Mechanics of Materials

Ferdinand P.Beer, E.Russel Johnston, Jr., John T.Dewolf

Other Reference:

J.Wat Oler "Lectures notes on Mechanics od Materials" Ibrahim A.Assakkaf "Lectures notes on Mechanics od Materials"

Homework-06

By: Kaveh Karami

Associate Prof. of Structural Engineering

https://prof.uok.ac.ir/Ka.Karami

Homework-06

☐ Problem 01

For the given state of stress, determine the normal and shearing stresses exerted on the oblique face of the shaded triangular element shown.

I. $\sigma = 5.49 \text{ ksi}$; $\tau = 11.83 \text{ ksi}$.

Key Answer: II. $\sigma = -49.2 \, Mpa$; $\tau = 2.41 \, Mpa$.

☐ Problem 02

For the given state of stress, determine (a) the principal planes, (b) the principal stresses.

Key Answer: $I. (a) - 37.0^{\circ}$, 53.0° (b) -13.60Mpa, -86.4Mpa

3

Homework-06

□ Problem 03

For the given state of stress, determine (a) the orientation of the planes of maximum in-plane shearing stress, (b) the maximum in-plane shearing stress, (c) the corresponding normal stress.

Key Answer:

 $I. \ \ (a) \ 8.0^o \ , 98.0^o \ \ (b) \ 36.4 Mpa \ , -50.0 Mpa$

II. (a) 31.7°, 121.7° (b) 11.18ksi, 2.00ksi

4

☐ Problem 04

For the given state of stress, determine the normal and shearing stresses after the element shown has been rotated through (a) 25° clockwise, (b) 10° counterclockwise.

I.
$$\begin{cases} (a) & \sigma_{x'} = -2.40 \text{ ksi }; \tau_{x'y'} = 0.15 \text{ ksi }; \sigma_{y'} = 10.40 \text{ ksi} \\ (b) & \sigma_{x'} = 1.95 \text{ ksi }; \tau_{x'y'} = 6.07 \text{ ksi }; \sigma_{y'} = 6.05 \text{ ksi} \end{cases}$$

II.
$$\begin{cases} (a) & \sigma_{x'} = 9.02 \text{ ksi }; \tau_{x'y'} = 3.80 \text{ ksi }; \sigma_{y'} = -13.02 \text{ ksi} \\ (b) & \sigma_{x'} = 5.34 \text{ ksi }; \tau_{x'y'} = -9.06 \text{ ksi }; \sigma_{y'} = -9.34 \text{ ksi} \end{cases}$$

(b)
$$\sigma_{x'} = 5.34 \text{ ksi}$$
; $\tau_{x'y'} = -9.06 \text{ ksi}$; $\sigma_{y'} = -9.34 \text{ ksi}$

Homework-06

□ Problem 05

A steel pipe of 12-in. outer diameter is fabricated from 14-in.-thick plate by welding along a helix that forms an angle of 22.5° with a plane perpendicular to the axis of the pipe. Knowing that a 40-kip axial force P and an 80kip.in. torque T, each directed as shown, are applied to the pipe, determine σ and τ in directions, respectively, normal and tangential to the weld.

Key Answer: $\sigma = -4.76 \text{ ksi}$; $\tau = -0.467 \text{ ksi}$.

6

☐ Problem 06

Two steel plates of uniform cross section 10×80 mm are welded together as shown. Knowing that centric 100-kN forces are applied to the welded plates and that $\beta = 25^{\circ}$, determine (a) the in-plane shearing stress parallel to the weld, (b) the normal stress perpendicular to the weld.

Key Answer:

(a) 47.9Mpa; (b) 102.7Mpa

7

Homework-06

□ Problem 07

Solve Problems 1, 2, 3 using Mohr's circle.

☐ Problem 08

For the state of stress shown, determine the range of values of θ for which the normal stress $\sigma_{x'}$ is equal to or less than 50 MPa.

Key Answer: $16.5^{\circ} \le \theta \le 110.1^{\circ}$

9

Homework-06

☐ Problem 09

For the state of stress shown, determine the maximum shearing stress when (a) $\sigma_y = 40$ MPa, (b) $\sigma_y = 120$ MPa. (Hint: Consider both in-plane and out-of-plane shearing stresses.)

Key Answer: (a) 94.3Mpa. (b) 105.3Mpa

10

☐ Problem 10

For the state of stress shown, determine the maximum shearing stress when (a) $\sigma_z = +4$ ksi, (b) $\sigma_z = -4$ ksi, (c) $\sigma_z = 0$.

Key Answer: (a) 6.50ksi. (b) 9.00 ksi. (c) 7.00 ksi.

11

Homework-06

☐ Problem 11

For the given state of plane strain, determine the state of plane strain associated with axes χ' and χ' rotated through the given angle θ .

(a)
$$\varepsilon_x = -500\mu$$
 , $\varepsilon_y = 250\mu$, $\gamma_{xy} = 0$, $\theta = 15^o$

(b)
$$\varepsilon_x = 0$$
 , $\varepsilon_y = 320\mu$, $\gamma_{xy} = -100\mu$, $\theta = 30^\circ$

(a)
$$\varepsilon_{x'} = -450\mu$$
, $\varepsilon_{y'} = 199.8\mu$, $\gamma_{x'y'} = 375\mu$

Key Answer: (b) $\varepsilon_{x'} = 36.7 \mu$, $\varepsilon_{y'} = 283 \mu$, $\gamma_{x'y'} = 227 \mu$

☐ Problem 12

The following state of strain has been measured on the surface of a thin plate. Knowing that the surface of the plate is unstressed, determine (a) the direction and magnitude of the principal strains, (b) the maximum in-plane shearing strain, (c) the maximum shearing strain. (Use $v = \frac{1}{3}$)

$$(I) \, \varepsilon_x = -260 \mu \,, \, \varepsilon_y = -60 \mu \,, \, \gamma_{xy} = 480 \mu$$
$$(II) \, \varepsilon_x = 30 \mu \,, \, \varepsilon_y = 570 \mu \,, \, \gamma_{xy} = 720 \mu$$

Key Answer:

$$(I)$$
 (a) 33.7°, 56.3°; -420μ , 100μ , 160μ , (b) 520 μ , (c) 580 μ (II) (a) $-26.6°$, $64.4°$; -150μ , 750μ , -300μ , (b) 900 μ , (c) 1050 μ

Homework-06

☐ Problem 13

For the given state of plane strain, use Mohr's circle to determine(a) the orientation and magnitude of the principal strains, (b) the maximum in-plane strain, (c) the maximum shearing strain.

$$\begin{split} &(I)\,\varepsilon_x=60\mu\,,\,\varepsilon_y=240\mu\,,\,\gamma_{xy}=-50\mu\\ &(II)\,\varepsilon_x=-180\mu\,,\,\varepsilon_y=-260\mu\,,\,\gamma_{xy}=315\mu \end{split}$$

Key Answer:

$$(I)$$
 (a) 7.8^{o} , 97.8^{o} ; 56.6μ , 243μ , 0 , (b) 186.8μ , (c) 243μ (II) (a) 37.9^{o} , 127.9^{o} ; -57.5μ , -383μ , 0 , (b) 325μ , (c) 383μ

☐ Problem 14

The rosette shown has been used to determine the following strains at a point on the surface of a crane hook:

$$\varepsilon_1 = 420 \times 10^{-6} \ in / in$$

$$\varepsilon_2 = -45 \times 10^{-6} \ in / in$$

$$\varepsilon_4 = 165 \times 10^{-6} in/in$$

(a) What should be the reading of gage 3? (b) Determine the principal strains and the maximum in-plane shearing strain.

Key Answer:

$$(a) - 300 \times 10^{-6} \ in / in \ (b) \ 435 \times 10^{-6} \ in / in \ , -315 \times 10^{-6} \ in / in \ , 750 \times 10^{-6} \ in / in .$$

15

Homework-06

☐ Problem 15

A centric axial force P and a horizontal force Q_x are both applied at point C of the rectangular bar shown. A 45^o strain rosette on the surface of the bar at point A indicates the following strains:

$$\varepsilon_1 = -60 \times 10^{-6} \text{ in/in}$$

$$\varepsilon_2 = -240 \times 10^{-6} \text{ in/in}$$

$$\varepsilon_3 = 200 \times 10^{-6} \text{ in/in}$$

Knowing that $E = 29 \times 10^6 \text{ psi}$ and v = 0.3 determine the magnitudes of P and Q_x .

Key Answer: P = 69.6 kips; Q = 30.3 kips.