Mechanics of Materials

Ferdinand P.Beer, E.Russel Johnston, Jr., John T.Dewolf

Other Reference:

J.Wat Oler "Lectures notes on Mechanics od Materials" Ibrahim A.Assakkaf "Lectures notes on Mechanics od Materials"

Introduction – Concept of Stress

By: Kaveh Karami

Associate Prof. of Structural Engineering

https://prof.uok.ac.ir/Ka.Karami

Introduction – Concept of Stress

☐ Main objectives:

Mechanics of Materials answers tow questions:

- ✓ Is the material strong enough?
- ✓ Is the material stiff enough?

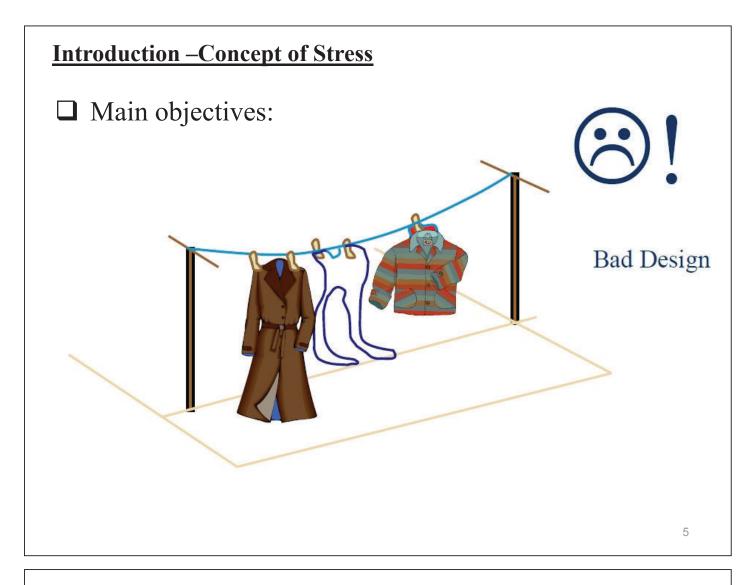
- ☐ Main objectives:
 - ➤ If the material is not strong enough, your design will break.
 - ➤ If the material isn't stiff enough, your design probably won't function the way it's intended to.

3

<u>Introduction –Concept of Stress</u>

Main objectives:

Good Design



- ☐ Main objectives:
 - Provide the future engineer with the <u>means of analyzing</u> and <u>designing</u> various machines and load bearing structures.
- ❖ Both the analysis and design of a given structure involve the **determination of** *stresses* and *deformations*. This chapter is devoted to the concept of stress.

- ☐ Design Considerations:
 - Safety.
 - Economy.

Design of Engineering systems is usually trade off between <u>maximizing</u> <u>safety</u> and <u>minimizing cost</u>.

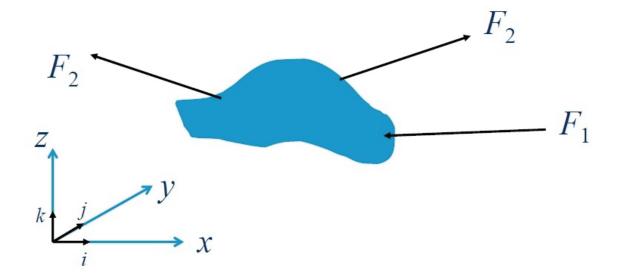
7

- ☐ Typical approach to Engineering solutions:
 - ✓ Identify the problem.
 - ✓ State the objective.
 - ✓ Develop alternative solutions.
 - ✓ Evaluate alternatives.
 - ✓ Use the best alternative.

- ☐ Steps of Analysis
 - ✓ Equations of equilibrium are used for external forces.
 - ✓ Analysis of the effect of the external forces on the structures (machine) or any component of the structure (machine).
 - ✓ Behavior of the materials under the action of forces.

9

- ☐ Equations of Equilibrium
 - Rigid Body



- ☐ Equations of Equilibrium
- For a rigid body to be in equilibrium, both the resultant force R and a resultant moments (couples)
 C must vanish.

$$\mathbf{R} = \sum F_x \mathbf{i} + \sum F_y \mathbf{j} + \sum F_z \mathbf{k} = \mathbf{0}$$

$$\mathbf{C} = \sum M_x \mathbf{i} + \sum M_y \mathbf{j} + \sum M_z \mathbf{k} = \mathbf{0}$$

11

- ☐ Equations of Equilibrium
- The two conditions can also be expressed in scalar form as:

$$\sum F_x = 0$$

$$\sum M_y = 0$$

$$\sum M_z = 0$$

$$\sum M_z = 0$$

- ☐ Equilibrium in Two Dimensions
 - The term "two dimensional" is used to describe problems in which the forces under consideration are contained in a plane (say the xy-plane)

13

- ☐ Equilibrium in Two Dimensions
 - For two-dimensional problems, since a force in the xy-plane has no z-component and produces no moments about the x or y axes, hence

$$\mathbf{R} = \sum_{z} F_{x} \mathbf{i} + \sum_{z} F_{y} \mathbf{j} = \mathbf{0}$$

$$\mathbf{C} = \sum_{z} M_{z} \mathbf{k} = \mathbf{0}$$

- ☐ Equilibrium in Two Dimensions
 - In scalar form, these conditions can be expressed as

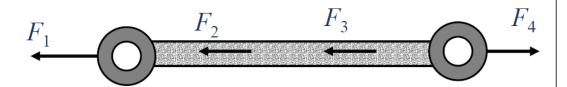
$$\sum F_x = 0 \qquad \sum F_y = 0$$
$$\sum M_z = 0$$

15

Introduction – Concept of Stress

- ☐ Internal Forces for Axially Loaded Members
 - Analysis of Internal Forces

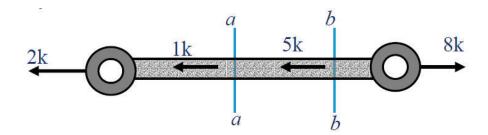
Example 1

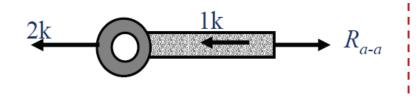


Assume that: F1 = 2 k, F3 = 5 k, and F4 = 8 kF2 = ?

- ☐ Internal Forces for Axially Loaded Members
 - Analysis of Internal Forces
 - -What is the internal force developed on plane a-a and b-b?

Example 2



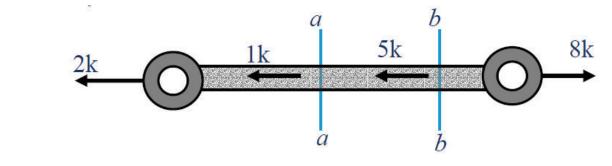


17

Introduction – Concept of Stress

- ☐ Internal Forces for Axially Loaded Members
 - Analysis of Internal Forces

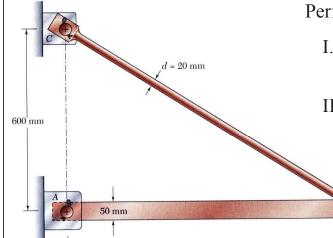
Example 2



<u>Introduction –Concept of Stress</u>

☐ Internal Forces for Axially Loaded Members

Example 3



Perform a static analysis to determine:

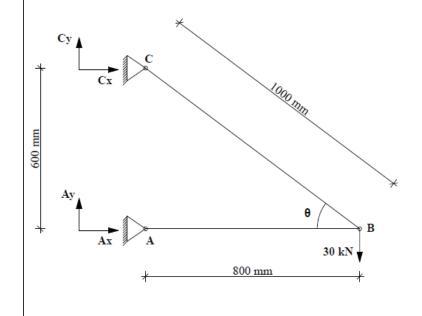
- I. The internal force in each structural member
- II. The reaction forces at the supports.

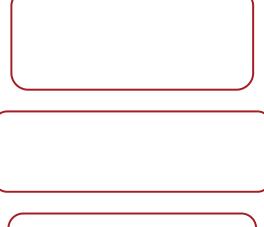
19

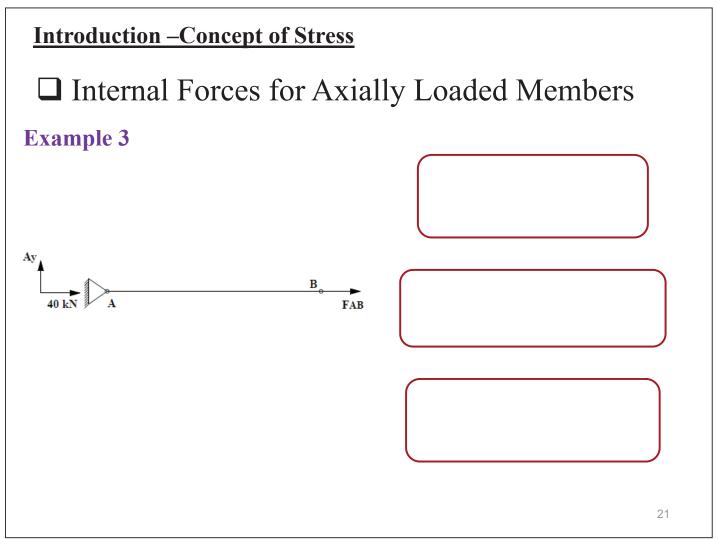
Introduction – Concept of Stress

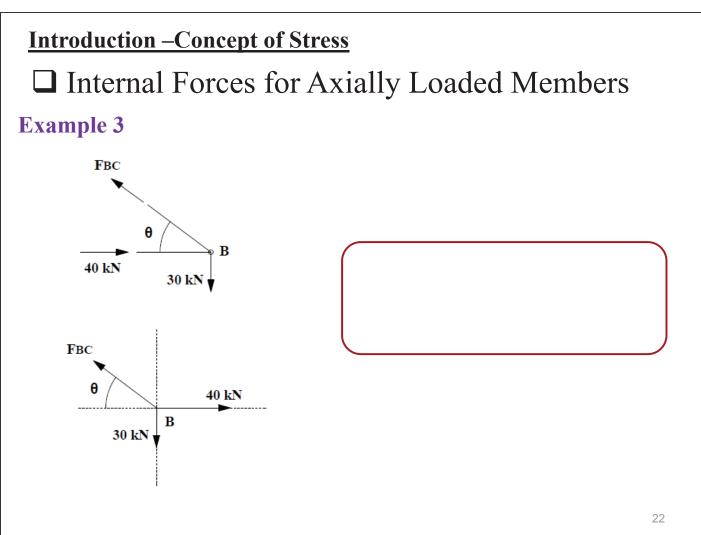
☐ Internal Forces for Axially Loaded Members

Example 3







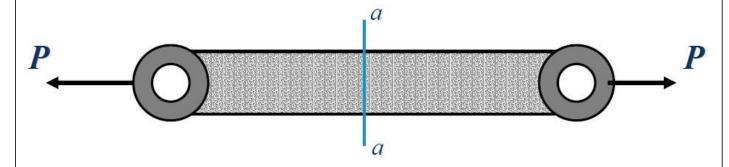


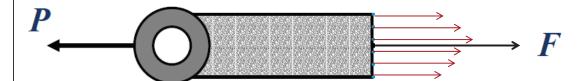
- ☐ Axial Loading: Normal Stress
 - Stress
 - Stress is the intensity of internal force.
 - It can also be defined as force per unit area, or intensity of the forces distributed over a given section.

$$Stress = \frac{Force}{Area}$$

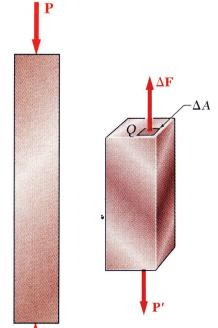
23

- ☐ Axial Loading: Normal Stress
 - The resultant of the internal forces for an axially loaded member is *normal* to a section cut perpendicular to the member axis.





☐ Axial Loading: Normal Stress



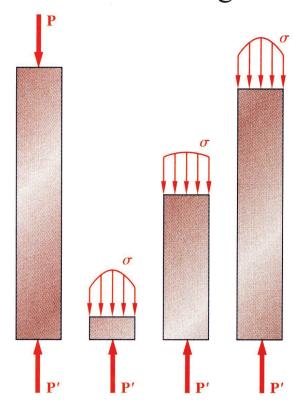
• The force intensity on that section is defined as the normal stress.

$$\sigma = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A}$$
 $\sigma_{ave} = \frac{P}{A}$

25

Introduction – Concept of Stress

☐ Axial Loading: Normal Stress



• The normal stress at a particular point may not be equal to the average stress but the resultant of the stress distribution must satisfy

$$\sigma = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A} \implies \sigma = \frac{dF}{dA}$$

$$P = \int dF = \int_{A} \sigma \, dA$$

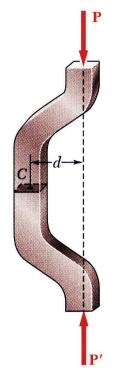
☐ Centric loading

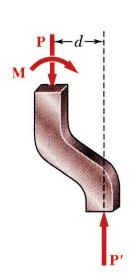
• A uniform distribution of stress is only possible if the concentrated loads on the end sections of two-force members are applied at the section centroids. This is referred to as *centric loading*.

27

Introduction – Concept of Stress

☐ Eccentrically loaded

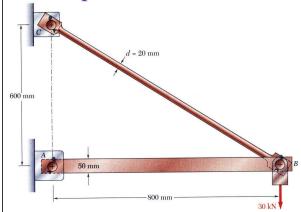




• If a two-force member is *eccentrically loaded*, then the resultant of the stress distribution in a section must yield an axial force and a moment.

☐ Stress Analysis & Design Example

Example 4

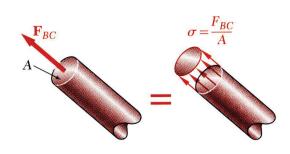


Can the structure safely support the 30 kN load? Assume that, the element CB has enough capacity. $\sigma_{\text{all}_{AB}} = 165 \text{ MPa}$

• From a statics analysis

$$F_{AB}$$
= 40 kN (compression)

$$F_{BC}$$
 = 50 kN (tension)

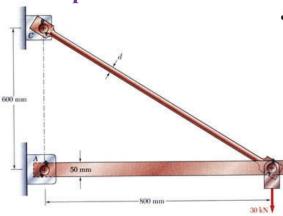


29

Introduction – Concept of Stress

☐ Stress Analysis & Design Example

Example 4



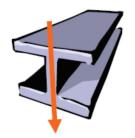
- For reasons based on cost, weight, availability, etc., the choice is made to construct the rod from aluminum ($\sigma_{\text{all}_{AB}} = 100 \, \text{MPa}$). What is an appropriate choice for the rod diameter?
 - From a statics analysis

$$F_{AB}$$
= 40 kN (compression)

$$F_{BC}$$
 = 50 kN (tension)

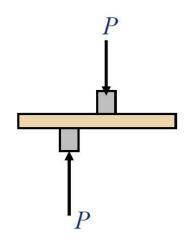
- ☐ Shearing Stress
- The internal forces discussed previously and the corresponding stresses were *normal* to the section considered.

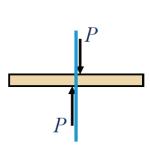
➤ A different type of stress can occur in a **transverse** cross section of a member as shown in the next slide.

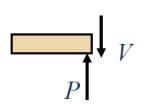


31

- ☐ Shearing Stress
 - Illustration of Shearing Stress







$$\tau_{\text{ave}} = \frac{V}{A_s} = \frac{P}{A_s}$$

- ☐ Shearing Stress
 - Shear

$$\tau = \lim_{\Delta A_s \to 0} \frac{\Delta V}{\Delta A_s} \quad \Rightarrow \quad \tau = \frac{dV}{dA_s}$$

$$P = \int dV = \int_{A_s} \tau \, dA_s$$

 $A_s =$ cross-sectional area of bolt or rivet

- Shear stress distribution varies from zero at the member surfaces to maximum values that may be much larger than the average value.
- The shear stress distribution cannot be assumed to be uniform.

33

Introduction – Concept of Stress

☐ Shearing Stress

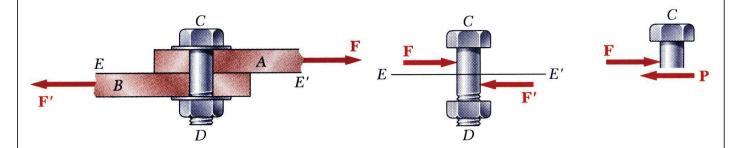
Shearing Stress in Connection

Shearing stresses are commonly found in bolts, pins, and rivets used to connect various structural members and machine components.

Three Types of Shearing Stress

- a) Single Shear
- b) Double Shear
- c) Punching Shear

- ☐ Shearing Stress Examples
 - Single Shear



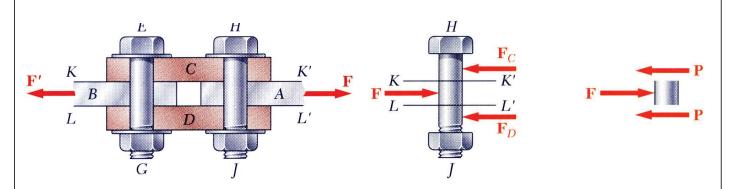
The bolt is said to in single shear P

$$\tau_{\rm ave} = \frac{P}{A_s} = \frac{F}{A_s}$$

35

Introduction – Concept of Stress

- ☐ Shearing Stress Examples
 - Double Shear



The bolt is said to in double shear *P*

$$\tau_{\text{ave}} = \frac{P}{A_s} = \frac{F/2}{A_s} = \frac{F}{2A_s}$$

- ☐ Shearing Stress Examples
 - Punching Shear

Examples of this type are:

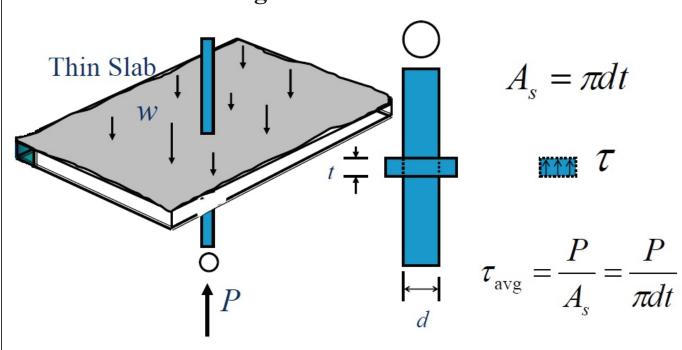
- Action of punch in forming rivet hole in metal
- Tendency of building columns to punch trough footings
- Heavy thin-slab ceiling cause building columns to punch through slabs.

37

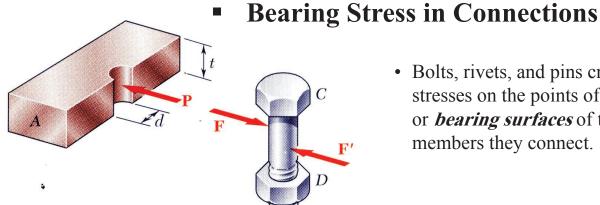
Introduction – Concept of Stress

☐ Shearing Stress Examples

Punching Shear



☐ Shearing Stress Examples

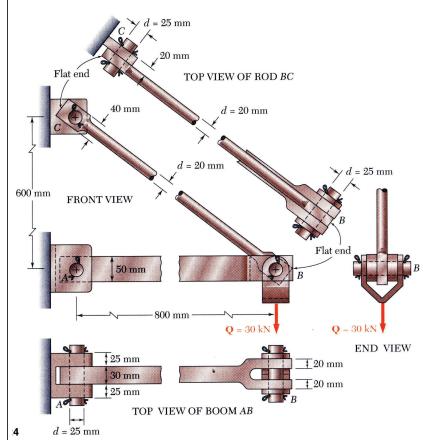


- Bolts, rivets, and pins create stresses on the points of contact or *bearing surfaces* of the members they connect.
- Corresponding average force intensity is called the bearing stress,

$$\sigma_{\rm b} = \frac{P}{A} = \frac{P}{t \, d}$$

39

Introduction – Concept of Stress

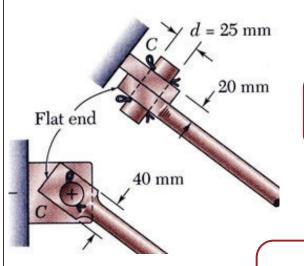


Example 5

- ☐ Stress Analysis & Design Example
- Determine the stresses in the members and connections of the structure shown.
 - From a statics analysis F_{AB} = 40 kN (compression) F_{RC} = 50 kN (tension)

☐ Rod & Boom Normal Stresses

Example 5



- At the rod center, the average normal stress in the circular cross-section.
- At the flattened rod ends, the smallest cross-sectional area occurs at the pin centerline.

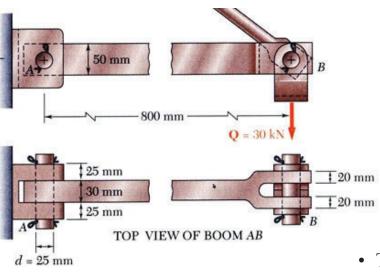
 F_{BC} = 50 kN (tension)

41

Introduction – Concept of Stress

☐ Rod & Boom Normal Stresses

Example 5



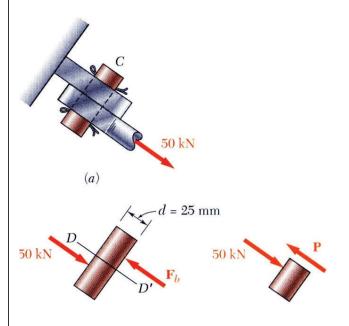
• The average normal stress in the center boom.

• The minimum area sections at the boom ends are unstressed since the boom is in compression.

 F_{AB} = 40 kN (compression)

Example 5

☐ Pin Shearing Stresses



• The cross-sectional area for pins at *A*, *B*, and *C*,

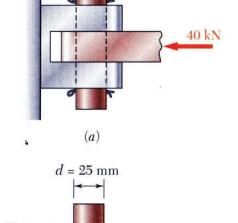
• The force on the pin at C is equal to the force exerted by the rod BC,

43

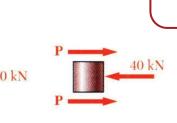
Introduction – Concept of Stress

Example 5

☐ Pin Shearing Stresses

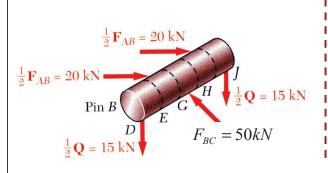


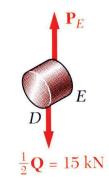
• The pin at A is in double shear with a total force equal to the force exerted by the boom AB,

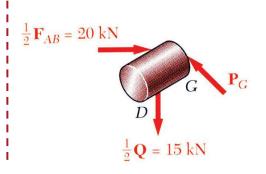


Example 5

☐ Pin Shearing Stresses





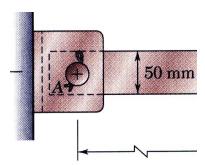


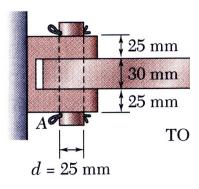
45

Introduction – Concept of Stress

Example 5

☐ Pin Shearing Stresses



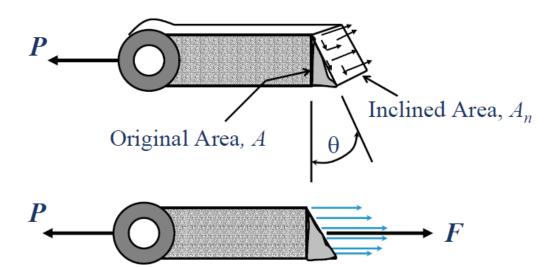


• To determine the bearing stress at A in the boom AB, we have t = 30 mm and d = 25 mm,

• To determine the bearing stress at A in the bracket, we have t = 2(25 mm) = 50 mm and d = 25 mm,

- 1	(
- 1			

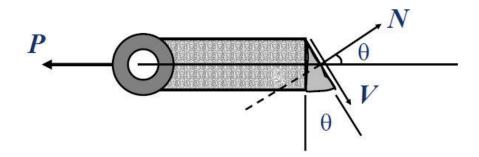
- ☐ Stresses on an Inclined Plane in an Axially Loaded Member
 - Illustration



47

Introduction – Concept of Stress

- ☐ Stresses on an Inclined Plane in an Axially Loaded Member
 - Illustration



$$V = P\sin(\theta)$$

$$N = P\cos(\theta)$$

$$A_n = \frac{A}{\cos(\theta)}$$

$$\sigma_n = \frac{N}{A_n} = \frac{P\cos(\theta)}{A/\cos(\theta)} = \frac{P}{A}\cos^2(\theta) = \frac{P}{2A}(1+\cos(2\theta))$$

$$\tau_n = \frac{V}{A_n} = \frac{P\sin(\theta)}{A/\cos(\theta)} = \frac{P}{A}\sin(\theta)\cos(\theta) = \frac{P}{2A}\sin(2\theta)$$

- ☐ Stresses on an Inclined Plane in an Axially Loaded Member
 - Maximum Normal and Shear Stresses

$$\theta = 0^{\circ} \text{ or } 180^{\circ} \Rightarrow \sigma_n \text{ is max imum} \Rightarrow \left(\sigma_{n_{Max}} = \frac{P}{A}\right)$$

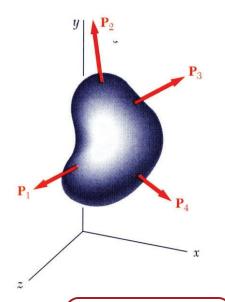
$$\theta = 45^{\circ} \text{ or } 135^{\circ} \Rightarrow \tau_n \text{ is max imum } \Rightarrow \left[\tau_{n_{Max}} = \frac{P}{2A}\right]$$

$$\Rightarrow \boxed{\tau_{n_{Max}} = \frac{\sigma_{n_{Max}}}{2}}$$

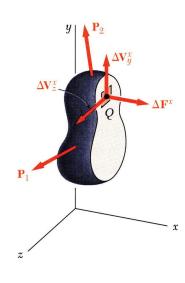
49

Introduction – Concept of Stress

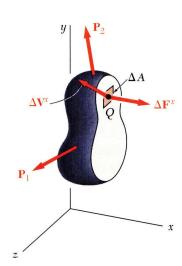
☐ Stress Under General Loadings



$$\sigma_{x} = \lim_{\Delta A \to 0} \frac{\Delta F^{x}}{\Delta A}$$



$$\tau_{xy} = \lim_{\Delta A \to 0} \frac{\Delta V_y^x}{\Delta A}$$

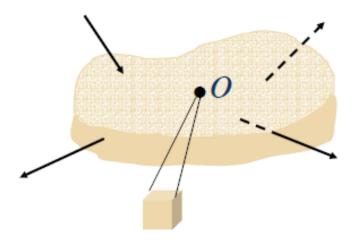


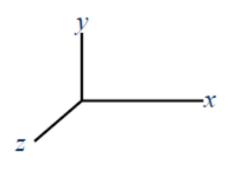
$$\tau_{xz} = \lim_{\Delta A \to 0} \frac{\Delta V_z^x}{\Delta A}$$

Transformations of Stress and Strain

☐ State of Stress

Stress at a point in a material body has been defined as a force per unit area. But this definition is somewhat ambiguous since it depends upon *what area we consider at the point*.





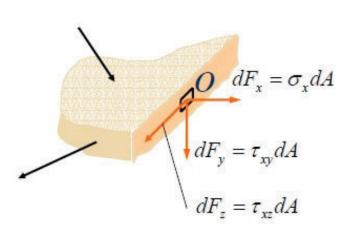
51

Transformations of Stress and Strain

□ State of Stress

let us pass a cutting plane through point O perpendicular to the x axis.

If dA is the area, then by definition



$$\sigma_{x} = \frac{dF_{x}}{dA}$$

$$\tau_{xy} = \frac{dF_y}{dA}$$

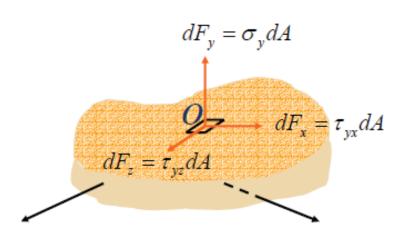
$$\tau_{xz} = \frac{dF_z}{dA}$$

Transformations of Stress and Strain

☐ State of Stress

let us pass a cutting plane through point O perpendicular to the y axis.

If dA is the area, then by definition



$$\sigma_{y} = \frac{dF_{y}}{dA}$$

$$\tau_{yx} = \frac{dF_x}{dA}$$

$$\tau_{yz} = \frac{dF_z}{dA}$$

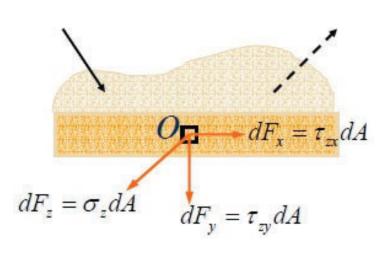
53

Transformations of Stress and Strain

☐ State of Stress

let us pass a cutting plane through point O perpendicular to the z axis.

If dA is the area, then by definition



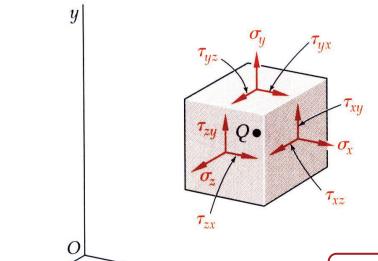
$$\sigma_z = \frac{dF_z}{dA}$$

$$\tau_{zx} = \frac{dF_x}{dA}$$

$$\tau_{zy} = \frac{dF_y}{dA}$$

Transformations of Stress and Strain

☐ General or Triaxial State of stress



Normal Stresses

$$\sigma_x, \sigma_y, \sigma_z$$

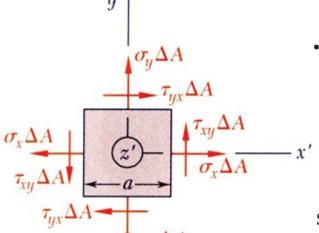
Shear Stress

$$au_{xy}, au_{yz}, au_{zx}$$

(Note: $\tau_{xy} = \tau_{yx}$, $\tau_{yz} = \tau_{zy}$, $\tau_{zx} = \tau_{xz}$)

Introduction – Concept of Stress

☐ Stress Under General Loadings



• Consider the moments about the z axis:

$$\sum_{xy} \Delta A \sum_{x'} \Delta A = 0 = (\tau_{xy} \Delta A) a - (\tau_{yx} \Delta A) a = 0$$

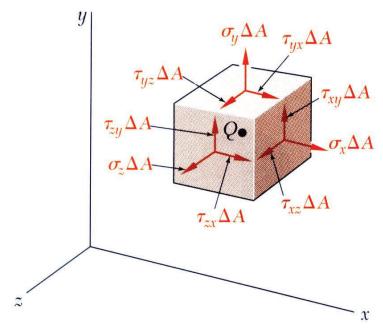
$$\Rightarrow \tau_{xy} \Delta A \Rightarrow \tau_{xy} = \tau_{yx}$$

similarly,
$$\tau_{yz} = \tau_{zy}$$
 and $\tau_{yz} = \tau_{zy}$

$$\sigma_{yz} = au_{zy}$$

• It follows that only 6 components of stress are required to define the complete state of stress

☐ Stress Under General Loadings



• 9 stress components are unknown.

- Stress components are defined for the planes cut parallel to the *x*, *y* and *z* axes. For equilibrium, equal and opposite stresses are exerted on the hidden planes.
- The combination of forces generated by the stresses must satisfy the conditions for equilibrium:

$$\sum F_x = \sum F_y = \sum F_z = 0$$
$$\sum M_x = \sum M_y = \sum M_z = 0$$

57

Introduction – Concept of Stress

☐ Factor of Safety

Structural members or machines must be designed such that the working stresses are less than the ultimate strength of the material.

FS = Factor of safety

$$FS = \frac{\sigma_{\rm u}}{\sigma_{\rm all}} = \frac{\text{ultimate stress}}{\text{allowable stress}}$$

Factor of safety considerations:

- uncertainty in material properties
- uncertainty of loadings
- uncertainty of analyses
- number of loading cycles
- · types of failure
- maintenance requirements and deterioration effects
- importance of member to structures integrity
- risk to life and property
- influence on machine function

☐ Design Loads, Working Stresses, and Factor of Safety (FS)

Design Approaches:

➤ Deterministic, e.g., working stress or allowable stress design (ASD)

$$\frac{R_n}{FS} \ge \sum_{i=1}^m L_i$$

➤ Probability-Based, e.g., load and resistance factor design

(LRFD)

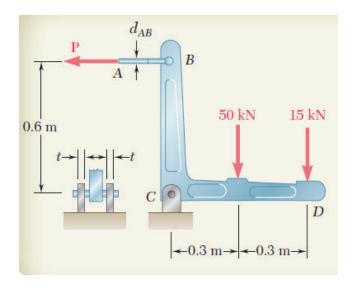
$$\phi R_n \ge \sum_{i=1}^m \gamma_i L_i$$

59

Introduction – Concept of Stress

Example 6

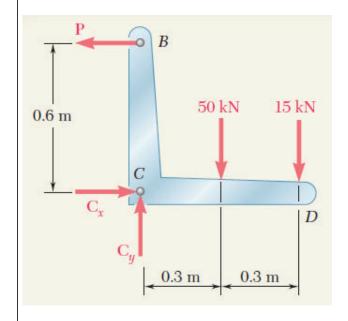
☐ Stress Analysis & Design Example



- a) Determine $d_{AB} = ?$ $\sigma_U = 600 MPa \& FS = 3.3$
- b) Determine $d_C = ?$ $\tau_U = 350 \, MPa \, \& FS = 3.3$
- c) Determine t = ? $\sigma_{all} = 300 MPa$

Example 6

☐ Stress Analysis & Design Example

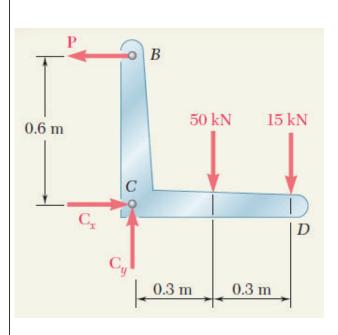


61

Introduction – Concept of Stress

Example 6

☐ Stress Analysis & Design Example

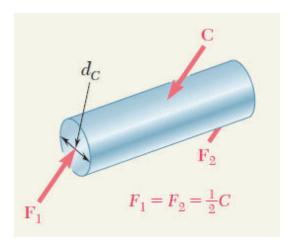


a)

Example 6

☐ Stress Analysis & Design Example

b)

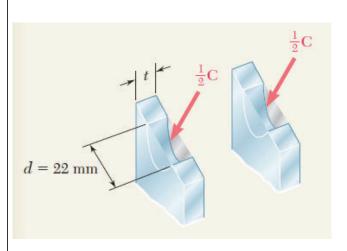


63

Introduction – Concept of Stress

Example 6

☐ Stress Analysis & Design Example

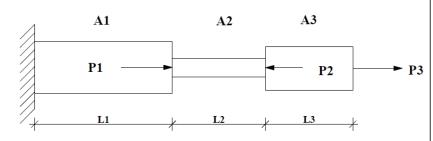


C)

☐ Stress Analysis & Design Example

Example 7

Determine axial forces and normal stresses in the shown bar. Also draw the variations of axial forces and normal stresses.



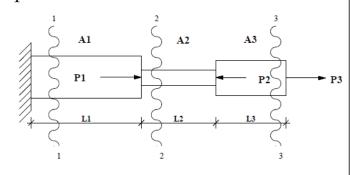
$$A_1 = 200 \text{ } mm^2$$
 $P_1 = 4 \text{ } kN$
 $A_2 = 100 \text{ } mm^2$ $P_2 = -2 \text{ } kN$
 $A_3 = 150 \text{ } mm^2$ $P_3 = 3 \text{ } kN$

65

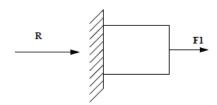
Introduction – Concept of Stress

☐ Stress Analysis & Design Example

Example 7

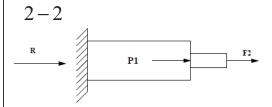


1 - 1

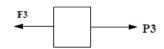


☐ Stress Analysis & Design Example

Example 7



3 - 3

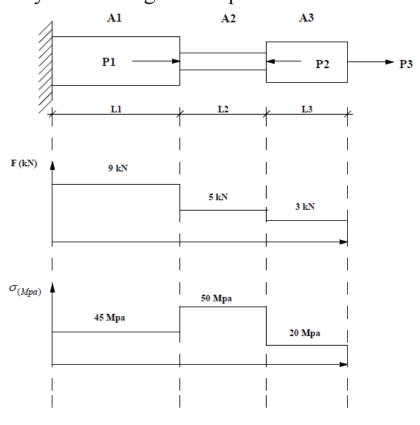


67

Introduction – Concept of Stress

☐ Stress Analysis & Design Example

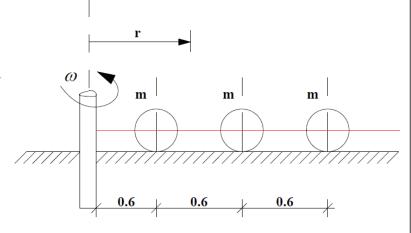
Example 7



☐ Stress Analysis & Design Example

Example 8

Three lumped masses rotate around a beam. These masses are connected to each other using a wire with diameter *d*. determine axial stresses in parts of wire and draw the results based on r using a diagram. There is no friction between the surface and masses.



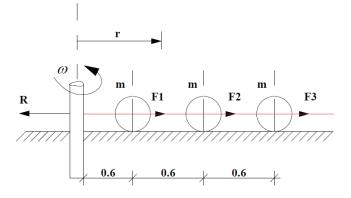
$$m = 0.5 \, kg$$
 $v = 4 \, Hz$ $d = 10 \, mm$

69

Introduction – Concept of Stress

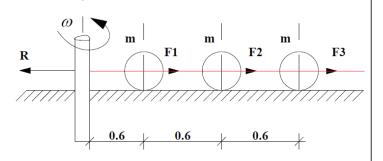
☐ Stress Analysis & Design Example

Example 8



☐ Stress Analysis & Design Example

Example 8

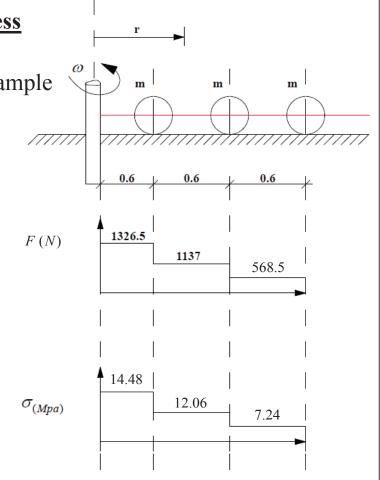


71

Introduction – Concept of Stress

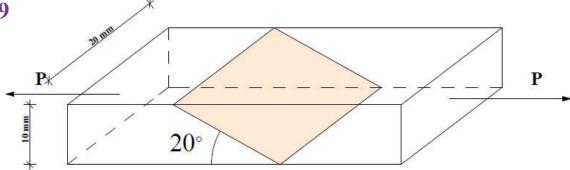
☐ Stress Analysis & Design Example

Example 8



☐ Stress Analysis & Design Example

Example 9



Two pieces of the wood beam are connected with glue connection. Determine the maximum safe axial load.

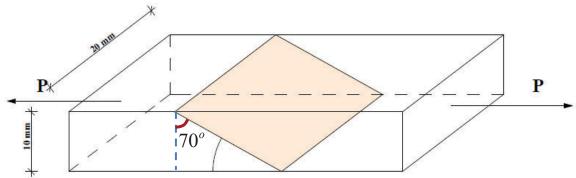
$$\tau_{all} = 10 Mpa$$

73

Introduction – Concept of Stress

☐ Stress Analysis & Design Example

Example 9



UNITS CONVERSION TABLES

Table 1: Multiples and Submultiples of SI units

Table 1. Multiples and oubmultiples of of units					
Prefix	Symbol		Multiplying Factor		
exa	Е	10 ¹⁸	1 000 000 000 000 000		
peta	Р	10 ¹⁵	1 000 000 000 000 000		
tera	Т	10 ¹²	1 000 000 000 000		
giga	G	10 ⁹	1 000 000 000		
mega	М	10 ⁶	1 000 000		
kilo	k	10 ³	1 000		
hecto*	h	10 ²	100		
deca*	da	10	10		
deci*	d	10 ⁻¹	0.1		
centi	С	10 ⁻²	0.01		
milli	m	10 ⁻³	0.001		
micro	u	10 ⁻⁶	0.000 001		
nano	n	10 ⁻⁹	0.000 000 001		
pico	р	10 ⁻¹²	0.000 000 000 001		
femto	f	10 ⁻¹⁵	0.000 000 000 000 001		
atto	а	10 ⁻¹⁸	0.000 000 000 000 000 001		

^{*} these prefixes are not normally used

75

UNITS CONVERSION TABLES

Table 2: Length Units

Millimeters	Centimeters	Meters	Kilometers	Inches	Feet	Yards	Miles
mm	cm	m	km	in	ft	yd	mi
1	0.1	0.001	0.000001	0.03937	0.003281	0.001094	6.21e-07
10	1	0.01	0.00001	0.393701	0.032808	0.010936	0.000006
1000	100	1	0.001	39.37008	3.28084	1.093613	0.000621
1000000	100000	1000	1	39370.08	3280.84	1093.613	0.621371
25.4	2.54	0.0254	0.000025	1	0.083333	0.027778	0.000016
304.8	30.48	0.3048	0.000305	12	1	0.333333	0.000189
914.4	91.44	0.9144	0.000914	36	3	1	0.000568
1609344	160934.4	1609.344	1.609344	63360	5280	1760	1

Table 3: Area Units

Tuble 6. Alea office						
Millimeter	Centimeter	Meter	Inch	Foot	Yard	
square	square	square	square	square	square	
mm ²	cm ²	m ²	in ²	ft ²	yd ²	
1	0.01	0.000001	0.00155	0.000011	0.000001	
100	1	0.0001	0.155	0.001076	0.00012	
1000000	10000	1	1550.003	10.76391	1.19599	
645.16	6.4516	0.000645	1	0.006944	0.000772	
92903	929.0304	0.092903	144	1	0.111111	
836127	8361.274	0.836127	1296	9	1	

UNITS CONVERSION TABLES

Table 4: Volume Units

Centimeter cube	Meter cube	Liter	Inch cube	Foot cube	US gallons	Imperial gallons	US barrel (oil)
cm ³	m^3	ltr	in ³	ft ³	US gal	lmp. gal	US brl
1	0.000001	0.001	0.061024	0.000035	0.000264	0.00022	0.000006
1000000	1	1000	61024	35	264	220	6.29
1000	0.001	1	61	0.035	0.264201	0.22	0.00629
16.4	0.000016	0.016387	1	0.000579	0.004329	0.003605	0.000103
28317	0.028317	28.31685	1728	1	7.481333	6.229712	0.178127
3785	0.003785	3.79	231	0.13	1	0.832701	0.02381
4545	0.004545	4.55	277	0.16	1.20	1	0.028593
158970	0.15897	159	9701	6	42	35	1

Table 5: Mass Units

Grams	Kilograms	Metric tonnes	Short ton	Long ton	Pounds	Ounces
g	kg	tonne	shton	Lton	lb	OZ
1	0.001	0.000001	0.000001	9.84e-07	0.002205	0.035273
1000	1	0.001	0.001102	0.000984	2.204586	35.27337
1000000	1000	1	1.102293	0.984252	2204.586	35273.37
907200	907.2	0.9072	1	0.892913	2000	32000
1016000	1016	1.016	1.119929	1	2239.859	35837.74
453.6	0.4536	0.000454	0.0005	0.000446	1	16
28	0.02835	0.000028	0.000031	0.000028	0.0625	1

77

UNITS CONVERSION TABLES

Table 10: High Pressure Units

Bar	Pound/square inch	Kilopascal	Megapascal	Kilogram force/ centimeter square	Millimeter of mercury	Atmospheres
bar	psi	kPa	MPa	kgf/cm ²	mm Hg	atm
1	14.50326	100	0.1	1.01968	750.0188	0.987167
0.06895	1	6.895	0.006895	0.070307	51.71379	0.068065
0.01	0.1450	1	0.001	0.01020	7.5002	0.00987
10	145.03	1000	1	10.197	7500.2	9.8717
0.9807	14.22335	98.07	0.09807	1	735.5434	0.968115
0.001333	0.019337	0.13333	0.000133	0.00136	1	0.001316
1.013	14.69181	101.3	0.1013	1.032936	759.769	1

Table 16: Temperature Conversion Formulas

Table 10: Temperature conversion 1	omaias
Degree Celsius (°C)	(°F - 32) x 5/9
	(K - 273.15)
Degree Fahrenheit (°F)	(°C x 9/5) + 32
	(1.8 x K) - 459.67
Kelvin (K)	(°C + 273.15)
	(°F + 459.67) ÷ 1.8