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Stress and Strain — Axial Loading

Stress and Strain — Axial L.oading

O Load - deformation diagram

dimensions.

>

r
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Plotting the magnitude P of the load against the deformation a, we obtain a
certain load-deformation diagram. While this diagram contains information
useful to the analysis of the rod under consideration, it cannot be used directly
to predict the deformation of a rod of the same material but of different




Stress and Strain — Axial L.oading

Q Deformations of Members under Axial Loading

Stress and Strain — Axial L.oading

O Normal Strain

We define the normal strain in a rod
under axial loading as the deformation
per unit length of that rod.

l.]( A:Cl‘e — 8 e

Strain has no dimension
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O Normal Strain

if A#cte =

. A0 do
E=lm—=—-
=0 Ax  dx

>
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Stress and Strain — Axial L.oading
O Stress-Strain Test
PI-'IO|D 2.2 This machine is used to test tensile test specimens, Fig. 2.8 Test specimen with tensile load.

such as those shown in this chapter. 6
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O Stress-Strain Diagram: Ductile Materials
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(a) Low-carbon steel

Shear stress is primarily responsible for the failure of ductile materials, and confirms the fact that,
under an axial load, shearing stresses are largest on surfaces forming an angle of 45° with the

load.

Stress and Strain — Axial L.oading

O Stress-Strain Diagram: Ductile Materials
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(a) Low-carbon steel

o,: Yield Strength
0, - Ultimate Strength
0, : Breaking Strength




Stress and Strain — Axial L.oading

O Stress-Strain Diagram: Ductile Materials

(b) Aluminum alloy

(a) (b)

Stress and Strain — Axial L.oading

O Stress-Strain Diagram: Ductile Materials

¥ Rupture
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Fig. 2.13 Determination of yield strength by
offsat method.
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O Stress-Strain Diagram: Brittle Materials
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brittle material.

Fig. 2.11 Stress-strain diagram for a typical

Normal stresses are primarily responsible for the failure of brittle materials

Stress and Strain — Axial L.oading

O Hooke’s Law: Modulus of Elasticity

Quenched, tempered
alloy steel (A709)

Highjstrerlgtll, low-alloy
steel (A992)

Carbon steel (A36)

Pure iron

— _,

Fig. 2.16 Stress-strain diagrams for
iron and different grades of steel.

* Below the yield stress

[O‘=E€J

E =Youngs Modulus or
Modulus of Elasticity

« Strength is affected by alloying,
heat treating, and manufacturing
process but stiffness (Modulus of
Elasticity) is not.
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O Stress-Strain Diagram: Brittle Materials

o

T tension - —— — — — Rupture, tension

Linear elastic range

Ruphlre._ compression

G—L', compression

Fig. 2.9 Stress-strain diagram for concrete.

Stress and Strain — Axial L.oading

O Elastic vs. Plastic Behavior

2} » If the strain disappears when the
¢ Rupture stress 1s removed, the material is
said to behave elastically.

* The largest stress for which this
occurs 1s called the elastic limit.

* When the strain does not return
to zero after the stress is
removed, the material is said to

€ behave plastically.

A D




Stress and Strain — Axial L.oading

L Elastic vs. Plastic Behavior

The plastic deformation depends on:
» The maximum value reached by the stress.
» The time elapsed before the load is removed.

a

The stress-dependent part of the plastic

Rupture

deformation is referred to as s/ip, and
the time-dependent part-which is also

influenced by the temperature-as creep.

15

Stress and Strain — Axial L.oading

O Elastic vs. Plastic Behavior

C Rupture

o

€
A D

Fig. 2.14 Stress-strain characteristics

of ductile material reloaded after prior

yielding.

16
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L Elastic vs. Plastic Behavior

o C
]
20y
D’ .
H ' V
Bauschinger effect:

Yield point is not defined clearly

17

Stress and Strain — Axial L.oading

Q Fatigue

 Fatigue properties are shown on
S-N diagrams.

50 —

Steel (1020HR) . .
* A member may fail due to fatigue

at stress levels significantly below
the ultimate strength if subjected
to many loading cycles.

Aluminum (2024)

I | I | | | * When the stress 1s reduced below

10 100 10° 109 107 108 10° the endurance limit, fatigue
failures do not occur for any

number of cycles.

Number of completely reversed cyc]es

Fig. 2.21

18
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Q Deformations of Members under Axial Loading

m Uniform Member

[~

e O . Stress
£ : Strain

N
N

E : Modulus of Elasticity

P

Hooke’s Iaw [O‘ = EgJ

19

Stress and Strain — Axial L.oading

Q Deformations of Members under Axial Loading

m Uniform Member  p.ormation:

Axial Stiffness:

P_po

A L
F=KAx =
EA

L

20
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Q Deformations of Members under Axial Loading

Multiple Loads/Sizes

« With variations in loading, cross-section or
material properties,

57 I

Stress and Strain — Axial L.oading

Q Deformations of Members under Axial Loading

Example 1

Determine the deformation of the steel rod
shown under the given loads.

E =29x10"%psi 45 kips | L
. . mg <—+ +—o:0 kips

D=1.07in. d =0.6181n. I

161in >

12 in 12 in
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Q Deformations of Members under Axial Loading

Example 1

45?&! +—»30 kips

o—
75 kips

SOLUTION < 12in —f< 12in —=< 161in

 Divide the rod into components at

o : E =29x10 % psi
the load application points. Pt

D=1.07in. d =0.6181n.
* Apply a free-body analysis on each
component to determine the
internal force

» Evaluate the total of the component
deflections.

23

Stress and Strain — Axial L.oading

Q Deformations of Members under Axial Loading

Example 1

30 kips

(b)

|
|
|
|
|
I
I

30 kips

24
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Q Deformations of Members under Axial Loading

Example 1

30 kips

25

Stress and Strain — Axial L.oading

Q Deformations of Members under Axial Loading

Example 1

30 kips

) 75 kips 45 kips

26
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Q Deformations of Members under Axial Loading

» Evaluate total deflection,

Example 1

| B g

L1:L2 =121n. L3 =161n.

4 =4 =09in* 43 =0.3in?

27
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Q Deformations of Members under Axial Loading

= Relative Deformation

o 4
i S I B
‘ | PL

p 5B/A:5B_§A:_

28
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Q Deformations of Members under Axial Loading

Example 2

The rigid bar BDE is supported by two
links AB and CD. For the 30-kN force

shown, determine the deflection
a) ofB
b) ofD
c) ofE.

E,,=70GPa E.,=200GPa
A, =500mm> A, =600 mm’

Stress and Strain — Axial L.oading

Q Deformations of Members under Axial Loading

Example 2

SOLUTION:

* Apply a free-body analysis to the bar
BDEto find the forces exerted by
links AB and DC.

» Evaluate the deformation of links
ABand DC or the displacements of
Band D.

1 0.4 m |

» Work out the geometry to find the
deflection at E given the deflections
at B and D.
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Q Deformations of Members under Axial Loading

Example 2 -

Free body: Bar BDE

SOLUTION:

30 kN

31

Stress and Strain — Axial L.oading

O Deformations of Members under Axial Loading

Example 2 F'ys = 60 KN
A
i . A = 500 mm?
SOLUTION: Displacement of B: 0.3 m B = 70 TP
T B

l;‘ \B = h() l\N
30 kN '

32
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Q Deformations of Members under Axial Loading

Example 2

SOLUTION: Displacement of D 0.4m

Fepp = 90 kN

33

Stress and Strain — Axial L.oading

O Deformations of Members under Axial Loading
oy = 0.514 mm

Example 2 s .
I HD / B
SOLUTION: ) :
G
(200 mm —x)
200 mm 400 mm —>l

Displacement of E:

34




Stress and Strain — Axial L.oading

Q Deformations of Members under Axial Loading

= Nonuniform Deformation

8 i

L % o P

Stress and Strain — Axial L.oading

Q Deformations of Members under Axial Loading

Example 3

— Determine the deflection of point a a
of a homogeneous circular cone of
height h, density p, and modulus of
elasticity E due to its own weight.




Stress and Strain — Axial L.oading

Q Deformations of Members under Axial Loading

Example 3

Consider a slice of thickness dy
P = weight of above slice

Stress and Strain — Axial L.oading

O Deformations of Members under Axial Loading

= Normal Stresses in Tapered Bar

— Consider the following tapered bar with a
thickness t that is constant along the entire
length of the bar.

h 1
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Q Deformations of Members under Axial Loading

= Normal Stresses in Tapered Bar

— Consider the following tapered bar with a
thickness t that is constant along the entire
length of the bar.

h
g P P
O = A B X
) t'|:h1 +(h, _h1)z}
\_ "/

Stress and Strain — Axial L.oading

O Deformations of Members under Axial Loading

= Deflection of Tapered Bar

— Consider the following tapered bar with a
thickness t that is constant along tk~ ~~*-~
length of the bar.

h 1

P
J-l (x) e = PL J‘L | dx
Et % hL+(h,—h)x
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Q Deformations of Members under Axial Loading

= Deflection of Tapered Bar

— Consider the following tapered bar with a
thickness t that is constant along th~ ~~* -~
length of the bar.

PL 1

= Ei | h, - ln[(hz — hl)L]

1

Stress and Strain — Axial L.oading

Q Deformations of Members under Axial Loading

Example 4

— Determine the normal stress as a
function of x along the length of the
tapered bar shown if

—hl=21n

—h2=61n ]

—t=31n, and ;?1”

—L=361n -

—P=5,0001b
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Q Deformations of Members under Axial Loading

Example 4 _ _
| x (in) 1 o(psi)
(o 5333
—F 3
6] 625.0
9] 555.6
12] 9500.0
151 4545
18] 416.7
211 384.6
24| 357.1
27] 333.3
30] 3125
36| 277.8
Stress and Strain — Axial Loading
Q Deformations of Members under Axial Loading
Example 5
INNNNNNNNN\Y
— Determine the displacement at the end g W
of the cylindrical bar under it’s weight
W. .
(A: Cross Section) ALE

(E: Modulus of Elasticity)
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Q Deformations of Members under Axial Loading

Example 5 ANNANNNNNN

45

Stress and Strain — Axial L.oading

L Statically Indeterminate Structures
B, 2

46
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U Statically Indeterminate Structures

= Statically Determinate Member

When equations of equilibrium are sufficient to
determine the forces and stresses in a structural
member, we say that the problem is statically
determinate

1 PR T R T
b bR SES "I““

47

Stress and Strain — Axial L.oading

L Statically Indeterminate Structures

= Statically Indeterminate Member
When the equilibrium equations alone are not
sufficient to determine the loads or stresses,

then such problems are referred to as statically
indeterminate problems.

A RS 1 REAR Tl R G
Arigaiititemior e ,i?*
gan il R BN 8% ERE ™

48
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U Statically Indeterminate Structures
* Determinacy of Beams

For a coplanar (two-dimensional) structure, there are at
most three equilibrium equations for each part, so that if

there is a total of m parts and r reactions, we have

r=3n = statically determinate

r>3n = statically indeterminate

Stress and Strain — Axial L.oading

L Statically Indeterminate Structures
Example 6

— Classify each of the beams shown
as statically determinate or
b e e **L***@; i | st atl C al ly in d et ermin ate.
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U Statically Indeterminate Structures
Example 6

-For part I:

}"1 * ! ]

v )
2 ;3

Stress and Strain — Axial L.oading

L Statically Indeterminate Structures
Example 5

-For part 11: 2 —@
"

¥
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U Statically Indeterminate Structures
Note: r; = r¢ and

o I’S

Example 5

----

el

7
-For part I1I: _él:
Fi

53
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L Statically Indeterminate Structures

Determinacy of Trusses

Statically Determinate Truss Statically Indeterminate Truss

m+r=2n = statically determinate

m+r>2n = statically indeterminate

m: members n:nodes r:reactions of supports

54
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U Statically Indeterminate Structures
Example 7

— Classify each of the trusses shown as statically determinate or
statically indeterminate.

Stress and Strain — Axial L.oading

L Statically Indeterminate Structures
Example 7

-For part I: E . o

Vl*'_ ® ]
Vzi 7
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U Statically Indeterminate Structures

Example 7 rl_.[l>
-For part II: I,z

57
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L Statically Indeterminate Structures

Example 8

= 9 2 |
A = 250 mm=—__| YEIY i
Determine the reactions at A and B for 300 kN 150 mm

the steel bar and loading shown, C. *

assuming a close fit at both supports B s |k

before the loads are applied. A =400 mm=— 150 mm
600 kN 150 mm

i

58
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. 2
A = 250 mm=_|

A Statically Indeterminate Structure |
Example 8 A= 400 mmZ__

600 kN
B

SOLUTION:

» Consider the reaction at B as
redundant, release the bar from
that support, and solve for the
displacement at B due to the
applied loads.

300 kN

ERe 600 kN  Require that the displacements

due to the loads and due to the
redundant reaction be compatible,
1.e., require that their sum be zero.

59
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L Statically Indeterminate Structures
Example 8

SOLUTION:

Solve for the displacement at B due to the applied
loads with the redundant constraint released,

60
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U Statically Indeterminate Structures
Example 8

* Solve for the displacement at B due to the redundant
constraint,

300 mm

300 mm

61

Stress and Strain — Axial L.oading

L Statically Indeterminate Structures
Example 8

» Require that the displacements due to the loads and due to
the redundant reaction be compatible,

2
]

300 kN

-

600 kN 600 kN

R

62
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U Statically Indeterminate Structures
Example 8

* Find the reaction at A due to the loads and the reaction at B

1300 kN

| 600 kN

Stress and Strain — Axial L.oading

L Statically Indeterminate Structures

T

Example 9

A rigid plate C 1s used to transfer a 20-kip load P to 10 in P
rod A and pipe B, as shown. The supports at the _
top of the rod and bottom of the pipe are rigid and
there are no stresses in the rod or pipe before the
load P applied.

2_

E,=30000 ksi A,=0.8in’
E, =10000 ksi 4, =3.0in’

Determine
(a) The axial stresses in rod A and pipe B.
(b) The displacement of plate C.

(¢) The reactions. — 7/
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U Statically Indeterminate Structures

Example 9
L1 1777 LLL7
A
10 1n E A p
_‘_2 "2 2 1,5 I..I_S-_1
N : TC W : Fi : ¥y 0, =0z
L L L
20in 1 B by o
: : o ¥
Lk o L
777777 o TP
Stress and Strain — Axial L.oading
L Statically Indeterminate Structures
Example 9 F, |
A
Ri P
4112
| |
1 1
1 B
| |
1 1
1 1
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U Statically Indeterminate Structures

Example 9 F, |
A4
A P
4 {1l
1 1 C
1 1
1 B
1 1
1 1
s
El
Stress and Strain — Axial L.oading
L Statically Indeterminate Structures
Example 9 F, |
A
Li P
A {ll2
1 1 C
1 1
B
1 1
1 1
L
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U Statically Indeterminate Structures

Example 9 F,
|
A P
41112
| |
1 1
| |
| |
| |
1 1
1 1
A
Stress and Strain — Axial L.oading
L Statically Indeterminate Structures
PONNNNNN
Example 10
- | W | AE

Determine the deformation of the spring.
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U Statically Indeterminate Structures

Example 10

W

W

71
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L Statically Indeterminate Structures

Example 10

F

F

=
*0

W

72
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U Statically Indeterminate Structures

Example 10 S
\ ey

F

i

Stress and Strain — Axial L.oading

L Statically Indeterminate Structures

Example 11 — Tube (4, Ey)
K :
A rod of length L, cross-sectional area Rod ( Al’ ED
Al, and modulus of elasticity EI, has
been placed inside a tube of the same
length L, but of cross-sectional area A2
and modulus of elasticity E2. What is E
the deformation of the rod and tube ~
when a force P is exerted on a rigid
end plate as shown? What are the

internal forces in the rod and the
tube?

-t
" End plate
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Rod (4, E)) P
U Statically Indeterminate Structure! [}\

Example 11

#

— Tube (4,, E,)

I 1 End plate

Tube (4, E5)

g /
Ve
L "

Rod (4, Ey)

P

FI/QT
- O
—.

Stress and Strain — Axial L.oading

L Statically Indeterminate Structures

Example 11

— Tube (4,, E,)

I Rod (4, £)) il—P

7 End plate
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U Statically Indeterminate Structures

Example 12

A very stiff bar of negligible weight 1s 8 ft
suspended horizontally by two vertical
rods as shown. One of the rods is of

6000 1b
Brass

steel, and 1s %2-1n in diameter and 4 ft
long; the other is of brass and is 7/8-in
in diameter and 8 ft long. If a vertical
load of 6000 1b is applied to the bar,

: 1
where must be placed in order that the _ 6 . d =—in
bar will remain horizontal? Also find E, =30x10" psi 2
the stresses in the brass and steel rods. E, =14x10° psi d = 7 in

"8
Stress and Strain — Axial L.oading
L Statically Indeterminate Structures
Example 12
___1F F
8 ft =96 m. :
6000 Ib 4 ft =48 in.
! F b F s
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U Statically Indeterminate Structures

6000 1b
Example 12 l N

I

|
!
| AI

- 10 ft ;

Stress and Strain — Axial L.oading

L Statically Indeterminate Structures

Example 12

One additional independent .
equation is needed. The problem
requires that the bar remain
horizontal. Therefore, the rods must
undergo equal elongations, that is
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U Statically Indeterminate Structures

Example 12

Stress and Strain — Axial L.oading

L Statically Indeterminate Structures

Example 12
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U Statically Indeterminate Structures

Example 12

Stress and Strain — Axial L.oading

L Statically Indeterminate Structures

Example 12




Statically Indeterminate Axially Loaded Members
(J Thermal Stress

Most materials when unstrained expand when heated
and contract when cooled.

5. =a(AT)L

e=—"L = |e=alAT)
L

o = thermal expansion coef.

oc=FE¢ = |o=Ea(AT)

85

Statically Indeterminate Axially Loaded Members

d Thermal Stress
Example 13

* Determine the axial force and
normal stress due to temperature
changing in the following beam.

o = thermal expansion coef.

86




Statically Indeterminate Axially Loaded Members

(J Thermal Stress
Example 13 :

A temperature change results in a change in
length or thermal strain. There is no stress
associated with the thermal strain unless the
elongation is restrained by the supports.

87

Statically Indeterminate Axially Loaded Members

d Thermal Stress
Example 13

the principle of superposition.

5. =a(AT)L

_PL

0. =
" AE

 Treat the additional support as redundant and apply

88




Statically Indeterminate Axially Loaded Members

(J Thermal Stress
Example 13

* The thermal deformation and the deformation from
the redundant support must be compatible.

5=0,+5,=0 = a(AT)L+£=O
AE

= —AEa(AT)] & [ o="—= —Ea(AT)]

Statically Indeterminate Axially Loaded Members

d Thermal Stress
Example 14

Determine the values of the stress in portion AC and CB of the steel bar
shown when a the temperature of the bar is —500F, knowing that a close
fit exists at both of the rigid supports when the temperature is +750F.

C
Area =0.6 iﬂ2 Area=1.2 ]'_nz

E =29x10° psi

05:6.5><10‘6L
FO

12m = 12 in




Statically Indeterminate Axially Loaded Members
(J Thermal Stress

Example 14
¢ i}
Or.
C Bl
1 2
o
I L .98
C B
1 2 Ry

Statically Indeterminate Axially Loaded Members

O Thermal Stress
Example 14




Statically Indeterminate Axially Loaded Members
(J Thermal Stress

Example 14 B
.(ST.
S
2
(SB
I‘E
B
2 Ry
Statically Indeterminate Axially Loaded Members
(d Thermal Stress
Example 14 B
.51".
e
2
5}3
Lz Sle Bl
B
2 Ry




Statically Indeterminate Axially Loaded Members

(J Thermal Stress
Example 14

g
i
g
i
g
|

Statically Indeterminate Axially Loaded Members
(J Thermal Stress

Example 15
A B C
A R\
/ \
* Determine the temperature that we 7 ALE _r . N
have no tensile in the shown beam. 7 N
7 \
7 N
. 2173 . L3 .

o = thermal expansion coef.




Statically Indeterminate Axially Loaded Members

(J Thermal Stress
Example 15 A B c

. . . RA
* There is only tensile stress in the ‘ P

part AB due to axial force P.

RA P

2L/3 4 L3

Statically Indeterminate Axially Loaded Members
(J Thermal Stress

Example 15
* There is only tensile stress in the A B
part AB due to axial force P.
RA A P

21/3 4 L3




Statically Indeterminate Axially Loaded Members
(J Thermal Stress

Example 15
* There is only tensile stress in the
part AB due to axial force P. A B c
RA
- ALE _r .
L 2L/3 L L3 .

Stress and Strain — Axial L.oading

I Poisson’s Ratio » For a slender bar subjected to axial loading:

b o
[ex:Ex O'y:azzo]

» The elongation in the x-direction is
accompanied by a contraction in the other

(a) directions. Assuming that the material is

isotropic (no directional dependence),

[gyzgz;to]

P’  Poisson’s ratio is defined as
_|lateral strain| €, g,
axial strain £y £y




Stress and Strain — Axial L.oading

J Generalized Hooke’s law

_ |lateral strain| _ & &
axial strain ‘ £, £,
£, =-Ve, €=
— —> | <
E. =—VE, £ =

Stress and Strain — Axial L.oading

(J Generalized Hooke’s law

* For an element subjected to multi-axial loading, the normal strain
components resulting from the stress components may be determined from
the principle of superposition. This requires:

1) strain is linearly related to stress
2) deformations are small

Stress X: Direction Y: Direction Z.: Direction
o o O
o E =— E =—V— =—y—
x E g E E
o o o
o g =—v-—-= g =2 -y
y X E Y E E
o (0} (0}
O, E =—V— E,=—V— £ =—
E E E
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J Generalized Hooke’s law

General State of Strain

-

—v(o, + O'Z)] \

L,

£, =%[0'y —v(0o, +0'Z)]

.= oo, +0,)
_f /

Stress and Strain — Axial L.oading
O Dilatation: Bulk Modulus
]

» Relative to the unstressed state, the change in volume is

e=V,-V =[(l+¢€,)1+e )(1+e.)]-1

=[l+e,+¢,+¢.]-1

= [e=5x+gy+gz]

e=">(5,+0,+0.)
E X v z




Stress and Strain — Axial L.oading
O Dilatation: Bulk Modulus

» For element subjected to e
uniform hydrostatic
pressure, L
N
e= 1-2v (_P_p_p)z_pw
E E
J
E
k=——— :Bulk Modulus
31-2v)

* Subjected to uniform
pressure, dilatation must be
negative, therefore

Stress and Strain — Axial L.oading

( Shearing Strain

* A cubic element subjected to a shear stress will

g deform into a rhomboid. The corresponding shear
strain 1s quantified in terms of the change in angle
between the sides,

[Txy = fb’xy)]

Fig. 2.46

» A plot of shear stress vs. shear strain is similar the
previous plots of normal stress vs. normal strain
except that the strength values are approximately

half. For small strains,

y [
yx
2 Ty ‘

Txy = G }/xy Tyz = G }/yz sz = G yzx ]

,and G

Fig. 2.47

where G is the modulus of rigidity or shear modulus.

Relation Among E,v | E

EZ(HV)




Stress and Strain — Axial L.oading

Example 16

A rectangular block of material with modulus of rigidity G= 90 ksi is
bonded to two rigid horizontal plates. The lower plate is fixed, while the
upper plate is subjected to a horizontal force 2. Knowing that the upper plate
moves through 0.04 in. under the action of the force, determine a) the average
shearing strain in the material, and b) the force Pexerted on the plate.
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Stress and Strain — Axial Loading d _<0.04in.

\D
. in;TL

Example 16

» Determine the average
angular deformation or
shearing strain of the block.

m.

A ]
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Stress and Strain — Axial L.oading

Example 17
Y
A circle of diameter d= 9 1in. is scribed on an

unstressed aluminum plate of thickness 7= 3/4 ot
in. Forces acting in the plane of the plate later 15 in

cause normal stresses <

o, = 12 ksi and 6, = 20 ksi.
For £=10x10°¢ psi and v = 1/3,

determine the change in:
a) the length of diameter AB,
b) the length of diameter CD,
c) the thickness of the plate, and

d) the volume of the plate.
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Example 17
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Example 17

111
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O Composite Materials

» Fiber-reinforced composite materials are formed
from /amina of fibers of graphite, glass, or
polymers embedded in a resin matrix.

Load

Layer of
material : .

t 1ad * Normal stresses and strains are related by Hooke’s
™., Law but with directionally dependent moduli of

elasticity,

Fibers

» Transverse contractions are related by directionally
dependent values of Poisson’s ratio, e.g.,

Vip = ——
8)6 SX

* Materials with directionally dependent mechanical
properties are anisotropic.
112
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 Saint-Venant’s Pripciple
- ! * Loads transmitted through rigid
plates result in uniform distribution
of stress and strain.

» Concentrated loads result in large
stresses in the vicinity of the load
application point.

[
|
[

o Stress and strain distributions

; ‘ I i become uniform at a relatively short
T ] | %bT_ {\-" o . distance from the load application
b :
! ! oints.
L i ot
Tave =4
\ * Saint-Venant’s Principle:

Stress distribution may be assumed
independent of the mode of load
application except in the immediate
vicinity of load application points.

Tin = ()'973‘7;\»'0 Tmin = 0‘6680-av(* Tin = ()‘1980;1\1-

= ~ _ -
Tinax = 1'027011\'0 Omax — 1'38/0-41\'0 Omax — 2'5‘50u\r>
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1 Stress Concentration: Hole

| 3.4
1 |
sd 3.2

P’ : P 3.0
~ gl D - s
98 N
1T 2.8 \

3d | 26
| 2.4
K22

—=\ 2.0

P’ 1.8
T nax 1.4

= 1.2

e 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
r/d

(a) Flat bars with holes
Discontinuities of cross section may result in K = Omax

high localized or concentrated stresses. O ave
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[ Stress Concentration: Fillet

L

l—

3.2
P’ ' L<r—‘T' p |
| \

//

(}—H.I

AN

1.1

— 16
-~ :4____- v

L1

1.4

q

1.0
0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

(b) Flat bars with fillets

r/d
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1 Stress Concentration

Example 18

Determine the largest axial load Pthat
can be safely supported by a flat steel
bar consisting of two portions, both 10
mm thick, and respectively 40 and 60
mm wide, connected by fillets of radius
r=8 mm. Assume an allowable normal
stress of 165 MPa.
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[ Stress Concentration

Example 18

34
LA
AR
o LA
o VAN "
N 13
2.4 19
1
K 22 N
20 \ 3 \i ~
N \ e e O e
5 0 e
i e T T —
14 = —
1.2

1.0
0 0.02 0.04 0.06 0.0 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30
r/d

(b) Flat bars with fillets
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