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In this chapter our concern will be beam deformation (or deflection).

There are important relations between applied load and stress (flexural and 
shear) and the amount of deformation or deflection that a beam can exhibit.

In design of beams, it is important sometimes to limit the deflection for 
specified load.

So, in these situations, it is not enough only to design for the strength 
(flexural normal and shearing stresses), but also for excessive deflections
of beams.

Introductions
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Introductions
– Figure shows generally two examples of how the amount of deflections increase
with the applied loads.
– Failure to control beam deflections within proper limits in building construction is
frequently reflected by the development of cracks in plastered walls and ceilings.
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Introductions

The deflection of a beam depends on four general factors:

Stiffness of the materials that the beam is made of,
Dimensions of the beam,
Applied loads, and
Supports

Three methods are commonly used to find beam deflections:

The double integration method,
The singularity function method, and
The superposition method
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Deformation of a Beam Under Transverse Loading

• Relationship between bending moment and 
curvature for pure bending remains valid 
for general transverse loadings.

EI
xM )(1 =

ρ

• Cantilever beam subjected to concentrated 
load at the free end, EI
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ρ
1)(

• Curvature varies linearly with x
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Deformation of a Beam Under Transverse Loading

• Overhanging beam

• Curvature is zero at points where the bending 
moment is zero, i.e., at each end and at E.

• Beam is concave upwards where the bending 
moment is positive and concave downwards 
where it is negative.

• Maximum curvature occurs where the moment 
magnitude is a maximum.

EI
xM )(1 =

ρ



Deflection of Beams

7

Deformation of a Beam Under Transverse Loading
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Deformation of a Beam Under Transverse Loading



Deflection of Beams

9

Deformation of a Beam Under Transverse Loading

From elementary calculus, 
simplified for  beam parameters, 232

2

2

1

1

+

=

dx
dy
dx

yd

ρ

An equation for the beam shape or elastic curve is 
required to determine maximum deflection and 
slope.
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Deformation of a Beam Under Transverse Loading

2

21
dx

yd≈
ρ

However, if we realize that for most beams
the slope is very small, 

and its square is much smaller, then term
in Eq. 5 can be neglected as compared to
unity.
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Deformation of a Beam Under Transverse Loading

• By integrating
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Deformation of a Beam Under Transverse Loading

• Constants are determined from 
boundary conditions

• Three cases for statically determinant beams,

Simply supported beam Overhanging beam Cantilever beam

• More complicated loadings require multiple integrals and application of 
requirement for continuity of displacement and slope.
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Deformation of a Beam Under Transverse Loading
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Deformation of a Beam Under Transverse Loading

• For a beam subjected to a distributed load,

• Equation for beam displacement becomes

( ) ( )( )( )
43
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• Integrating four times yields

• Constants are determined from boundary 
conditions.
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Deformation of a Beam Under Transverse Loading

Relation of the Deflection y with 
Physical Quantities such as V and M
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Example 01

A beam is loaded and supported as shown in the figure.
a) Derive the equation of the elastic curve in terms of P, L, x, E, and I.
b) Determine the slope at the left end of the beam.
c) Determine the deflection at x = L/2.
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Example 01
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Example 01

Boundary conditions:
•  = 0 at x = L/2 (from symmetry)
• y = 0 at x = 0 and x = L

xPMLxfor
22

0 =≤≤
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Example 01

Boundary conditions:
•  = 0 at x = L/2 (from symmetry)
• y = 0 at x = 0 and x = L

xPMLxfor
22

0 =≤≤
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Example 01

•  = 0 at x = L/2 (from symmetry)

• y = 0 at x = 0 
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Example 01

(b) Slope at the left end of the beam:

(a)The equation of elastic curve

Therefore, 
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Example 01

(c) Deflection at x = L/2
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Example 02

A beam is loaded and supported as shown in the figure.
a) Determine the slope at the right end of the beam.
b) Derive the equation for the elastic curve in terms of w, L, x, E, and I.
c) Find the deflection at x = L.
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Example 02

Using equilibrium equation the 
support reactions are determined..

Find an expression for a segment of the
distributed load:
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Example 02

x
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Example 02
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Example 02

Boundary conditions:   = 0 at x = 0

a) Determine the slope at the right end of the beam.

Deflection of Beams

28

Example 02

b) Derive the equation for the elastic 
curve in terms of w, L, x, E, and I.

Boundary conditions:   y = 0 at x = 0
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Example 02

c) Find the deflection at x = L.
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Example 03

For the overhanging steel beam ABC that 
subjected to concentrated load of 50 kips
as shown, 
(a) derive an expression for the elastic curve,
(b) determine the maximum deflection, and
(c) find the slope at point A. 
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Example 03

We first find the reactions as follows:
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Example 03

Determine moment equation as follows:
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Example 03
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Example 03
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Example 03

Boundary conditions:  
y = 0 at x = 0
y = 0 at x = 15
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Example 03

Consistent  conditions:  
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Example 03

Boundary conditions:  
y = 0 at x = 15
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Example 03
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(a) The elastic curve is
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Example 03

(b) Maximum deflection occurs when the
slope is zero.
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Example 03

(c) The slope at point A (x = 0) can be
computed from
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Statically Indeterminate Beams

How to determine forces and stresses of
transversely loaded beam that is statically
indeterminate?
– In order to solve for the forces, and stresses in
such beam, it becomes necessary to supplement
the equilibrium equations with additional
relationships based on any conditions of restraint
that may exist.
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Statically Indeterminate Beams
• Consider beam with fixed support at 

A and roller support at B.

• From free-body diagram, note that there are four unknown 
reaction components.

• Conditions for static equilibrium yield
000 === Ayx MFF

The beam is statically indeterminate.



Deflection of Beams

43

Statically Indeterminate Beams
• Also have the beam deflection equation,

which introduces two unknowns but provides three additional 
equations from the boundary conditions:
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Thus the reactions at the supports may be determined, and the equations for the 
elastic curve may be obtained.
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Example 04

Determine the reactions at the supports for
the simply supported cantilever beam in terms of w 
and L.
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Example 04

Equilibrium Equations:
• From the free body diagram

( )I
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Example 04

Equation of Elastic Curve:
• Drawing the free-body diagram of a 
portion of the beam (AC)
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Example 04

Equation of Elastic Curve:
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Example 04

Boundary conditions:  
= 0 at x = 0

y = 0 at x = 0
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Example 04

Boundary conditions:  
y = 0 at x = L
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Example 05

For the uniform beam, determine the 
reaction at A, derive the equation for 
the elastic curve, and determine the 
slope at A.  (Note that the beam is 
statically indeterminate to the first 
degree)
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Example 05

• Consider moment acting at section D,

• The differential equation for the elastic curve,
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Example 05

• Integrate twice

• Apply boundary conditions:



Deflection of Beams

53

Example 05

• Substitute for C1, C2, and RA in the 
elastic curve equation,

• Substitute for C1 and RA in the slope 
curve equation,
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Method of Superposition

– When a beam is subjected to several loads
at various positions along the beam, the problem 
of determining the slope and the deflection usually 
becomes quite involved and tedious.

– This is true regardless of the method used.

– However, many complex loading conditions are 
merely combinations of relatively simple loading 
conditions
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Method of Superposition

Method of Superposition

– Assumptions:

• The beam behaves elastically for the combined loading.
• The beam also behaves elastically for the each of the 
individual loads.
• Small deflection theory.
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Method of Superposition

Principle of Superposition:

• Deformations of beams subjected to 
combinations of loadings may be 
obtained as the linear combination of 
the deformations from the individual 
loadings

• Procedure is facilitated by tables of 
solutions for common types of 
loadings and supports.
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Method of Superposition

Algebraic sum
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Method of Superposition

Vector sum
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Example 06

Determine slope and the deflection at 
point D in the following beam.

EI = 100 2.mMN
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Example 06

First we find the slope and deflection due 
the effect of each load

The resulting final slope and deflection of point D of the loaded beam is simply 
the sum of the slopes and deflections caused by each of the individual loads as 
shown
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Example 06

We need to find both the slope and deflection caused by the concentrated load
(120 kN) and distributed load (20 kN/m)
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Example 06

Slope and Deflection caused by P
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Example 06

Slope and Deflection caused by w
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Example 06
Slope and Deflection caused by P and w
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Example 07

For the beam and loading shown, 
determine the slope and deflection at 
point B.
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Example 07

SOLUTION:

Superpose the deformations due to Loading I and Loading II as shown.
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Example 07
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Example 07

Loading II

In beam segment CB, the bending moment is 
zero and the elastic curve is a straight line.
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Example 07

Deflection of Beams

70

Example 08

For the simply supported beam, use the method 
of superposition to determine the total 
deflection at point C in terms of P, L, E, and I.
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Example 08

tablefrom
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Example 08
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Example 09

For the beam in Figure, determine the
flexural stress at point A and the deflection
of the left-hand end.
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Example 09

The stress at point A is a combination of
compressive flexural stress due to the
concentrated load and a tensile flexural
stress due to the distributed load, hence
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Example 09
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Example 09

The deflection at the end of a cantilever beam with 
uniformly distributed load is given by

and with concentrated load at 
the end is given by

Superimposing the results
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Application of Superposition to Statically Indeterminate Beams

• Method of superposition may be 
applied to determine the reactions at 
the supports of statically indeterminate 
beams.

• Designate one of the reactions as 
redundant and eliminate or modify 
the support.

• Determine the beam deformation 
without the redundant support.

• Treat the redundant reaction as an 
unknown load which, together with 
the other loads, must produce 
deformations compatible with the 
original supports.
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Example 10

For the uniform beam and loading shown, 
determine the reaction at each support and 
the slope at end A.
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Example 10

SOLUTION:

• Release the “redundant” support at B, and find deformation.
• Apply reaction at B as an unknown load to force zero displacement at B.
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Example 10
• Distributed Loading:

• Redundant Reaction Loading:
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Example 10

• For compatibility with original supports, yB = 
0

• From statics,
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Example 10

Slope at end A,


