75

Transformations of Stress and Strain

O Yield Criteria for Ductile Materials Under Plane Stress
Maximum Distortion Energy Criterion

Safe Zone

2 2 2
o —-0,0,+0, <0,

a

O-a = O-Y Ja = _O-Y (Ta
A= & B=
O, =0y O, =0y
_Jo,=-0.5770, _]0,=05TI0o,
| 0,=05770, o, =-0.5770,

Von Mises criteria

(Richard Von Mises)
76




Transformations of Stress and Strain

1 Yield Criteria for Ductile Materials Under Plane Stress
Maximum Distortion Energy Criterion

Von Mises criteria for

principle stresses in 3D element

[ (6,-0,) +(0,-0,) +(0,-0.)" <20, ]

/ . oy,

77

Transformations of Stress and Strain

[ Yield Criteria for Ductile Materials Under Plane Stress
Maximum Distortion Energy Criterion

Von Mises criteria for

the general 3D state of stress

[ (0,-0,)+(0,-0.) +(0,-0.) +3(z,” +7.° +7,") <20, ]

78




Transformations of Stress and Strain

[ Yield Criteria for Ductile Materials Under Plane Stress

The Tresca criteria 1s more conservative than

the Von Mises criterion

In torsional loading (pure shearing) the
Von Mises is more accurate.

P,
Y

T

Obv

Torsion

+OY 050Y

/ﬁ 0.5570Y

BA

’ X

Tmin

In Practice: o, =-0, =(0.5500.60)0, = 0.5770,

Oy

Transformations of Stress and Strain

1 Yield Criteria for Brittle Materials Under Plane Stress

Brittle materials fail suddenly through rupture or fracture in a tensile test. The failure

condition is characterized by the ultimate strength.

Obv

+0Uu

-Ou +0Ou

-Ou

Maximum Normal Stress Criterion
Coulomb’s Criterion

Oy : Ultimate strength in tension and compression

Obv

HOUT

-Ouc

+Our

-Ouc

Maximum Normal Stress Criterion

* Mohr’s Criterion
(0]

Oy :Ultimate strength in compression

: Ultimate strength in tension




Transformations of Stress and Strain

(J Yield Criteria

Example 9

:
Determine the factor of safety with respect to yield, using: >
(a) The maximum-shearing-stress criterion.

(b) The maximum-distortion-energy criterion.

40 Mpa
o, =250Mpa
—_———
80 Mpa
"T 25 Mpa
Transformations of Stress and Strain Example 9
O Yield Criteria 7)
40MPa|
Construct Mohr Circle “—’“‘_D‘SO MPa —
3 T ! __
25 MPa | ;\\lﬁ’ Pl A
B\ 0) "\I G5 K
R | __—'3 d
Tloomra /F
-~ g} —><~—0," >

Principle Stress




Transformations of Stress and Strain
O Yield Criteria

(a) The maximum-shearing-stress criterion.

25 MPa

Example 9

'T)
~<— 80 MPa —|

40 MPa

3

D

i ’ ;
l/

-

/X
20 MPa /

\

==}, a

25 MPa

Transformations of Stress and Strain
O Yield Criteria

(a) The maximum-distortion-energy criterion.

95 MPa I

Example 9

7)
40 MPa

S

~— 80 MPa —

D

o |

|

Y !/ |
|

|

\\_J_C

Y

B!

p |

—N| )

-

/X
20 MPa /

== Oyt =

A

5 MPa




Transformations of Stress and Strain
L Yield Criteria
Example 9
Obv
OY=250Mpa
(a):
;l O Y=250Mpa
ol & / o)
55 g a
/ H T : (b):

M-\H-HH%"'\.
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Transformations of Stress and Strain

[A

Fixed support

Components of Strain

E=£=7,#0
gzzyzxzyzyzo

(J Transformation of Plane Strain

e Plane strain :
Deformations of the material take

L.
place in parallel planes.

Deformations of the material are

II.
the same in each of those planes.

*Plane strain occurs in a plate subjected along
its edges to a uniformly distributed load and

restrained from expanding or contracting
laterally by smooth, rigid and fixed supports
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Transformations of Stress and Strain

(d Transformation of Plane Strain

*Example: Consider a long bar subjected to
uniformly distributed transverse loads. State
of plane stress exists in any transverse
section not located too close to the ends of

the bar.

87

Transformations of Stress and Strain

O Transformation of Plane Strain

*State of strain at the point Q results Y y
in different strain components with
respect to the xy reference frames.

O X (@) x

£(6) =€, cos’(0)+¢,sin’(6) + 7,, sin(6) cos(6)

1
Eop =€y =—(E,TE TV = | V., =2, —(E.+E
X
OB (45) 2( y xy) Xy OB ( X y)
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Transformations of Stress and Strain

o
9 + Yx'y'

U Transformation of Plane Strain

*Applying the trigonometric
relations used for the
transformation of stress,

E +E, €. -€
g/),z T BT 0s20)+ X2 sin(20) )
2 2 2
E +E, E —E Y. .
0—>60+90 = ¢£,= L — L cos(26) ——sin(26)
2 2 2
E.+E, £ -, | Y.
0 —0+45 = £, = 5 L — 5 L sin(260) + 2y cos(26)
yx’y’ 8x_g yxy

Q =— 5 sin(26) + 5 cos(26) J

Transformations of Stress and Strain

(d Mohr’s Circle for Plane Strain

*The equations for the transformation of plane strain are of the same form as the
equations for the transformation of plane stress - Mohr’s circle techniques apply.

17
Y Y
1
Y(Ey iy E‘ng/)
16) C “
T m 1
2" Yy g T Yxy X(€r,= 3%y
@) X O X
17

If the shear deformation causes a given side to rotate clockwise, the corresponding
point on Moht's circle for plane strain is plotted above the horizontal axis, and if
the deformation causes the side to rotate counterclockwise, the corresponding
point is plotted below the horizontal axis. We note that this convention matches the
convention used to draw Mohr's circle for plane stress.




Transformations of Stress and Strain

(d Mohr’s Circle for Plane Strain

1
Y id, .
? *The center C'and radius R,
D
i 1 2 2
Y | 2 Ymax (in plane)
| l ‘ &ty P Ex—&) Yxy
Eave = 2 = > + 7
o} B ClI 26, A €
|
| 6|nin—>‘ : X
|E
€ve |
Py As |
6IIHL‘( 1 -Ill“-_'_‘__,_JIIL
p \
. ) . ) Ty o As (1 ey,
*Principal axes of strain and principal strains, wa A min
\ _.---'-":'.":_.- g 7
L {\“ #E“TLT-{'
% "t
tan 2(9p = 5
€x &y P
X
Emax = Eqve T R Emin = Eqve — R (b)
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Transformations of Stress and Strain

(d Mohr’s Circle for Plane Strain
1
3Y)

D
[
[
|
[

9 Ymax (in plane) €ave =

N
|

*The center C'and radius R,

E

[

ave i

€ nax X

|
B o 26, | A €
|
[
— €min ! -
|

2 2
) . Ex— &y . Yy
2 2 2

*Maximum in-plane shearing strain,

Ymax = 2R :\/(gx _8y)2 +73%y
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Transformations of Stress and Strain

(d Mohr’s Circle for Plane Strain
Example 10

Determine
(a) The principal axes and principal strains,

(b) The maximum shearing strain and the corresponding normal strain.

 J y

ll 1

g s | \ T t04x107rad

: = et I 2

S 4 HI

||Ila |III|I II|
. l0mm “4
-_1k_____

L10mm + 4 um

Transformations of Stress and Strain

(d Mohr’s Circle for Plane Strain Example 10

Principal Axes and Principal Strains: ¥
We first determine the coordinates of points X and Y

= \ \ T +0.4x107 rad
=™ 2
2

10mm+4um

Since the side of the square associated with &: rotates clockwise, point X of
coordinates £, and

7,/2 is plotted above the horizontal axis. Since e, =0 and the

corresponding side rotates counterclockwise, point Yis plotted directly below the
origin




Transformations of Stress and Strain

(d Mohr’s Circle for Plane Strain

Principal Axes and Principal Strains:

Principle Strain

Example 10

Y (0. — 2000 %
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Transformations of Stress and Strain

(d Mohr’s Circle for Plane Strain

Example 10

Principal Axes and Principal Strains:

Ly(w))

BI 0 C A e(w
!
Y(0, — 200) T~

~a

96




Transformations of Stress and Strain

(d Mohr’s Circle for Plane Strain Example 10

Maximum Shearing Strain

5 [o \C A e(w
Y(0, — 200)f v
-1

The corresponding normal e
strains are equal to |

_d
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Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

Generalized Hooke’s law

E=2

E

Hooke’s law can be extended to include
the biaxial and Triaxial states of stress

that often encounter in engineering
applications.
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Transformations of Stress and Strain

L Three-Dimensional Analysis of Strain

Generalized Hooke’s law

Let’s consider the differential
clement of the material subjected
to biaxial state of normal stress

O,

I

P

N NN I R
NP R

Pl PP R S e P

e
e
e
e
P
e

dy”
P
A
A

POr
L
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Transformations of Stress and Strain

L Three-Dimensional Analysis of Strain

Generalized Hooke’s law

— Shearing stresses have not been shown in the
differential element of because they do not
produce changes in the lengths of sides of the

element.

— They only produce distortion of the element
(angle changes), that can contributes to the

angular strain.

O,

I

L o o o o o o A A

W
Fie
]
P

o

e
d ]
i
el

e
e

]

L o o S S

1

o

0




Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain

Generalized Hooke’s law

O,

[1,.

it bbb d f f Pt b b )
L7 A
2z s
rr s
L o
L e
ey ]
e d s
L7 s
ey o
ey o
ey e
ey x o
ERTTRERI P IR Rt e PPV FIEEP

The principle of superposition.

— The deformation of that element in the direction
of the normal stresses, for a combined loading, can
be determined by computing the deformations
resulting from the individual stresses separately and
adding the values obtained algebraically.

TTTTTIEEARTATTRARNOERLY
Q
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Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

Generalized Hooke’s law

The principle of superposition.

— When applying the principle of superposition, the
following conditions must be satisfied:

» Each effect is linearly related to the load that
produced it.

» The effect of the first load does not scientifically
change the effect of the second load.
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Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain

Generalized Hooke’s law

The principle of superposition.

> The first condition is satisfied if the stresses do not
exceed the proportional limit of the material

» The second condition is also satisfied if the
deformations small so that the small changes 1n the
areas of the faces of the element do not produce
significant changes in the stresses.
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Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

Generalized Hooke’s law

104




Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain

Generalized Hooke’s law

Stress X: Direction Y: Direction Z.: Direction
o o o
o ex—Ex £y=—vEx 82:—VEX
X
o o o
o E =—y— g =—= e =—y—=
y X E N ) : E
o o
o E =—V— E,=—V— £ =—
E E E
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Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

General State of Strain

/ [0' —v(0o, +0')]\
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Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain

General State of Stress

@

T (I v)(1-2v)

E [(1 —V)E + v(ey + £, )]\

E

o =
YA+ v)(1-2v)

[(1 —V)E, +V(E, +E, )]

E

KO'Z = o) 1—2v) [(1 —V)E. +V(E +E, )]/

Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

Plane State of Stress
=0= £
(1+v)1-2v)

[A-v)e. +v(e, +£.)]=0=

-V

(1-v)e, +v(e, +£.)=0 = [gzzl_—v(ex+gy)] =3

s

~

o, = 1—Ev2 e, +v8y]




Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain

Generalized Hooke’s Law for Shearing Stress and Strain in
Isotropic Materials

4 E )

T = G =
xy yxy 2(1 + V) yxy
E
2(1+v) oz = 2V 2(1+v) £
sz = G}/xz = ‘ yxz

k 2(1+v) )
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Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

*Three principal axes exist such that the
perpendicular element faces are free of
shearing stresses.

*By Hooke’s Law, it follows that the
shearing strains are zero at the principal
planes of strain.
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Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain

37
Mohr circle
§ylllil?\'

Rotation about the principal axes l
may be represented by Mohr’s o G B A €
circles.

= € min

= € max Nl

Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

Mohr circle

1
27

*For the case of plane strain where the x and y
axes are in the plane of strain,

-The zaxis is also a principal axis

57
€

-The corresponding principal normal strain
1s represented by the point Z = 0 or the
origin.

A

min




Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain

Mohr circle

1
g’)’)

min

*[f the points A and B lie on opposite sides of
the origin, the maximum shearing strain is the
maximum in-plane shearing strain, D and

Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

Mohr circle

1
27

*If the points A and B lie on the same side of
the origin, the maximum shearing strain is out
of the plane of strain and is represented by
the points D’and E".




Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain

Mohr circle
*Consider the case of plane stress,
§73
g D 0y=0, 0,=0p 0,=0
S Ean e -
DN
% > . .
| 2T Corresponding normal strains,
1" \ \
I \
C\ O] \B A € C o, VO )
W\ -_4a __~ "0
L 4 “"E E
Y &
N /
, E ~ VO,  Op
| s g=—">"12
b, g E E
o
B v
. . . gc__E(O-a+O-b)__ (ga+€b)
*Strain perpendicular to the plane of stress is K i )
not zero.

Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

Example 11

At a point on the surface of a structural steel machine part subjected
to a biaxial state of stress, the measured strains are as follows:

g =+750um/m
' o E =200Gpa

e =+350um/
s g G =76Gpa

Yy =—560urad

Determine the Normal and shear stresses at the point.




Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain

Example 11

117

Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

Example 12

Determine the state of strain that corresponds to the following state
of stress at a point in a steel machine part.

o, =15,000psi 7, =5500psi
0,=5000psi 7, =4750psi
o, =7500psi 7 =3200psi

E =30,000£si
v =0.30

118




Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain

Example 12

119

Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

Example 12
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Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain

Example 13

The principal strains on the free surface are

£, =400x10"°

By v =0.30
g, =-50x10

Determine:
(a) the maximum in-plane shearing strain,

(b) the true value of the maximum shearing strain near the surface
of the component.

Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

Example 13
Ly (10" %rad))
D
- B |
. 'T_'"}.'Il.l‘\'i.ll]Tlil
B = \A l

. € (107 %in.sin.)
-50 | |O | +400

450 I




Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain

Example 13
Ly (107 6rad))
D’
__—T—. -
A | [
K 4 : \\ ?‘}J_'I X
I ! \ 4 [
Co o190 . € (10 %in /in.)
-150 /B ! | +400
)
\ | (,.;:':
“ . | /i/'f
s | -
—
-
E’
550
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Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

Strain Measurement and Rosette Analysis

» Electrical resistance strain gages
provide accurate measurements of
normal strain.

» The gage may consist of a length of e
0.001 in-diameter wire arranged and
cemented between two pieces of paper.
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Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain

Strain Measurement and Rosette Analysis

» The wire or foil gage is centered to the material
for which the strain is to be determine.

» As the material is strained, the wires are
lengthened or shortened.

» This lengthening and shortening will cause
changes 1n the electrical resistance.

125

Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

Strain Measurement and Rosette Analysis

» The change in resistance can be measured and
calibrated to provide normal strain

» Shearing strains are often obtained by measuring
normal strains in two or three different directions.

» The shearing strains can be computed from normal
strain data.
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Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain

Strain Measurement and Rosette Analysis

Rosette
Tyvnac
Gage
Gage
150 Gage
(a) 45° Rosette (a) Delta Rosette

Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

Strain Measurement and Rosette Analysis

*With a 45°rosette, €, and £, are measured
directly. 7, is obtained indirectly with,

[7xy =2£0p - (gx T gy)J

45°




Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain

Strain Measurement and Rosette Analysis

*Normal and shearing strains may be obtained
from normal strains in any three directions,

€

=&, cos” o +e, sin? 01 + ¥y, siné cos 6

Ey =&, cos’ 0, +¢, sin’ 0, + 7y SIn6, cos 6,

k,93 =&, cos” & +e, sin’ &5 + ¥y, sinb; cos 03)

Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

Example 14

At a point on the free surface of an aluminum alloy machine part,
the strain rosette shown in following was used to obtain this
normal strain data:

E,=+7380u
1345 =13Gpa
E =
b A 033
£, =-332u
: X
Determine:

_ Gage a
(a) the strain components.

(b) the principal strains and maximum shearing strain.




Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain

Example 14
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Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

Example 14

Solving these equations yields

Principle Strains
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Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain

Example 14
Y
2
/ ;;ILHX h \
7 A\
P \*‘l €
ETOR TS o1Ls |
N |
A /)
/
S B ~

Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

Example 15

The strain rosette was used to obtain normal strain data at a point on
the free surface of aluminum alloy structural component. rosette

was used to obtain this normal strain data:

Gage b
45°

£ =+525 L

¢ 450,u E=73Gpa

=+
& H G =28Gpa
£, =+1425u
. Gage c 45% 45

Determine:
a) The strain components.
(2) P Gage a

(b) The stress components.

(¢) The principal stresses and maximum shearing stress at the point




Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain

Example 15
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Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

Example 15

Solving these equations yields

Principle Strains
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1 Three-Dimensional Analysis of Strain

Example 15
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Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

Example 15
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Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain

Example 16

g =40u
&, =980u

£,=330u

Determine:

(a) The strain components.
(b) The principle strains.

(¢) Maximum shearing strain.
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Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

Example 16
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Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain
Example 16 Y

— -
. . . "‘_ 1 _"‘ ‘*_E x
Solving these equations yields '
Transformations of Stress and Strain
d Three-Dimensional Analysis of Strain
Example 16
1
U 37 86—
///,,.'- ~ \}.’
/o 26 » ,31
[ \ 3D
¥ —90°— yay Al LF ) ¢ |
b1 { | B
‘ ‘ ‘ | \X {/,,—
40 p—{ [<410 u~
<450 >~




Transformations of Stress and Strain

1 Three-Dimensional Analysis of Strain

Example 16
1
27 860 p——
///.,,. \1.' T
el 5 u
Al // ] C |
1 / B«
.'315 I R
I )
40 p—>| <410 p>
<450 -
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Transformations of Stress and Strain

d Three-Dimensional Analysis of Strain

Example 16
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1 Three-Dimensional Analysis of Strain

Example 16

I\J||—~
~
~_/

'S

—"\/
2 /4 max

368 u

1006 u

UNITS CONVERSION TABLES

Table 1. Multiples and Submultiples of Sl units

Prefix | Symbol Multiplying Factor
exa E 10 1000 000 000 000 000 000
peta P 10" 1 000 000 000 000 000
tera T 10" 1 000 000 000 000
giga G 10° 1 000 000 000
mega M 10° 1 000 000
kilo k 10° 1 000
hecto* h 10° 100
deca* da 10 10
deci* d 10" 0.1
centi c 10 0.01
mill m 10~ 0.001
micro u 10™ 0.000 001
nano n 10™ 0.000 000 001
pico P 1077 0.000 000 000 001
femto f 107"” 0.000 000 000 000 001
atto a 10" 0.000 000 000 000 000 001

* these prefixes are not normally used




UNITS CONVERSION TABLES

Table 2: Length Units

Millimeters | Centimeters | Meters | Kilometers | Inches Feet Yards Miles
mm cm m km in ft yd mi
1 0.1 0.001 0.000001 0.03937 | 0.003281 | 0.001094 | 6.21e-07
10 1 0.01 0.00001 0.393701 | 0.032808 [ 0.010936 | 0.000006
1000 100 1 0.001 39.37008 | 3.28084 | 1.093613 | 0.000621
1000000 100000 1000 1 39370.08 | 3280.84 | 1093.613 | 0.621371
254 2.54 0.0254 0.000025 1 0.083333 | 0.027778 | 0.000016
304.8 30.48 0.3048 0.000305 12 1 0.333333 | 0.000189
914 4 91.44 0.9144 0.000914 36 3 1 0.000568
1609344 160934.4 1609.344 | 1.609344 63360 5280 1760 1
Table 3: Area Units
Millimeter Centimeter Meter Inch Foot Yard
square square square square square square
mm? cm? m? in’ ft* yd2
1 0.01 0.000001 0.00155 0.000011 0.000001
100 1 0.0001 0.155 0.001076 0.00012
1000000 10000 1 1550.003 | 10.76391 1.19599
645.16 6.4516 0.000645 1 0.006944 | 0.000772
92903 929.0304 0.092903 144 1 0.111111
836127 8361.274 0.836127 1296 9 1
UNITS CONVERSION TABLES
Table 4: Volume Units
Centimeter Meter . Inch Foot us Imperial US barrel (oil)
cube cube cube cube gallons gallons
cm’ m’ Itr in’ ft* US gal Imp. gal US brl
1 0.000001 0.001 0.061024 | 0.000035 | 0.000264 | 0.00022 0.000006
1000000 1 1000 61024 a5 264 220 6.29
1000 0.001 1 61 0.035 0.264201 0.22 0.00629
16.4 0.000016 | 0.016387 1 0.000579 | 0.004329 | 0.003605 0.000103
28317 0.028317 | 28.31685 1728 1 7.481333 | 6.229712 0.178127
3785 0.003785 3.79 231 0.13 1 0.832701 0.02381
4545 0.004545 455 277 0.16 1.20 1 0.028593
158970 0.15897 159 9701 6 42 35 1
Table 5: Mass Units
Grams Kilograms | Metric tonnes | Shortton | Longton | Pounds Ounces
g kg tonne shton Lton b oz
1 0.001 0.000001 0.000001 | 9.84e-07 | 0.002205 | 0.035273
1000 1 0.001 0.001102 | 0.000984 | 2.204586 | 35.27337
1000000 1000 1 1.102293 | 0.984252 | 2204.586 | 35273.37
907200 907.2 0.9072 1 0.892913 2000 32000
1016000 1016 1.016 1.119929 1 2239.859 [ 35837.74
453.6 0.4536 0.000454 0.0005 0.000446 1 16
28 0.02835 0.000028 0.000031 | 0.000028 | 0.0625 1




UNITS CONVERSION TABLES

Table 10: High Pressure Units

Kilogram
Bar Poun_dfsquare Kilopascal | Megapascal force! Millimeter Atmospheres
inch centimeter | of mercury
square
bar psi kPa MPa kgf,fcm2 mm Hg atm
1 14.50326 100 0.1 1.01968 750.0188 0.987167
0.06895 1 6.895 0.006895 0.070307 51.71379 0.068065
0.01 0.1450 1 0.001 0.01020 7.5002 0.00987
10 145.03 1000 1 10.197 7500.2 9.8717
0.9807 14.22335 98.07 0.09807 1 735.5434 0.968115
0.001333 0.019337 0.13333 0.000133 0.00136 1 0.001316
1.013 14.69181 101.3 0.1013 1.032936 759.769 1

Table 16: Temperature Conversion Formulas

Degree Celsius (°C)

(°F - 32) x 5/9

(K- 273.15)

Degree Fahrenheit (°F)

°C x9/5)+32

Kelvin (K)

°C +273.15)

(
(1.8 x K) - 459.67
(
(

°F +45967)+1.8




