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Kinematics of Particles

(J Introduction

Kinematic relationships are used to help us
determine the trajectory of a golf ball, the orbital
speed of a satellite, and the accelerations during
acrobatic flying.




Kinematics of Particles

J Introduction

* Dynamics includes:

Kinematics : study of the geometry of motion.

Relates displacement, velocity, acceleration, and time without reference to the
cause of motion.

Fthrust

Kinetics : study of the relations existing between the forces acting on a
body, the mass of the body, and the motion of the body. Kinetics is used to
predict the motion caused by given forces or to determine the forces required
to produce a given motion.

Kinematics of Particles

(J Introduction
e Particle kinematics includes:

» Rectilinear motion:. position, velocity, and acceleration of a particle as it

moves along a straight line.

» Curvilinear motion:. position, velocity, and acceleration of a particle as it
moves along a curved line in two or three dimensions.




Kinematics of Particles

O Rectilinear Motion: Position, Velocity & Acceleration

L9 ‘i' L * Rectilinear motion: particle moving along a
| I S B B e ® S R R LI B B . Rk
] - straight line
1 . . .

P O "  Position coordinate: defined by positive or
A, negative distance from a fixed origin on the

L—,-I line.

X

x(m) .

The motion of a particle is known if the
position coordinate for particle is known for
every value of time &

* May be expressed in the form of a function,

e.g.,
[ x=6t"—¢ ]

t(s) or in the form of a graph x vs. &

Kinematics of Particles

 Rectilinear Motion: Position, Velocity & Acceleration

P P’
X p Ax  Consider particle which occupies position P
Ol .l. l at time fand P’at t+A¢,
() (t+At) o
p
) Ax
Average velocity = E]
P 6>0 -
| r
o . . Ax
x Instantaneous velocity =v=lim—
<0 \ At—0 At
P

« Instantaneous velocity may be positive
(Increasing x) or negative (Decreasing x).
Magnitude of velocity is referred to as
particle speed.




Kinematics of Particles
O Rectilinear Motion: Position, Velocity & Acceleration

* From the definition of a derivative,

. Ax  dx
v=lim —=—
At—0 At dt

2 3
R xX=6t"—t
[v=dx212t—3t2]
dt

Kinematics of Particles
 Rectilinear Motion: Position, Velocity & Acceleration

 Consider particle with velocity vat time #and

II’ 1 ll) ' v+ Av
I . v+Avat t+At,
(&) (t+At) *
. Av
[Average acceleration = N ]
. . Ay
Instantaneous acceleration =a = Bgﬁ m
v v )
al P * Instantaneous acceleration may be:
| x o Positive ( Av>0) : increasing positive velocity
a>0

An object going right (+) and speeding up (+) has positive acceleration = (+)X(+)=(+)




Kinematics of Particles

O Rectilinear Motion: Position, Velocity & Acceleration

v v
|

| p

—

a>0

v T

I
P P'l

e e |

a<(

v’ v
ey B

R

a<(

* Instantaneous acceleration may be:
o Positive ( Av>0) : decreasing negative velocity

An object going left (-) and slowing down (-) has positive acceleration = (—)X(—) =(+)

* Instantaneous acceleration may be:

o Negative (Av<0 ) : decreasing positive velocity

An object moving right (+) and slowing down (-) has negative acceleration = (+)X(=) =(-)

* Instantaneous acceleration may be:
o Negative (Av<0 ) : increasing negative velocity

An object going left (-) and speeding up (+) has negative acceleration = (—)X(+) =(-)

Kinematics of Particles

 Rectilinear Motion: Position, Velocity & Acceleration

* From the definition of a derivative,

dx d*x
=— = a
dt dt*

V




Kinematics of Particles
0 Concept Quiz

What is true about the Kinematics of a particle?

a) The velocity of a particle 1s always positive

b) The velocity of a particle is equal to the slope of
the position-time graph

c) If the position of a particle is zero, then the
velocity must zero

d) If the velocity of a particle is zero, then its
acceleration must be zero

Kinematics of Particles

 Rectilinear Motion: Position, Velocity & Acceleration

x(m)

39 |- — com— I| * From our example,
:: 2

|
o I :i v =62 —13 v=@=12t—3t2 a:@=ﬂ=12—6t
se Ji dt dt  dt?

|
d > ; 61 t(s)
o (m/s) | I « What are x, v, and aat r=25s?

P |

: -atr=2s, x=16m,v=v, =12m/s, a=0

~

—~
w

=

* Note that v, occurs when a=0, and that the
slope of the velocity curve is zero at this point.

« Whatare x, v, and aat r=4 s ?

(=]
———————o

~att=4s, x=x,, =32m,v=0, a=-12 m/s?

o) * Note that x,,, occurs when v=0, and that the
slope of the position curve is zero at this point.

6
|
I
|
:
|




Kinematics of Particles
(J Determination of the Motion of a Particle ———

* We often describe motion based on accelerations

Generally have three classes of motion

acceleration given as a function of time, 4 = £ (1) Fall Free

acceleration given as a function of position, a = f(x) I )
acceleration given as a function of velocity, @ = f (V) ®

« Can you think of a physical example of when
force is a function of pébitiofdtce is a function of

Mt e

a spring drag
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Kinematics of Particles

O Acceleration as a function of time, position, or velocity

I. Acceleration as a function of time:

dv
a:? = dv=adt v ¢
¢ 2=t = dv=a()dt = ijdvsza(t)dt
= v—v0=I;a(t)dt
|
v=® o m=var = dx:(v0+ra(t)dt)dt
dt 0

= (v (v [a0an )i = ex, =g+ [ [ atraia|

The motion of a particle is known for every value of time t.

14




Kinematics of Particles

O Acceleration as a function of time, position, or velocity

II. Acceleration as a function of position:

Z:t ; = @:ﬂ = vdv=adx
a:?‘; — dt:;" V.o a 0= a) = vdv=a(x)dx

N
v X 1 | X
= vdv = IO a(x)dx = [Ev2 _5"02 = LO a(x)dx

J

d. d v x
dl‘ —>) 2 X J0 X ) X
\/vo +2j a(x)dx \/vo +2j a(x)dx
N dx 0 0
= |t=

The motion of a particle is known

K \/ V02 + 2r a(x) d)d for every value of time t.
Xo

Kinematics of Particles

O Acceleration as a function of time, position, or velocity

III. Acceleration as a function of velocity:

a)
a—ﬂ = dt—ﬂ
dt a} — dtzﬂ — J‘tdt: v v — |s= v_dv.
a=a(v) a(v) 0 v a(v) Yo a(v)
= v=v(t)
v:% = dx=vdt p p N .
= t)at =
vevy [ T v()dt = Lodx Lov(t)dt

:>[ X=X, =J:)v(t)dt]

The motion of a particle is known
for every value of time t.




Kinematics of Particles

O Acceleration as a function of time, position, or velocity
III. Acceleration as a function of velocity:

b)
dx dx
= T W= dx dv
Z’f :; = = = dx=—dv
a=2 = =% v “ = dx =——dvy
4 a a=a(v) a(v)
= [(ax=[Ldv = | x—x = L av = | v=v(x)
% v a(v v a(v)
v—ﬁ = dt—dx
dt \% — dt:ﬂ — jtdt: xﬂ — = xﬂ
v=v(x) v(x) 0 % V(X) % v(x)

The motion of a particle is known for every value of time t.

Kinematics of Particles

O Acceleration as a function of time, position, or velocity

dv = a(t) dt v=v,=[a()ar
a=a(t) P T
X=V x—xo—vot+IOIOa(t) tdt
vdv=a(x)dx %vz —%voz = J:) a(x)dx
a=a(x) N "
dt:7 K \/v02+2jxa(x)dx
a’t=ﬂ t= v = v=w()
a(v) Yo a(v)
t
dx =v(t)dt X=X, =£ () dt
a=a(v) f=====-=--- ettt el bt d po Lt V—-v--o- ---------
dx=——dv X, =| —dv = v=v(x)
a(v) Yo a(v)
df = dx f:r dx
v(x) %o (x)




Kinematics of Particles
O Sample Problem 01 y

Ball tossed with 10 m/s vertical velocity
from window 20 m above ground.

t/vo= +10m/s
() —
“\“a =—-9.81 m/s2

Yo = +20 m

Determine:

a) velocity and elevation above ground at
time ¢,

b) highest elevation reached by ball and
corresponding time, and

c) time when ball will hit the ground and
corresponding velocity.

Kinematics of Particles

- = vo=+10 m/s
O Sample Problem 01 o };
b - ~a=-9.81 m/s2
SOLUTION: - ;- +20m
(a): = -
v(m/s)
10 Velocity-time curve

{3.28 t(s)
|
|
|
|
|

229 ————




Kinematics of Particles
O Sample Problem 01

SOLUTION:
(a):

Positi

THTETHTET
« RIE BN ER OER BN

on-time

1/00= +10 m/s
l\"u =-9.81 m/s2

yo=+20m

curve
|
|
0 1019 328  t(s)
Kinematics of Particles v(m/s)
10 Velocity-time curve
Q Sample Problem 01 %,
SOLUTION: 0o £
(b):
Vo OCcurs when v=0, and that
the slope of the position curve is W7 1| SR,
zero at this point.
y (m) %

0

Position-time
curve




Kinematics of Particles

O Sample Problem 01
SOLUTION:
(c):
» Solve for #when altitude equals zero
and evaluate corresponding velocity.

\
Position-time 2
curve 2
| 2
l g
0 1019 398  t(s)
v(m/s)
10

—22.2
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Kinematics of Particles
O Sample Problem 02

Brake mechanism used to reduce gun
recoil consists of piston attached to barrel
moving in fixed cylinder filled with oil.
As barrel recoils with initial velocity v,
piston moves and oil is forced through
orifices in piston, causing piston and
cylinder to decelerate at rate proportional
to their velocity. g = —kv

Determine v (¢), x(¢), and v(x).

Piston

Oil

24




Kinematics of Particles
 Sample Problem 02
SOLUTION:

Vo

Piston

oil

25

Kinematics of Particles

O Sample Problem 02
SOLUTION:

Piston

Oil

26




Kinematics of Particles
O Sample Problem 03

The spring-mounted slider moves in the
horizontal guide with negligible friction
and has a velocity v, in the s-direction as it
crosses the mid-position where x=0 and

VWAV ) AV

t=0. The two springs together exert a
retarding force to the motion of the slider,
which gives it an acceleration proportional
to the displacement but oppositely directed
and equal to @ =—k’x , where k is
constant.

Determine the expressions for the
displacement and velocity as functions of
the time.

Kinematics of Particles
O Sample Problem 03

=

SOLUTION:

ANV AN




Kinematics of Particles
O Sample Problem 03

=

SOLUTION:

ANV AN

Kinematics of Particles
O Group Problem Solving

P e

o £ A bowling ball is dropped from a boat so that it strikes

—— the surface of a lake with a speed of 15 ft/s.
_|_y %, Assuming the ball experiences a downward
acceleration of g =70 - 0.07V2 when in the water,

determine the velocity of the ball when it strikes the
bottom of the lake.

30 ft

Which integral should you choose?

(a) Idv:ja(t)dt (c) _V[vdv=]£a(x)dx

) Jav= ]2 @ [P==fa

vOa(v) Y (v) 3




Kinematics of Particles

0 Concept Question

When will the bowling ball start slowing down?

30 ft

A bowling ball is dropped from a boat so that it
strikes the surface of a lake with a speed of 15 ft/s.
Assuming the ball experiences a downward
acceleration of 2 =/0 - 0.0/v2 when in the water,
determine the velocity of the ball when it strikes the
bottom of the lake.

31

Kinematics of Particles
O Sample Problem 04

The car starts from rest and accelerates
according to the relationship

a=3-0.001v*

It travels around a circular track that has
a radius of 200 meters. Calculate the
velocity of the car after it has travelled
halfway around the track. What is the
car’s maximum possible speed?

32




Kinematics of Particles

O Sample Problem 04
SOLUTION:

Given: a=3-0.001v" Find: v after %2 lap
v,=0, r=200m Maximum speed

Choose the proper kinematic relationship

Acceleration is a function of velocity, and we

also can determine distance. Time is not
involved in the problem, so we choose:

Determine total distance travelled

33

Kinematics of Particles
O Sample Problem 04

SOLUTION:

Determine the full integral, including limits

Take the exponential of each side

34




Kinematics of Particles
O Sample Problem 04
SOLUTION:

Solve for v [3_0.001‘,2 _ e—o.lsgoz]

How do you determine the maximum speed the car can reach?

Velocity 1s a maximum when
acceleration is zero

35

Kinematics of Particles

(d Uniform Rectilinear Motion

During free-fall, a parachutist
reaches terminal velocity when
her weight equals the drag
force. If motion is in a straight
line, this is uniform rectilinear
motion.

e

For a particle in uniform
rectilinear motion, the
acceleration is zero and
the velocity is constant.

dx
— =y = constant
dt
X t
= de =y I dt
Xy 0

Careful — these only apply to
uniform rectilinear motion!

36




Kinematics of Particles

 Uniformly Accelerated Rectilinear Motion

If forces applied to a body
are constant (and in a
constant direction), then
you have uniformly
accelerated rectilinear
motion.

Another example is free-
fall when drag is negligible

37

Kinematics of Particles

O Uniformly Accelerated Rectilinear Motion

For a particle in uniformly accelerated rectilinear motion, the

acceleration of the particle is constant.

ﬂ:gl:cte = dv=adt = J.vdvzaJ‘tdt = v-y,=at =|v=y,+at
dt Vo 0

Xy oo Ty iw = de=(tandt = [Cdx={ (v, +an)dt

dt dt "’ ’ Xy 0"

1 1
= x—x0=v0t+§at2 :>[x:x0+vot+§atz]

dx

j—

v—v=a=cte = vdv=adx = vaovdv:a_[:)dx — %vz—l%z:a(x—xo)

vi=v, +2a(x—x,)

38




Kinematics of Particles

 Uniformly Accelerated Rectilinear Motion

Careful — these only apply to uniformly
accelerated rectilinear motion!

a=cte
Relate velocity to time v=v(t) v=v,+at
. . |
Relate position to time x =x(1) X=X, +Vlt+ 5 at
Relate velocity to Position v=v(x) v =v," +2a(x—x,)

39

Kinematics of Particles

(J Motion of Several Particles

We may be interested in the motion of several different particles,
whose motion may be independent or linked together.

Xg

40




Kinematics of Particles

(J Motion of Several Particles: Relative Motion

» For particles moving along the same line, time 0 A B
&

should be recorded from the same starting

/

X
instant and displacements should be measured " xA_" XBAT

from the same origin in the same direction.

Xy 4 =X —x, = relative position of B
with respect to A

Xg =X+ Xp,

Vg4 = Vg —V, = relative velocity of B
with respect to A

agy, =ag—a, = relative acceleration of B
with respect to A

*B

Xgr4>0
Particle B at right hand side of Particle A

Vg, >0

An observer at point A, see the particle B
which increases distance from A.

41

Kinematics of Particles
O Sample Problem 05

Ball thrown vertically from 12 m level
in elevator shaft with initial velocity of
18 m/s. At same instant, open-platform
elevator passes 5 m level moving
upward at 2 m/s.

Determine (a) when and where ball hits
elevator and (b) relative velocity of ball
and elevator at contact.

vp= 18 m/s

t=0
a =-9.81 m/s2

Yo=12m

42




Kinematics of Particles

O Sample Problem 05

SOLUTION:
* Uniformly accelerated rectilinear motion:

=t

vy = 18 m/s

t=0

— acceleration of ball into general equations

Yo=12m

* Uniform rectilinear motion
Substitute initial position and constant velocity of
elevator into equation for.

vp=2m/s

43

Kinematics of Particles
O Sample Problem 05

SOLUTION:

(2):

» Write equation for relative position of ball with
respect to elevator and solve for zero relative
position, i.e., impact.

 Substitute impact time into equations for position of elevator

44

Substitute initial position and velocity and constant




Kinematics of Particles
O Sample Problem 05

SOLUTION:

(b):

ball with respect to elevator.

 Substitute impact time into equations for relative velocity of

45

Kinematics of Particles

or more other particles.

lengths of segments must be constant.

Lic tlpp +1pg =l =cte

— (x,—OC)+(x,—OC—FB)+(x,—FB)=1

1 Motion of Several Particles: Dependent Motion SSSSSSEg

 Position of a particle may depend on position of one

* Position of block B depends on position of block A.
Since rope is of constant length, it follows that sum of

Total

= Xx,+2x,=1[,,,+t20C+2FB=cte = [xA+2xB=cte 4

-

dx , +2de _0 —
dt dt
dv, +2de _0 —
dt dt

X, +2x,=cte = A

[VA+2VB=OJ

[aA+2aB=01

v,

(one degree of freedom)

46




Kinematics of Particles
O Motion of Several Particles: Dependent Motion

 Positions of three blocks are dependent.

[Zx LT 2x, tx. = cte] (two degrees of freedom)

 For linearly related positions, similar relations hold
between velocities and accelerations. B

deA +2de +dxC =0 or

[2VA +2vp +ve =0 ]

dt dt dt

dvy .dvg dve

2 +2 + =0 or|2a,+2ap+ =0
d dt ot [aA 9B Tdc ]

47

Kinematics of Particles

O Sample Problem 06

Pulley Dis attached to a collar which
is pulled down at 3 in./s. At =0,
collar A starts moving down from K
with constant acceleration and zero
initial velocity. Knowing that velocity
of collar A 1s 12 in./s as it passes L,
determine the change in elevation,
velocity, and acceleration of block B
when block A is at L.

48




Kinematics of Particles

L
T
Q Sample Problem 06 AR
! \\.Jl/
! \.‘--— 4

SOLUTION:

* Define origin at upper horizontal surface with
positive displacement downward.

e |
i
— o e

* Collar A has uniformly accelerated
rectilinear motion. Solve for
acceleration and time ¢ to reach L.

‘ vy = 12in/s

49
Kinematics of Particles
9
Q Sample Problem 06 ) § | | ?Ji |
A
SOLUTION: o) e | | e '}\'}
) N 1 N
* Pulley D has uniform rectilinear : :
Xp

motion. Calculate change of
position at time £ @

——

D
i | WUp= 3 in./s
:

50




Kinematics of Particles

 Sample Problem 06

SOLUTION:

* Block Bmotion is dependent on
motions of collar A and pulley D.
Write motion relationship and solve for
change of block B position at time .

Total length of cable remains constant,

51

Kinematics of Particles

O Sample Problem 06
SOLUTION:

« Differentiate motion relation twice to develop

equations for velocity and acceleration of
block B.

52




Kinematics of Particles

O Sample Problem 07

Slider block A moves to the left with a
constant velocity of 6 m/s. Determine the
velocity of block B.

53

Kinematics of Particles
O Sample Problem 07

SOLUTION: Given: v,=6 m/s left Find: vy

- XA" € I This length is constant no

matter how the blocks move

A )>
\f | Sketch your system and choose coordinates
C

D Vi Define your constraint equation(s)

|

Differentiate the constraint equation to
get velocity

Note that as x, gets bigger, y, gets smaller.

54




Kinematics of Particles

0 Sample Problem 08

Slider block B moves to the right with a constant velocity of

300 mm/s. Determine (a) the velocity of slider block A, (b) the
velocity of portion C of the cable, (¢) the velocity of portion D

of the cable, (d) the relative velocity of portion C of the cable with

respect to slider block A.
F)

[ I}

D @
55
Kinematics of Particles
O Sample Problem 08
L > x
| > Xo ’
SOLUTION: Sy ,

B
h

56




Kinematics of Particles

O Sample Problem 08

> x,

SOLUTION: ' >y,

57

Kinematics of Particles

O Graphical Solution of Rectilinear-Motion Problems

180

160 - ﬁ

X Acceleration data from
a head impact during a
1 round of boxing.

100
80
60 - ’/J
40
20 J WN»

0
47.76 47.77 47.78 47.79 47.8 47.81

Time (s)

-_— -
N b
o O
|

Acceleration (g)

58




Kinematics of Particles

 Graphical Solution of Rectilinear-Motion Problems

X ) a
‘%»OQQJ C}OQ@
C‘ dx do _
| dt |
Ix dt l_l— \_‘“ :
|

) L |

Given the x-zcurve, the v-£ Given the v-fcurve, the a-f
The x-fcurve ) > . 1o the vt
curve is equal to the x-¢ curve is equal to the v
curve slope. curve slope.
59

Kinematics of Particles

O Graphical Solution of Rectilinear-Motion Problems

The a-fcurve Given the a-fcurve, the change Given the v-7curve, the change
in velocity between 7, and #, s in position between 7, and 7, 1s
equal to the area under the a-¢ equal to the area under the v-¢
curve between ¢, and £, curve between ¢, and £,

60




Kinematics of Particles

O Other Graphical Methods

Moment-area method to determine particle position
at time t directly from the a-t curve:

k!
X, —x, =areaunder v—¢ curve = X, —X, =V + j(tl —t)dv

Vo

|
using dv=adt, = X —X,=V +I(f1 ~t)adt
0
]
(¢, —t)adt = first moment of area under a-£curve
with respect to 7= ¢, line.

S ey

X, = X, +v,t, + (area under a-t curve) (¢, —1)

t = abscissa of centroid C

61

Kinematics of Particles

O Other Graphical Methods

* Method to determine particle v
acceleration from v-x curve:

dv

a=v— =ABtan@ =RBC
dx

62




Kinematics of Particles

O Curvilinear Motion: Position, Velocity & Acceleration

A particle moving along a curve other than a
straight line 1s in curvilinear motion.

The softball and the car both undergo curvilinear motion.

63

Kinematics of Particles

 Curvilinear Motion: Position, Velocity & Acceleration

» The position vector of a particle at
time 71s defined by a vector between
origin O of a fixed reference frame
and the position occupied by particle.

z

 Consider a particle which occupies position Pdefined by 7 at time ¢
and P’defined by 7 at ¢+ At

64




Kinematics of Particles

O Curvilinear Motion: Position, Velocity & Acceleration

Instantaneous velocity Instantaneous speed
(vector) (scalar)

v=Ilm—=—
[ Ar—0 At dt ]

Kinematics of Particles

 Curvilinear Motion: Position, Velocity & Acceleration
« Consider velocity vV of a particle at time rand velocity V' at ¢+ At
instantaneous acceleration (vector)

y

_, \Velocity Curve
v

<l
)
INY
Il
B=
L3
z |5




Kinematics of Particles

O Curvilinear Motion: Position, Velocity & Acceleration

Path
* In general, the acceleration vector is T
not tangent to the particle path and
velocity vector.

Kinematics of Particles

J Derivatives of Vector Functions

(:"1)

o Let P(u) be a vector function of scalar variable u, Plu +Au)




Kinematics of Particles

(J Derivatives of Vector Functions
* Derivative of vector sum,

d(P+Q) _dP  dQ
du  du du

 Derivative of product of scalar and vector functions,

ey _ar 5, aP
L du du du

 Derivative of scalar product and vector product,

. - - )
d(POQ) d Q ~ dQ
du  du du
d(PxQ) _ dPXQ+]—)>X do
\_ du du duj

Kinematics of Particles

* When position vector of particle Pis given by its
rectangular components,

[ F:xf+yj+zl€ ]

* Velocity vector,

~
17:@17+Q]+%k Xi 4]+ 2k

=v.i +vyj+vzl€
\_ J

O Rectangular Components of Velocity & Acceleration




Kinematics of Particles
O Rectangular Components of Velocity & Acceleration

* When position vector of particle Pis given by its
rectangular components,

[ ?:xf+yj+zl€ ]

» Acceleration vector,

P e i
ar " ar! T a .

:axf+ayj+azk

Kinematics of Particles

O Sample Problem 09 Path

The curvilinear motion of a particle is
defined by v, =50~16¢ and y=100-47> ,
where v_1s in meters per second, y is in
meters, and t is in seconds. It is also -
known that x=0 when t=0. |
Plot the path of the particle and ¥ r |
determine its velocity and acceleration |
when the position y=0 is reached. |

xi i




Kinematics of Particles

O Sample Problem 09

SOLUTION:

Determine motion components in X direction

Determine motion components in y direction

Kinematics of Particles

O Sample Problem 09
SOLUTION:

\%“-u..,____‘;f__/}/[\j

t=2 = F=68 +84) ® 10
t=3 = F=78 +64]
=4 = 77:72174-36]T . //
. e e t=5s
t=5 = 7=50i +0; 0020 40 4 60 20




Kinematics of Particles

O Sample Problem 09
SOLUTION:

Wheny=0 a,v=? y:100—4t2=0 =

Path Path

a = 17.89 m/s?

Yu, = —40 m/s

v=50m/s

75

Kinematics of Particles

O Rectangular Components of Velocity & Acceleration

* Rectangular components particularly effective
when component accelerations can be integrated
independently, e.g., motion of a projectile,

a =x=0 a,=y=-g a=z=0

z

with initial conditions,

Xo=Yy=2,=0 (Vx)oa(vy)o;to (v.),=0 B x :

Integrating twice yields

v. =(v.), v, =(vy)0 — gt v.=0
z

x=W,),t y= (vy)ot—%gt2
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Kinematics of Particles

0 Rectangular Components of Velocity & Acceleration

» Equation motion of projectile

X

) (v,)o

Ot—— 2 . 1 X jz
y=@,) = y= (V)L( )Oj zg[(vx)o

2 2

: x x gx
= y=v,sinf -1 = |y=xtanf—-+;—=>——
yeh (VO cosﬁj ? g(vo cosé’] [ * v, cos” @

x=),t =

Kinematics of Particles

O Rectangular Components of Velocity & Acceleration

Independently motion of a projectile

* Motion in horizontal direction is uniform.

(vydo A

* Motion in vertical direction is uniformly
accelerated.

* Motion of projectile could be replaced x
by two independent rectilinear motions.




Kinematics of Particles

O Sample Problem 10

A projectile 1s fired from the edge 180 m/s

of a 150-m cliff with an initial

velocity of 180 m/s at an angle of

30° with the horizontal. Neglecting

air resistance, find

(a) the horizontal distance from the
gun to the point where the
projectile strikes the ground,

(b) the greatest elevation above the
ground reached by the < X |
projectile.
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Kinematics of Particles
Given: (v), =180 m/s (y), =0

1 Sample Problem 10 (@), =-9.81 m/s> (a), =0 m/s?
SOLUTION:

180 m/s

Vertical motion — uniformly accelerated:

y
(1) a=-9.81m/s2
(2) (vy)o I _i 180 m/s
O \30 I
() K
150 m -
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Kinematics of Particles
Given: (v), =180 m/s (y), =150 m

O Sample Problem 10 (@), =-9.81 m/s> (a), =0 m/s2
SOLUTION:

180 m/s

Horizontal motion — uniformly motion:

Choose positive x to the right as shown

81

180 m/s

Kinematics of Particles

O Sample Problem 10

SOLUTION:
Projectile strikes the ground at: | y=-150m i !
Substitute into equation (1) above i (T
—————— 7 180 m/s
|
oo |
Solving for 7, we take the positive root

—————— 7 180 m/s

Substitute t into equation (4) !
|
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Kinematics of Particles

O Sample Problem 10
SOLUTION:

Maximum elevation occurs when Vy=0

Maximum elevation above the ground

180 m/s

lﬂ =-9.81 m/s2

______ —IIS()m/s

0 (e} I
\130 I

______ = 180 m/s
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Kinematics of Particles

d Concept Quiz

If you fire a projectile from 150
meters above the ground, what
launch angle will give you the
greatest horizontal distance x?

a) A launch angle of 45

b) A launch angle less than 45
c) A launch angle greater than 45

1

150 m

f

d) It depends on the launch velocity
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Kinematics of Particles

O Sample Problem 11

A baseball pitching machine “throws” baseballs with a
horizontal velocity v,,. If you want the height 4 to be 42

in., determine the value of v,

40 ft

85

Kinematics of Particles

O Sample Problem 11
SOLUTION:

Given: x=40 ft,y, =5 ft,

y= 42 in.

Analyze the motion in the
y-direction

40 ft

o

51/@

Analyze the motion in the
x-direction
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Kinematics of Particles

O Sample Problem 11

' 40 ft '

) .
A Vo \
) Sft h B A

SOLUTION:

Given: x=40 ft,y, =5 ft,

vy~ 42 in.

Other Solution

87

Kinematics of Particles

(J Motion Relative to a Frame in Translation

A soccer player must consider the It is critical for a pilot to know the relative
relative motion of the ball and her motion of his aircraft with respect to the
teammates when making a pass. aircraft carrier to make a safe landing.
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Kinematics of Particles

(J Motion Relative to a Frame in Translation y’

* Designate one frame as the fixed frame of’ Y
reference. All other frames not rigidly
attached to the fixed reference frame are
moving frames of reference.

* Position vectors for particles A and B with respect to
the fixed frame of reference Oxyzare 74 and rg.

* Vector 7/4 joining A and B defines the position of
B with respect to the moving frame 4x’’z” and

Kinematics of Particles

(J Motion Relative to a Frame in Translation

» Absolute motion of B can be obtained by
combining motion of A with relative motion of
B with respect to moving reference frame

attached to A.
[ FB :FA+FB/A ]

[ Vg =V, +Vpy ] Vp/4 = velocity of B relative to A.

[

* Differentiating twice,

Q

p=dyt+dp/4 ] dp 4 = acceleration of B relative to A.




Kinematics of Particles

O Sample Problem 12

Automobile A is traveling east at the Bl
constant speed of 36 km/h. As automobile |
A crosses the intersection shown, 8 11
automobile B starts from rest 35 m north |

-1.2 m/s>

of the intersection and moves south with a 'l’
constant acceleration of 1.2 m/s2. m

e

Determine the position, velocity, and A \:36 km/h

acceleration of B relative to A, 5s after A
crosses the intersection.

Kinematics of Particles

B
1 Sample Problem 12 .-gf 1
SOLUTION: l

Given:
v =36 km/h, a,=0, (x,),=0

36 km/h

(V)= 0, ag=- 1.2 m/s%, (yg)o=35m Y
* Define axes along the road Jﬁ

3
Determine motion of Automobile A:

Tt
=)
=]
— &0
os]




Kinematics of Particles

O Sample Problem 12
SOLUTION:

We have uniform motion for A so:

-

35m

—_—

%
-0

]

2

;9
m/s=

].‘

y

| 36 km/h

We have uniform acceleration for B so:

-
35 _ B
Att=5s o |
| [ |
T
Kinematics of Particles ny
1 Sample Problem 12 i
—[l B
SOLUTION: 4w " i
Determine motion of Automobile B: ¥ I TR




Kinematics of Particles a =0 a, =12 (m/s%)d
v,=10(m/s)— v,=6(m/s){

r,=50m— r,=20m7T

0 Sample Problem 12

SOLUTION:
We can solve the problems geometrically, and apply the arctangent relationship:
10 m/s

I'B/A 5 . 5
20 m 6 B \ Z 1.2 m/s? ag/A
o ( 5 m/s p

7 VB/A
50 m

[rB/A =53.9m,a=21.8°] [vB/A =11.66m/s,ﬂ=31.0°] [am =12m/s’ i]

Or we can solve the problems using vectors to obtain equivalent results:

Physically, a rider in car A would “see” car B travelling south and west.
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Kinematics of Particles
d Concept Quiz

If you are sitting in train
B looking out the window,
it which direction does it

appear that train A is
moving?
a) 25°
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Kinematics of Particles

U Tangential and Normal Components

If we have an idea of the path of a vehicle, it is often convenient
to analyze the motion using tangential and normal components
(sometimes called parh coordinates).

97

Kinematics of Particles

 Tangential and Normal Components

A

 The tangential direction (e,) is y

tangent to the path of the particle.

 This velocity vector of a particle is in
this direction

v=ve,

* The normal direction (e,) 1s
perpendicular to e, and points

X
towards the inside of the curve. >

* The acceleration can have components dv v _ :
a=—e, +—e, [P~ the instantaneous

) o )
in both the e, and e, directions dt D radius of curvature
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Kinematics of Particles

0 Tangential and Normal Components

* To derive the acceleration vector in tangential
and normal components, define the motion of a
particle as shown in the figure.

« ¢, and ¢, are tangential unit vectors for the
particle path at Pand P’. |
0

* When € and & are drawn with respect to the
same origin, Aé, =& —&;and A is the angle
between them.

Ae, =2|e[sin(AG/2) = Ae,=2sin(A6/2)
AE, sin(A6/2)

- - - de
lim —+ = lim e =¢e ac,
AO—50 AG  A6—0 A9/2 " "= do

:en

Kinematics of Particles

1 Tangential and Normal Components

« With the velocity vector expressed as i — Ve,
the particle acceleration may be written as

v=ve | =

. dv dv_. de _dv. de, \(dO \ ds
a=—=—e+v— =—¢€,+V| — | — | —
dt dt ' dt dt do \ ds \ di

det:én pdl=ds ﬁ=v
do dt

After substituting,




Kinematics of Particles

0 Tangential and Normal Components

» The tangential component of acceleration
reflects change of speed and the normal
component reflects change of direction.

» The tangential component may be positive or
negative. Normal component always points
toward center of path curvature.

4 [1 + (gjf A
=0
dx’

\_ L/

Kinematics of Particles

1 Tangential and Normal Components

» Relations for tangential and normal acceleration
also apply for particle moving along a space curve.

Loodv. Vv dv v
a=—e +—e, a=— , a,=—
dt P dt P

* The plane containing tangential and normal unit
vectors is called the osculating plane.

* The normal to the osculating plane is found from

y

Osculating
plane

0 X

é, = principal normal z

e, =binormal

 Acceleration has no component along the binormal.




Kinematics of Particles

O Sample Problem 13

A motorist is traveling on a curved
section of highway of radius 2500 ft
at the speed of 60 mi/h. The motorist V5 =60 mi/h y
suddenly applies the brakes, causing A

the automobile to slow down at a
constant rate. Knowing that after 8 s
the speed has been reduced to 45
mi/h, determine the acceleration of

the automobile immediately after the
brakes have been applied.

2500 ft
\'

Kinematics of Particles

vy =60 mi/h
O Sample Problem 13 ‘\ /

SOLUTION: €
ell
* Define your coordinate system
» Determine velocity and acceleration in 2500 ft -

the tangential direction

* The deceleration constant, therefore




Kinematics of Particles

O Sample Problem 13
SOLUTION:

» Immediately after the brakes are applied,
the speed is still 88 ft/s

VA:GUV

2500 ft
\

a,=2.75 ft/s2

a,=3.10ft/s2”

105

Kinematics of Particles

 Tangential and Normal Components

In 2001, a race scheduled at the Texas Motor Speedway was
cancelled because the normal accelerations were too high and
caused some drivers to experience excessive g-loads (similar to
fighter pilots) and possibly pass out.
could be done to solve this problem?

What are some things that

106




Kinematics of Particles

O Sample Problem 14

The tangential acceleration of the
centrifuge cab is given by

a =0.5¢ (m/s®)

where ¢1s in seconds and a,1s in
m/s?. If the centrifuge starts from
rest, determine the total acceleration

8m

magnitude of the cab after 10
seconds.

107

Kinematics of Particles

1 Sample Problem 14
SOLUTION:

Define your coordinate system

In the side view, the tangential
direction points into the “page”

Determine the tangential velocity

Sm

Top View

108




Kinematics of Particles

O Sample Problem 14

SOLUTION:
Determine the normal acceleration

8m

Determine the total acceleration magnitude Top View

109

Kinematics of Particles

O Group Problem Solving | Sm |
Notice that the normal
acceleration is much higher than
the tangential acceleration.
What would happen if, for a
given tangential velocity and

acceleration, the arm radius was
doubled?

a) The accelerations would remain the same

b) The a, would increase and the a, would decrease
c) The a, and a, would both increase

d) The a, would decrease and the a, would increase

110




Kinematics of Particles

O Sample Problem 15

To anticipate the dip and hump in the road, the driver of a car applies her brakes to produce a
uniform deceleration. Her speed is 100 km/h at the bottom A of the dip and 50 km/h at the
top Cof the hump, which is 120 m along the road from A. If the passengers experience a
total acceleration of 3m/s”> at Aand if the radius of curvature of the hump at C is 150m,

Calculate

(a) the radius of curvature at A, 60 m C
(b) the acceleration at the inflection point B — 60 m '

(c) the total acceleration at C. B 150 m

Kinematics of Particles

C
60 m
d Sample Problem 15 . eom
SOLUTION: A B 150 m
The dimensions of the car are small compared with those of the l

path, so we will treat the car as a particle. The velocities are

We find the constant deceleration along the path from

Is constant during the total path.




Kinematics of Particles

O Sample Problem 15
SOLUTION: +|n

|

|

(a) Condition at A. With the total

easily compute an and hence from

A

a; = 941 m/s?

acceleration given and ardetermined, we can 5
a, =1.785m/s

113

Kinematics of Particles

O Sample Problem 15

SOLUTION:

(b) Condition at B. Since the radius of curvature is
infinite at the inflection point, an = 0 and

114




Kinematics of Particles

O Sample Problem 15

SOLUTION:

(¢) Condition at C. The normal acceleration becomes

a; = -2.41 m/s?

—

—
N

-

C

— == ———+
—

a =2.73 m/s?

a, = 1.286 m/s®

I

I

I
+n

115

Kinematics of Particles

(d Radial and Transverse Components

By knowing the distance to the aircraft and the
angle of the radar, air traffic controllers can
track aircraft.

Fire truck ladders can rotate as well as extend;
the motion of the end of the ladder can be
analyzed using radial and transverse
components.
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Kinematics of Particles e

O Radial and Transverse Components

» The position of a particle Pis expressed as a distance r
from the origin Oto P —this defines the radial direction
e, The transverse direction ey is perpendicular to e,

r=re,
0]
 The particle velocity vector is  The particle acceleration vector is
[G:fér+réé(,] [Ez:(if'—réz)ér+(ré+2f9)é€]
[v,:f & vgzré] [arzif'—ré?z & a9=r9+2ﬂ9]

Kinematics of Particles

(d Radial and Transverse Components

* We can derive the velocity and acceleration
relationships by recognizing that the unit vectors
change direction.

|

N
Il
~

 The particle velocity vector is

L dF dr. dé. . (d@j(dé’,j
v=—=—e +tr——=re +r —
dt  dt ' dt dt \ dé

de, _de, do _ do
di do dr  C di

=—c.—
:[a:#grwe@] (i o di i

o o o o o o o

—
—— o o o o

dég dégd6  _ db




Kinematics of Particles

O Radial and Transverse Components

[ﬁzi}ér+ré?ée]

 Similarly, the particle acceleration vector is

dv _
= - —0e, +tr—e, +1r0

) di . .de) (dr do_  .de,) (e _,  deg_ |
a=—=|—e. +r + —
dt dt ' dt dt dt dt

|
|
|
. I de, de.do@ _ db
_ dav L L e e . - 1 = =€y ——
= a=—=(rer+rl9€0)+(r¢969+r6’ea+r9(—6?er)) | dt dO di dt
|
l

dt
dég _dég d6 __ d
:>[c7=(if‘—r6'?2)ér +(ré+2f9)§9] L dt  do dt " dt
Kinematics of Particles é 5
(d Radial and Transverse Components
The components of velocity and
acceleration in circle motion
r=cte = r=r=0

5= e +roé v=re

. v=Je +rle, v=rbe,

i=(7-r6"é +(ré+270),

i=-r6%, +ré,




Kinematics of Particles
O Concept Quiz

If you are travelling in a perfect
circle, what is always true about
radial/transverse coordinates and
normal/tangential coordinates?

a) The e, direction is 1dentical to the e, direction.
b) The ey direction is perpendicular to the e, direction.
c) The ey direction 1s parallel to the e, direction.
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Kinematics of Particles

(d Radial and Transverse Components

When particle position is given in cylindrical coordinates, it
1s convenient to express the velocity and acceleration vectors
using the unit vectors  gp, &y, and k.

Position vector,

F=Ré +zk
Velocity vector, . ‘ - -
v == > [17 =Re, +ROe, +z'k]
Acceleration vector,
a:fl—j = |a=(R-RO*)é,+(RO+2ROYE, +:k
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Kinematics of Particles

O Sample Problem 16

Rotation of the arm about O is defined
by 6 =0.15¢>where @is in radians and
tin seconds. Collar B slides along the
arm such that r= 0.9 - 0.12¢2 where ris
in meters.

After the arm has rotated through 30°,
determine (a) the total velocity of the
collar, (b)the total acceleration of the
collar, and (c) the relative acceleration
of the collar with respect to the arm.

Kinematics of Particles

O Sample Problem 16

SOLUTION:
e Evaluate time 7 for 8= 30°.

 Evaluate radial and angular positions, and first
and second derivatives at time




Kinematics of Particles
 Sample Problem 16

SOLUTION:

 Calculate velocity

V=v,e,+ Ug€y
a=a.e. +dagey

v =(0.270 m/s)ey

o
o ﬁ 30° Q,b?’x v, = (~0.449 m /s)e,
z
g
/ \/

Kinematics of Particles
O Sample Problem 16

SOLUTION:

e (Calculate acceleration.

v=v.e,.+Vgeg
a=a,e, . +ag€y




Kinematics of Particles
 Sample Problem 16

SOLUTION:

 Evaluate acceleration with respect to arm.

Motion of collar with respect to arm is rectilinear
and defined by coordinate r.

Kinematics of Particles

O Sample Problem 16 SOLUTION:

* Plotted in the final figure is the path of the slider B over the time interval ) <¢ <3s.
This plot is generated by varying t in the given expressions for r and €. Conversion
from polar to rectangular coordinates is given by

0.3 T T T T T T T T
t=1.869 S
0.25F+ n
0.2 4
x =rcos(6) oer |
. 01F .
y =rsin(0)

E o.0sf -
oF ﬁ
-0.05+ 8
0.1 b
0.15 =

T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x [m]




Kinematics of Particles

O Sample Problem 17

8m

The angular acceleration of the
centrifuge arm varies according to

6 =0.0560 (rad/s?)

where 6 is measured in radians. If the
centrifuge starts from rest, determine the
acceleration magnitude after the gondola
has travelled two full rotations.
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Kinematics of Particles

O Sample Problem 17

SOLUTION:

Define your coordinate system

In the side view, the transverse
direction points into the “page”

Determine the angular velocity e,  Top View

Acceleration 1s a function
of position, so use: € ./
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Kinematics of Particles

O Sample Problem 17 | §m |
SOLUTION: a A
Evaluate the integral /] NNNNSISSQeny €

Determine the angular velocity

Determine the angular acceleration

131

Kinematics of Particles

1 Sample Problem 17
W N0
SOLUTION: /1 NNNNSIS e,
L

Find the radial and transverse
accelerations

Magnitude:
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Kinematics of Particles

O Group Problem Solving

What would happen if you
designed the centrifuge so
that the arm could extend
from 6 to 10 meters?

You could now have additional acceleration terms. This might
give you more control over how quickly the acceleration of the
gondola changes (this is known as the G-onset rate).

i=(-r6")e +(rf+2r0)e,
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Kinematics of Particles

O Sample Problem 18

An aircraft P takes off at A with a
velocity vy of 250 km/h and climbs in
the vertical ,’—" plane at the constant
15" angle with an acceleration along its
flight path of 0.8 m/s* . Flight progress
1s monitored by radar at point O.
Resolve the velocity of P into
cylindrical-coordinate components 60
seconds after takeoff and find R, 0 and z
for that instant.
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Kinematics of Particles

-4
0 Sample Problem 18 | /ci
| :
SOLUTION: | -
T
The takeoff speed is o Lé'f——?::‘_:_@_______i R E 2
~ A? 2’ __________"“‘———————__,. -y
~ | —
3000 m™ < | vy 0 15:',, - -
\\sz.__ =
the speed after 60 seconds is hN X
The distance s traveled after takeoftf is The y-coordinate and associated angle & are
135
Kinematics of Particles :
a
| v
O Sample Problem 18 | B . I
SOLUTION: 0*"/& s 205
Ce f ____'_‘_‘::tM vy
3000m™_ (15— ——
~ |UU _{_F,L-"'jjf
\x
,LL — s —
P . U‘;F f’ |
g R 2
O“ P Ve
- _
\'Q, s 2
O’¢ \ ) //
X
\
\
2
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Kinematics of Particles

O UNITS CONVERSION TABLES

Table 1. Multiples and Submultiples of Sl units

Prefix | Symbol Multiplying Factor
exa E 10" 1000 000 000 000 000 000
peta P 10" 1 000 000 000 000 000
tera T 10" 1 000 000 000 000
giga G 10° 1 000 000 000
mega M 10° 1 000 000
kilo k 10° 1 000
hecto* h 10° 100
deca* da 10 10
deci* d 10" 0.1
centi c 10” 0.01
milli m 10~ 0.001
micro u 107" 0.000 001
nano n 107 0.000 000 001
pico p 1077 0.000 000 000 001
femto f 10" 0.000 000 000 000 001
atto a 107" 0.000 000 000 000 000 001

*these prefixes are not normally used

Kinematics of Particles

d UNITS CONVERSION TABLES

Table 2: Length Units

Millimeters | Centimeters | Meters | Kilometers Inches Feet Yards Miles

mm cm m km in ft yd mi

1 0.1 0.001 0.000001 0.03937 | 0.003281 | 0.001094 | 6.21e-07

10 1 0.01 0.00001 0.393701 | 0.032808 | 0.010936 | 0.000006

1000 100 1 0.001 39.37008 | 3.28084 | 1.093613 | 0.000621
1000000 100000 1000 1 39370.08 | 3280.84 | 1093.613 | 0.621371

254 2.54 0.0254 0.000025 1 0.083333 | 0.027778 | 0.000016
304.8 30.48 0.3048 0.000305 12 1 0.333333 | 0.000189
914 4 91.44 09144 0.000914 36 3 1 0.000568
1609344 160934 .4 1609.344 | 1.609344 63360 5280 1760 1
Table 3: Area Units

Millimeter Centimeter Meter Inch Foot Yard

square square square square square square

mm? cm?’ m? in’ ft* yd2

1 0.01 0.000001 0.00155 0.000011 0.000001

100 1 0.0001 0.155 0.001076 0.00012

1000000 10000 1 1550.003 | 10.76391 1.19599

645.16 6.4516 0.000645 1 0.006944 | 0.000772

92903 929.0304 0.092903 144 1 0.111111

836127 8361.274 0.836127 1296 9 1




Kinematics of Particles

O UNITS CONVERSION TABLES

Table 4: Volume Units

Centimeter Meter T Inch Foot us Imperial US barrel (oil)
cube cube cube cube gallons gallons
cm® m* Itr in’ ft? US gal Imp. gal US brl
1 0.000001 0.001 0.061024 | 0.000035 | 0.000264 | 0.00022 0.000006
1000000 1 1000 61024 39 264 220 6.29
1000 0.001 1 61 0.035 | 0.264201 0.22 0.00629
16.4 0.000016 | 0.016387 1 0.000579 | 0.004329 | 0.003605 0.000103
28317 0.028317 | 28.31685 1728 7.481333 | 6.229712 0.178127
3785 0.003785 3.79 231 0.13 1 0.832701 0.02381
4545 0.004545 4.55 277 0.16 1.20 1 0.028593
158970 0.15897 159 9701 6 42 35
Table 5: Mass Units
Grams | Kilograms | Metric tonnes | Shortton | Longton | Pounds Ounces
g kg tonne shton Lton Ib oz
1 0.001 0.000001 0.000001 | 9.84e-07 | 0.002205 | 0.035273
1000 1 0.001 0.001102 | 0.000984 | 2.204586 | 35.27337
1000000 1000 1 1.102293 | 0.984252 | 2204.586 | 35273.37
907200 907.2 0.9072 1 0.892913 2000 32000
1016000 1016 1.016 1.119929 1 2239.859 | 35837.74
453.6 0.4536 0.000454 0.0005 0.000446 1 16
28 0.02835 0.000028 0.000031 | 0.000028 | 0.0625 1
Kinematics of Particles
1 UNITS CONVERSION TABLES
Table 10: High Pressure Units
Kilogram
Bar Poun_d!square Kilopascal | Megapascal forcef Millimeter Atmospheres
inch centimeter | of mercury
square
bar psi kPa MPa kgf;’cm2 mm Hg atm
1 14.50326 100 0.1 1.01968 750.0188 0.987167
0.06895 1 6.895 0.006895 0.070307 51.71379 0.068065
0.01 0.1450 1 0.001 0.01020 7.5002 0.00987
10 145.03 1000 1 10.197 7500.2 9.8717
0.9807 14.22335 98.07 0.09807 1 735.5434 0.968115
0.001333 0.019337 0.13333 0.000133 0.00136 1 0.001316
1.013 14.69181 101.3 0.1013 1.032936 759.769 1

Table 16: Temperature Conversion Formulas

Degree Celsius (°C)

(°F - 32) x 5/9

(K - 273.15)

Degree Fahrenheit (°F)

°C x9/5)+32

1.8 x K) - 459.67

Kelvin (K)

(

(

(°C + 273.15)

(°F + 459.67) = 1.8




