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Load - deformation diagram

P

δ
Plotting the magnitude P of the load against the deformation a, we obtain a
certain load-deformation diagram. While this diagram contains information
useful to the analysis of the rod under consideration, it cannot be used directly
to predict the deformation of a rod of the same material but of different
dimensions.
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Deformations of Members under Axial Loading
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Normal Strain

We define the normal strain in a rod
under axial loading as the deformation
per unit length of that rod.

L
δε ==cteAif

Strain has no dimension
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Normal Strain
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Stress-Strain Test
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Stress-Strain Diagram:  Ductile Materials

45
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Shear stress is primarily responsible for the failure of ductile materials, and confirms the fact that,
under an axial load, shearing stresses are largest on surfaces forming an angle of 45° with the
load.
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Stress-Strain Diagram:  Ductile Materials
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Stress-Strain Diagram:  Ductile Materials
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Stress-Strain Diagram:  Ductile Materials
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Stress-Strain Diagram:  Brittle Materials 

BritleUDuctileU εε >>
90

Normal stresses are primarily responsible for the failure of brittle materials
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Hooke’s Law: Modulus of Elasticity

• Below the yield stress

• Strength is affected by alloying, 
heat treating, and manufacturing 
process but stiffness (Modulus of 
Elasticity) is not.

Elasticity of Modulus         
or Modulus Youngs=E

εσ E=
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Stress-Strain Diagram:  Brittle Materials 
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Elastic vs. Plastic Behavior

• If the strain disappears when the 
stress is removed, the material is 
said to behave elastically.  

• When the strain does not return 
to zero after the stress is 
removed, the material is said to 
behave plastically.

• The largest stress for which this 
occurs is called the elastic limit.
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Elastic vs. Plastic Behavior

The plastic deformation depends on:
The maximum value reached by the stress.
The time elapsed before the load is removed.

The stress-dependent part of the plastic
deformation is referred to as slip, and
the time-dependent part-which is also
influenced by the temperature-as creep.
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Elastic vs. Plastic Behavior

21 RR >



Stress and Strain – Axial Loading

17

Elastic vs. Plastic Behavior

Bauschinger effect:
Yield point is not defined clearly
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Fatigue

• Fatigue properties are shown on 
S-N diagrams.

• When the stress is reduced below 
the endurance limit, fatigue 
failures do not occur for any 
number of cycles.

• A member may fail due to fatigue
at stress levels significantly below 
the ultimate strength if subjected 
to many loading cycles.
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Deformations of Members under Axial Loading

Hooke’s law εσ E=
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Deformations of Members under Axial Loading
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Deformations of Members under Axial Loading

Multiple Loads/Sizes
• With variations in loading, cross-section or 

material properties,
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Deformations of Members under Axial Loading

Determine the deformation of the steel rod 
shown under the given loads.
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Deformations of Members under Axial Loading

in. 618.0   in. 07.1

psi1029 6
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Example 1

SOLUTION:
• Divide the rod into components at 

the load application points.

• Apply a free-body analysis on each 
component to determine the 
internal force

• Evaluate the total of the component 
deflections.
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Deformations of Members under Axial Loading

Example 1
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Deformations of Members under Axial Loading

Example 1
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Deformations of Members under Axial Loading

Example 1
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Deformations of Members under Axial Loading

Example 1 • Evaluate total deflection,
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Deformations of Members under Axial Loading

Relative Deformation
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ABAB =−= δδδ /
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Deformations of Members under Axial Loading

Example 2

The rigid bar BDE is supported by two 
links AB and CD. For the 30-kN force 
shown, determine the deflection

a) of B

b) of D

c) of E.
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Deformations of Members under Axial Loading

Example 2
SOLUTION:

• Apply a free-body analysis to the bar 
BDE to find the forces exerted by 
links AB and DC.

• Evaluate the deformation of links 
AB and DC or the displacements of 
B and D.

• Work out the geometry to find the 
deflection at E given the deflections 
at B and D.



Free body:  Bar BDE
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Deformations of Members under Axial Loading

Example 2

SOLUTION:
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Deformations of Members under Axial Loading

Example 2

SOLUTION: Displacement of B:
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Deformations of Members under Axial Loading

Example 2

SOLUTION: Displacement of D:
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Deformations of Members under Axial Loading

Example 2
SOLUTION:

Displacement of E:
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Deformations of Members under Axial Loading

Nonuniform Deformation
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Deformations of Members under Axial Loading

Example 3

– Determine the deflection of point a 
of a homogeneous circular cone of 
height h, density , and modulus of 
elasticity E due to its own weight.
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Deformations of Members under Axial Loading

Example 3
Consider a slice of thickness dy
P = weight of above slice
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Deformations of Members under Axial Loading

Normal Stresses in Tapered Bar
– Consider the following tapered bar with a
thickness t that is constant along the entire
length of the bar.

L
xhhhh x )( 121)( −+= −+⋅=⋅=

L
xhhhthtA xx )( 121)()(
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Deformations of Members under Axial Loading

Normal Stresses in Tapered Bar
– Consider the following tapered bar with a
thickness t that is constant along the entire
length of the bar.

−+⋅
==

L
xhhht

P
A
P

x
x

)( 121
)(

)(σ

Stress and Strain – Axial Loading

40

Deformations of Members under Axial Loading

Deflection of Tapered Bar
– Consider the following tapered bar with a
thickness t that is constant along the entire
length of the bar.
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Deformations of Members under Axial Loading

Deflection of Tapered Bar
– Consider the following tapered bar with a
thickness t that is constant along the entire
length of the bar.
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Deformations of Members under Axial Loading

Example 4

– Determine the normal stress as a 
function of x along the length of the 
tapered bar shown if

– h1 = 2 in
– h2 = 6 in
– t = 3 in, and
– L = 36 in
– P = 5,000 lb
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Deformations of Members under Axial Loading

Example 4
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Deformations of Members under Axial Loading

Example 5

– Determine the displacement at the end 
of the cylindrical bar under it’s weight 
W.

(A: Cross Section)
(E: Modulus of Elasticity)
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Deformations of Members under Axial Loading

Example 5
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Statically Indeterminate Structures
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Statically Indeterminate Structures

Statically Determinate Member
When equations of equilibrium are sufficient to
determine the forces and stresses in a structural
member, we say that the problem is statically
determinate
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48

Statically Indeterminate Structures

Statically Indeterminate Member
When the equilibrium equations alone are not
sufficient to determine the loads or stresses,
then such problems are referred to as statically
indeterminate problems.
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Statically Indeterminate Structures
Determinacy of Beams

For a coplanar (two-dimensional) structure, there are at 
most three equilibrium equations for each part, so that if 
there is a total of n parts and r reactions, we have

ateindetermin statically3nr
edeterminat statically3

>
= nr
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Statically Indeterminate Structures
Example 6

– Classify each of the beams shown 
as statically determinate or 
statically indeterminate.
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Statically Indeterminate Structures
Example 6

-For part I:
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52

Statically Indeterminate Structures
Example 5

-For part II:
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Statically Indeterminate Structures

Example 5

-For part III:
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Statically Indeterminate Structures
Determinacy of Trusses

ateindetermin statically2
edeterminat statically2

>+
=+
nrm
nrm

m: members     n: nodes     r: reactions of supports
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Statically Indeterminate Structures
Example 7

– Classify each of the trusses shown as statically determinate or 
statically indeterminate.
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Statically Indeterminate Structures
Example 7

-For part I:
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Statically Indeterminate Structures

Example 7

-For part II:
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Statically Indeterminate Structures
Example 8

Determine the reactions at A and B for 
the steel bar and loading shown, 
assuming a close fit at both supports 
before the loads are applied.
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Statically Indeterminate Structures
Example 8

SOLUTION:

• Consider the reaction at B as 
redundant, release the bar from 
that support, and solve for the 
displacement at B due to the 
applied loads.

• Require that the displacements 
due to the loads and due to the 
redundant reaction be compatible, 
i.e., require that their sum be zero.
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Statically Indeterminate Structures
Example 8 SOLUTION:

• Solve for the displacement at B due to the applied 
loads with the redundant constraint released, 
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Statically Indeterminate Structures
Example 8

• Solve for the displacement at B due to the redundant 
constraint,
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Statically Indeterminate Structures
Example 8

• Require that the displacements due to the loads and due to 
the redundant reaction be compatible,
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Statically Indeterminate Structures
Example 8

• Find the reaction at A due to the loads and the reaction at B
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Statically Indeterminate Structures
Example 9

A rigid plate C is used to transfer a 20-kip load P to
rod A and pipe B, as shown. The supports at the
top of the rod and bottom of the pipe are rigid and
there are no stresses in the rod or pipe before the
load P applied.

Determine

(a) The axial stresses in rod A and pipe B.

(b) The displacement of plate C.

(c) The reactions.
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Statically Indeterminate Structures
Example 9
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Statically Indeterminate Structures
Example 9
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Statically Indeterminate Structures
Example 9
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Statically Indeterminate Structures
Example 9
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Statically Indeterminate Structures
Example 9
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Statically Indeterminate Structures

Example 10

Determine the deformation of the spring.
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Statically Indeterminate Structures

Example 10
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Statically Indeterminate Structures

Example 10
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Statically Indeterminate Structures

Example 10
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Statically Indeterminate Structures

Example 11

A rod of length L, cross-sectional area
A1, and modulus of elasticity E1, has
been placed inside a tube of the same
length L, but of cross-sectional area A2
and modulus of elasticity E2. What is
the deformation of the rod and tube
when a force P is exerted on a rigid
end plate as shown? What are the
internal forces in the rod and the
tube?
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Statically Indeterminate Structures

Example 11
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Statically Indeterminate Structures
Example 11
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Statically Indeterminate Structures

Example 12
A very stiff bar of negligible weight is 
suspended horizontally by two vertical 
rods as shown. One of the rods is of 
steel, and is ½-in in diameter and 4 ft
long; the other is of brass and is 7/8-in 
in diameter and 8 ft long. If a vertical 
load of 6000 lb is applied to the bar, 
where must be placed in order that the 
bar will remain horizontal? Also find 
the stresses in the brass and steel rods. ind
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Statically Indeterminate Structures

Example 12
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Statically Indeterminate Structures

Example 12

?,, =xFF bs
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Statically Indeterminate Structures

Example 12

One additional independent 
equation is needed. The problem 
requires that the bar remain 
horizontal. Therefore, the rods must 
undergo equal elongations, that is

bs δδ =

sδ
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Statically Indeterminate Structures

Example 12
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Statically Indeterminate Structures

Example 12
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Statically Indeterminate Structures

Example 12
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Statically Indeterminate Structures

Example 12



Statically Indeterminate Axially Loaded Members

85

Thermal Stress

Most materials when unstrained expand when heated 
and contract when cooled.

coef.expansion   thermal=α

( )LTT Δ= αδ

( )T
L
T Δ== αεδε

( )TEE Δ== ασεσ
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Thermal Stress

• Determine the axial force and 
normal stress due to temperature 
changing in the following beam.

coef.expansion   thermal=α

Example 13
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• A temperature change results in a change in 
length or thermal strain.  There is no stress 
associated with the thermal strain unless the 
elongation is restrained by the supports.  

Thermal Stress
Example 13
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• Treat the additional support as redundant and apply 
the principle of superposition.

( )LTT Δ= αδ

AE
PL

P =δ

Thermal Stress
Example 13
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( ) 00 =+Δ=+=
AE
PLLTPT αδδδ

• The thermal deformation and the deformation from 
the redundant support must be compatible.

( ) ( )TE
A
PTAEP Δ−==Δ−= ασα &

Thermal Stress
Example 13
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Thermal Stress

Determine the values of the stress in portion AC and CB of the steel bar 
shown when a the temperature of the bar is –500F, knowing that a close 
fit exists at both of the rigid supports when the temperature is +750F.

Example 14
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Thermal Stress
Example 14
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Thermal Stress
Example 14
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Thermal Stress
Example 14
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Thermal Stress
Example 14
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Thermal Stress
Example 14
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Thermal Stress

• Determine the temperature that we 
have no tensile in the shown beam.

coef.expansion   thermal=α

Example 15
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Thermal Stress

• There is only tensile stress in the 
part AB due to axial force P.

Example 15
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Thermal Stress

• There is only tensile stress in the 
part AB due to axial force P.

Example 15
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Thermal Stress

• There is only tensile stress in the 
part AB due to axial force P.

Example 15

Stress and Strain – Axial Loading

100

Poisson’s Ratio • For a slender bar subjected to axial loading:

• The elongation in the x-direction is 
accompanied by a contraction in the other 
directions.  Assuming that the material is 
isotropic (no directional dependence),

• Poisson’s ratio is defined as
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Generalized Hooke’s law
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Generalized Hooke’s law

xσ

Stress X: Direction Y: Direction Z: Direction
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• For an element subjected to multi-axial loading, the normal strain 
components resulting from the stress components may be determined from 
the principle of superposition.  This requires:

1) strain is linearly related to stress
2) deformations are small
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General State of Strain
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Stress and Strain – Axial Loading
Dilatation: Bulk Modulus

• Relative to the unstressed state, the change in volume is
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Stress and Strain – Axial Loading
Dilatation: Bulk Modulus

• For element subjected to 
uniform hydrostatic 
pressure,

Pzyx −=== σσσ

( )
E

PPPP
E

e )21(3 21 νν −−=−−−−=

ModulusBulkEk :
)21(3

 
ν−

=
k
Pe −=

• Subjected to uniform 
pressure, dilatation must be 
negative, therefore
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Shearing Strain • A cubic element subjected to a shear stress will 
deform into a rhomboid.  The corresponding shear
strain is quantified in terms of the change in angle 
between the sides,

( )xyxy f γτ =

• A plot of shear stress vs. shear strain is similar the 
previous plots of normal stress vs. normal strain 
except that the strength values are approximately 
half.  For small strains, 

zxzxyzyzxyxy GGG γτγτγτ ===

where G is the modulus of rigidity or shear modulus.

( )ν+= 1
2G
ERelation Among E,    

, and G
ν
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Stress and Strain – Axial Loading
Example 16

A rectangular block of material with modulus of rigidity G = 90 ksi is 
bonded to two rigid horizontal plates.  The lower plate is fixed, while the 
upper plate is subjected to a horizontal force P.  Knowing that the upper plate 
moves through 0.04 in. under the action of the force, determine a) the average 
shearing strain in the material, and b) the force P exerted on the plate.

108

Stress and Strain – Axial Loading
Example 16

• Determine the average 
angular deformation or 
shearing strain of the block.
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Stress and Strain – Axial Loading
Example 17

A circle of diameter d = 9 in. is scribed on an 
unstressed aluminum plate of thickness t = 3/4 
in.  Forces acting in the plane of the plate later 
cause normal stresses 

σx = 12 ksi and σz = 20 ksi.  

For E = 10x106 psi and ν = 1/3, 

determine the change in: 

a) the length of diameter AB, 

b) the length of diameter CD, 

c) the thickness of the plate, and 

d) the volume of the plate.
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Stress and Strain – Axial Loading
Example 17
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Example 17
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Stress and Strain – Axial Loading

Composite Materials
• Fiber-reinforced composite materials are formed 

from lamina of fibers of graphite, glass, or 
polymers embedded in a resin matrix.
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• Normal stresses and strains are related by Hooke’s 
Law but with directionally dependent moduli of 
elasticity, 
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• Transverse contractions are related by directionally 
dependent values of Poisson’s ratio, e.g.,

• Materials with directionally dependent mechanical 
properties are anisotropic.



• Loads transmitted through rigid 
plates result in uniform distribution 
of stress and strain.

• Saint-Venant’s Principle:
Stress distribution may be assumed 
independent of the mode of load 
application except in the immediate 
vicinity of load application points.

• Stress and strain distributions 
become uniform at a relatively short 
distance from the load application 
points.

• Concentrated loads result in large 
stresses in the vicinity of the load 
application point.
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Saint-Venant’s Principle
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Stress and Strain – Axial Loading

Stress Concentration: Hole

Discontinuities of cross section may result in 
high localized or concentrated stresses. ave

max
σ
σ=K
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Stress Concentration: Fillet

116
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Stress Concentration

Example 18

Determine the largest axial load P that 
can be safely supported by a flat steel 
bar consisting of two portions, both 10 
mm thick, and respectively 40 and 60 
mm wide, connected by fillets of radius 
r = 8 mm.  Assume an allowable normal 
stress of 165 MPa.
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Stress Concentration

Example 18


