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Introduction

Kinematic relationships are used to help us 
determine the trajectory of a golf ball, the orbital 
speed of a satellite, and the accelerations during 
acrobatic flying.  
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Introduction

• Dynamics includes:

Kinetics : study of the relations existing between the forces acting on a 
body, the mass of the body, and the motion of the body.  Kinetics is used to 
predict the motion caused by given forces or to determine the forces required 
to produce a given motion.

Kinematics : study of the geometry of motion. 
Relates displacement, velocity, acceleration, and time without reference to the 
cause of motion.

Fthrust

Flift

Fdrag
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Introduction

• Particle kinematics includes:

• Rectilinear motion:  position, velocity, and acceleration of a particle as it 
moves along a straight line.

• Curvilinear motion:  position, velocity, and acceleration of a particle as it 
moves along a curved line in two or three dimensions.
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Rectilinear Motion:  Position, Velocity & Acceleration
• Rectilinear motion: particle moving along a 

straight line

• Position coordinate: defined by positive or 
negative distance from a fixed origin on the 
line.

• The motion of a particle is known if the 
position coordinate for particle is known for 
every value of time t. 

• May be expressed in the form of a function, 
e.g., 

or in the form of a graph x vs. t.

326 ttx −=
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Rectilinear Motion:  Position, Velocity & Acceleration

• Consider particle which occupies position P
at time t and P’ at t +Δt,

t
x

Δ
Δ=Average velocity

• Instantaneous velocity may be positive
(Increasing x) or negative (Decreasing x).  
Magnitude of velocity is referred to as 
particle speed.

Instantaneous velocity
t
xv

t Δ
Δ==

→Δ 0
lim
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Rectilinear Motion:  Position, Velocity & Acceleration

• From the definition of a derivative,

e.g.,

2

32

312

6

tt
dt
dxv

ttx
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dt
dx

t
xv

t
=

Δ
Δ=

→Δ 0
lim
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Rectilinear Motion:  Position, Velocity & Acceleration

• Consider particle with velocity v at time t and 
v +Δv at t +Δt,

• Instantaneous acceleration may be:
o Positive (           ) : increasing positive velocity 

t
v

Δ
Δ=Average acceleration

Instantaneous acceleration
t
va

t Δ
Δ==

→Δ 0
lim

An object going right (+) and speeding up (+) has positive acceleration )()()( +=+×+

0>Δv
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Rectilinear Motion:  Position, Velocity & Acceleration

• Instantaneous acceleration may be:
o Positive (           ) : decreasing negative velocity

An object going left (-) and slowing down (-) has positive acceleration )()()( +=−×−

0>Δv

• Instantaneous acceleration may be:
o Negative (           ) : decreasing positive velocity

An object moving right (+) and slowing down (-) has negative acceleration )()()( −=−×+

0<Δv

• Instantaneous acceleration may be:
o Negative (           ) : increasing negative velocity

An object going left (-) and speeding up (+) has negative acceleration )()()( −=+×−

0<Δv
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Rectilinear Motion:  Position, Velocity & Acceleration
• From the definition of a derivative,

dt
dv

t
va

t
=

Δ
Δ=

→Δ 0
lim 2

2

dt
xda

dt
dxv ==

t
dt
dva

ttv

612

312e.g. 2

−==

−=
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Concept Quiz

What is true about the kinematics of a particle?

a) The velocity of a particle is always positive
b) The velocity of a particle is equal to the slope of 

the position-time graph
c) If the position of a particle is zero, then the 

velocity must zero
d) If the velocity of a particle is zero, then its 

acceleration must be zero
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Rectilinear Motion:  Position, Velocity & Acceleration
• From our example,

- at t = 2 s,    x = 16 m, v = vmax = 12 m/s,  a = 0

- at t = 4 s,    x = xmax = 32 m, v = 0,  a = -12 m/s2

• What are x, v, and a at t = 2 s ?

• Note that vmax occurs when a =0, and that the 
slope of the velocity curve is zero at this point.

• What are x, v, and a at t = 4 s ?

t
dt

xd
dt
dva 6122

2
−===2312 tt

dt
dxv −==326 ttx −=

• Note that xmax occurs when v =0, and that the 
slope of the position curve is zero at this point.
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Determination of the Motion of a Particle

• Can you think of a physical example of when 
force is a function of position?When force is a function of 

velocity?

a spring drag

• Generally have three classes of motion
- acceleration given as a function of time, 
- acceleration given as a function of  position,

- acceleration given as a function of velocity, 

)(tfa =
)(xfa =
)(vfa =

)(tfx = ?
• We often describe motion based on accelerations 

Fall Free
g

I. Acceleration as a function of time:
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Acceleration as a function of time, position, or velocity

( )a a t=

dtadv
dt
dva ==

dttadv )(=

=−
t

dttavv
00 )(

dtvdx
dt
dxv ==

+=
t tx

x
dtdttavdx

0 00 )(
0

The motion of a particle is known for every value of time t. 

dtdttavdx
t

+=
00 )(

+=−
t t

dtdttatvxx
0 000 )(

=
tv

v
dttadv

0
)(

0



II. Acceleration as a function of position:
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Acceleration as a function of time, position, or velocity

a
dvdt

dt
dva

v
dxdt

dt
dxv

==

==

The motion of a particle is known 
for every value of time t. 

a
dv

v
dx = dxadvv =

)(xaa =
dxxadvv )(=

=
x

x

v

v
dxxadvv

00

)( =−
x

x
dxxavv

0

)(
2
1

2
1 2

0
2

v
dxdt
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dxv ==

+
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x
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III. Acceleration as a function of velocity:
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Acceleration as a function of time, position, or velocity

a
dvdt

dt
dva ==

The motion of a particle is known 
for every value of time t. 

)(vaa = )(va
dvdt = =

v

v

t

va
dvdt

0 )(0
=

v

v va
dvt

0 )(

dtvdx
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dxv ==

=
t

t

x

x
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)(tvv =

)(tvv =
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=−
t

t
dttvxx

0

)(0
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III. Acceleration as a function of velocity:
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Acceleration as a function of time, position, or velocity

The motion of a particle is known for every value of time t. 

b)

a
dv

v
dx = dv

a
vdx =

)(vaa =
dv

va
vdx

)(
=

a
dvdt

dt
dva

v
dxdt

dt
dxv

==

==

=
v

v

x

x
dv

va
vdx

00 )(
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v

v
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va
vxx

0 )(0 )(xvv =

v
dxdt
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)(xvv = )(xv
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x

x

t
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0 )(0
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x

x xv
dxt

0 )(
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Acceleration as a function of time, position, or velocity

( )a a t=

( )a a x=

( )a a v=

If…. Kinematic relationship Integrate
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Sample Problem 01

Determine:
a) velocity and elevation above ground at 

time t, 
b) highest elevation reached by ball and 

corresponding time, and 
c) time when ball will hit the ground and 

corresponding velocity.

Ball tossed with 10 m/s vertical velocity 
from window 20 m above ground. 
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Sample Problem 01

SOLUTION:
(a):
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Sample Problem 01

SOLUTION:
(a):
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Sample Problem 01
SOLUTION:
(b):

ymax occurs when v =0, and that 
the slope of the position curve is 
zero at this point.
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Sample Problem 01
SOLUTION:
(c):
• Solve for t when altitude equals zero  

and evaluate corresponding velocity.
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Sample Problem 02

Brake mechanism used to reduce gun 
recoil consists of piston attached to barrel 
moving in fixed cylinder filled with oil.  
As barrel recoils with initial velocity v0 , 
piston moves and oil is forced through 
orifices in piston, causing piston and 
cylinder to decelerate at rate proportional 
to their velocity.  

Determine v (t ), x (t ), and v (x ).
kva −=
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Sample Problem 02
SOLUTION:
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Sample Problem 02
SOLUTION:
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Sample Problem 03

The spring-mounted slider moves in the 
horizontal guide with negligible friction 
and has a velocity in the s-direction as it 
crosses the mid-position where x=0 and 
t=0. The two springs together exert a 
retarding force to the motion of the slider, 
which gives it an acceleration proportional 
to the displacement but oppositely directed 
and equal to                   , where k is 
constant. 

Determine the expressions for the 
displacement and velocity as functions of 
the time.

xka 2−=

x

0v
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Sample Problem 03 x

SOLUTION:
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Sample Problem 03
x

SOLUTION:
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Group Problem Solving

A bowling ball is dropped from a boat so that it strikes 
the surface of a lake with a speed of 15 ft/s. 
Assuming the ball experiences a downward 
acceleration of a =10 - 0.01v2 when in the water, 
determine the velocity of the ball when it strikes the 
bottom of the lake.

Which integral should you choose?

( )
0 0

v t

v

dv a t dt= ( )
0 0

v x

v x

v dv a x dx=

( )
0 0

v t

v

dv dt
a v

=
( )

0 0

x v

x v

v dvdx
a v

=

(a)

(b)

(c)

(d)

+y
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Concept Question

When will the bowling ball start slowing down?

A bowling ball is dropped from a boat so that it 
strikes the surface of a lake with a speed of 15 ft/s. 
Assuming the ball experiences a downward 
acceleration of a =10 - 0.01v2 when in the water, 
determine the velocity of the ball when it strikes the 
bottom of the lake.

+y
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Sample Problem 04

The car starts from rest and accelerates 
according to the relationship

23 0.001a v= −

It travels around a circular track that has 
a radius of 200 meters.  Calculate the 
velocity of the car after it has travelled 
halfway around the track.  What is the 
car’s maximum possible speed?
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Sample Problem 04

Choose the proper kinematic relationship

Given: 23 0.001a v= −
vo = 0, r = 200 m 

Find:    v after ½ lap
Maximum speed

Acceleration is a function of  velocity, and we 
also can determine distance.  Time is not 
involved in the problem, so we choose:

Determine total distance travelled

SOLUTION:
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Sample Problem 04

Determine the full integral, including limits

Take the exponential of each side

SOLUTION:
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Sample Problem 04

Solve for v

How do you determine the maximum speed the car can reach?

15802.02001.03 −=− ev

Velocity is a maximum when 
acceleration is zero

SOLUTION:
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Uniform Rectilinear Motion For a particle in uniform
rectilinear motion, the
acceleration is zero and
the velocity is constant.

constant== v
dt
dx

During free-fall, a parachutist
reaches terminal velocity when
her weight equals the drag
force. If motion is in a straight
line, this is uniform rectilinear
motion.

Careful – these only apply to 
uniform rectilinear motion!

=
tx

x

dtvdx
00

vtxx =− 0

vtxx += 0
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Uniformly Accelerated Rectilinear Motion

If forces applied to a body 
are constant (and in a 
constant direction), then 
you have uniformly 
accelerated rectilinear 
motion.

Another example is free-
fall when drag is negligible
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Uniformly Accelerated Rectilinear Motion
For a particle in uniformly accelerated rectilinear motion, the
acceleration of the particle is constant.

ctea
dt
dv ==

v
dt
dx =

=
tv

v
dtadv

00

atv
dt
dx += 0 dtatvdx )( 0 +=

dtadv =

ctea
dx
dvv == dxadvv = =

x

x

v

v
dxadvv

00
)(

2
1

2
1

0
2

0
2 xxavv −=−

2
00 2

1 attvxx +=−

+=
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x
dtatvdx

0 0 )(
0

atvv =− 0

2
00 2

1 attvxx ++=

)(2 0
2

0
2 xxavv −+=

atvv += 0
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Uniformly Accelerated Rectilinear Motion

Careful – these only apply to uniformly 
accelerated rectilinear motion!

atvv += 0Relate velocity to time )(tvv =

2
00 2

1 attvxx ++=Relate position to time )(txx =

)(2 0
2

0
2 xxavv −+=Relate velocity to Position )(xvv =

ctea =

Kinematics of Particles

40

Motion of Several Particles

We may be interested in the motion of several different particles,
whose motion may be independent or linked together.
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Motion of Several Particles:  Relative Motion
• For particles moving along the same line, time 

should be recorded from the same starting 
instant and displacements should be measured 
from the same origin in the same direction.

=−= ABAB aaa relative acceleration of B
with respect to A

ABAB aaa +=

=−= ABAB xxx relative position of B
with respect to A

ABAB xxx +=

0/ >ABx
Particle B at right hand side of Particle A

=−= ABAB vvv relative velocity of B
with respect to A

ABAB vvv +=

0/ >ABv
An observer at point A, see the particle B 
which increases distance from A.
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Sample Problem 05

Ball thrown vertically from 12 m level 
in elevator shaft with initial velocity of 
18 m/s.  At same instant, open-platform 
elevator passes 5 m level moving 
upward at 2 m/s.  

Determine (a) when and where ball hits 
elevator and (b) relative velocity of ball 
and elevator at contact.
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Sample Problem 05
SOLUTION:
• Uniformly accelerated rectilinear motion: 

Substitute initial position and velocity and constant 
acceleration of ball into general equations

• Uniform rectilinear motion
Substitute initial position and constant velocity of 
elevator into equation for.
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Sample Problem 05

• Write equation for relative position of ball with 
respect to elevator and solve for zero relative 
position, i.e., impact.

(a):

• Substitute impact time into equations for position of elevator

SOLUTION:
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Sample Problem 05

• Substitute impact time into equations for relative velocity of 
ball with respect to elevator.

(b):

SOLUTION:

o
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Motion of Several Particles:  Dependent Motion
• Position of a particle may depend on position of one 

or more other particles.

• Position of block B depends on position of block A.  
Since rope is of constant length, it follows that sum of 
lengths of segments must be constant.

ctexx BA =+ 2 (one degree of freedom)

ctellll TotalFGDEAC ==++

TotalBBA lFBxFBOCxOCx =−+−−+− )()()(

cteFBOClxx TotalBA =++=+ 222

=+=+

=+=+
=+

0202

0202
2

BA
BA

BA
BA

BA

aa
dt

dv
dt

dv

vv
dt

dx
dt

dx

ctexx
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Motion of Several Particles:  Dependent Motion

• Positions of three blocks are dependent.

• For linearly related positions, similar relations hold 
between velocities and accelerations.

022or022

022or022

=++=++

=++=++

CBA
CBA

CBA
CBA

aaa
dt

dv
dt

dv
dt

dv

vvv
dt

dx
dt

dx
dt

dx

ctexxx CBA =++ 22 (two degrees of freedom)
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Sample Problem 06

Pulley D is attached to a collar which 
is pulled down at 3 in./s.  At t = 0, 
collar A starts moving down from K
with constant acceleration and zero 
initial velocity.  Knowing that velocity 
of collar A is 12 in./s as it passes L, 
determine the change in elevation, 
velocity, and acceleration of block B
when block A is at L.



SOLUTION:
• Define origin at upper horizontal surface with 

positive displacement downward.

• Collar A has uniformly accelerated 
rectilinear motion.  Solve for 
acceleration and time t to reach L.
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Sample Problem 06

• Pulley D has uniform rectilinear 
motion.  Calculate change of 
position at time t.
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Sample Problem 06
SOLUTION:
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Sample Problem 06

• Block B motion is dependent on 
motions of  collar A and pulley D.  
Write motion relationship and solve for 
change of block B position at time t.  

Total length of cable remains constant,

SOLUTION:

• Differentiate motion relation twice to develop 
equations for velocity and acceleration of 
block B.
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Sample Problem 06
SOLUTION:
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Sample Problem 07

Slider block A moves to the left with a 
constant velocity of 6 m/s. Determine the 
velocity of block B.
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Sample Problem 07

Given:  vA= 6 m/s left    Find:  vB

xA

yB

This length is constant no 
matter how the blocks move

Sketch your system and choose coordinates

Differentiate the constraint equation to 
get velocity

Define your constraint equation(s)

Note that as xA gets bigger, yB gets smaller.

SOLUTION:
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Sample Problem 08

Slider block B moves to the right with a constant velocity of
300 mm/s. Determine (a) the velocity of slider block A, (b) the
velocity of portion C of the cable, (c) the velocity of portion D
of the cable, (d) the relative velocity of portion C of the cable with
respect to slider block A.
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Sample Problem 08

SOLUTION:
Ax

Bx
Cx

Dx

h
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Sample Problem 08

SOLUTION:
Ax

Bx
Cx

Dx

h
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Graphical Solution of Rectilinear-Motion Problems
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Given the x-t curve, the v-t
curve is equal to the x-t
curve slope.

Given the v-t curve, the a-t
curve is equal to the v-t
curve slope.
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Graphical Solution of Rectilinear-Motion Problems

The x-t curve
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Graphical Solution of Rectilinear-Motion Problems

Given the a-t curve, the change 
in velocity between t1 and t2 is 
equal to the area under the a-t
curve between t1 and t2.

Given the v-t curve, the change 
in position between t1 and t2 is 
equal to the area under the v-t
curve between t1 and t2.

The a-t curve



Moment-area method to determine particle position 
at time t directly from the a-t curve:

curve  under   area01 tvxx −=−

using  dv = a dt , ( )−+=−
1

0
11001

t

dtatttvxx

( ) =−
1

0
1

t

dtatt first moment of area under a-t curve 
with respect to t = t1 line.
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Other Graphical Methods

( )−+=−
1

0

11001

v

v

dvtttvxx

Ct
tta-ttvxx

 centroid of abscissa
)(curve) under  area( 11001

=
−++=
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Other Graphical Methods
• Method to determine particle 

acceleration from v-x curve:

dx
dvva = θtanAB= BC=
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Curvilinear Motion:  Position, Velocity & Acceleration

The softball and the car both undergo curvilinear motion.

• A particle moving along a curve other than a 
straight line is in curvilinear motion.
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Curvilinear Motion:  Position, Velocity & Acceleration

• The position vector of a particle at 
time t is defined by a vector between 
origin O of a fixed reference frame 
and the position occupied by particle.

• Consider a particle which occupies position P defined by     at time t
and defined by      at  t + Δt, 

r
r ′P′
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Curvilinear Motion:  Position, Velocity & Acceleration

Instantaneous velocity 
(vector)

Instantaneous speed 
(scalar)

0
lim

t

r drv
t dtΔ →

Δ= =
Δ 0

lim
t

s dsv
t dtΔ →

Δ= =
Δ

v

v′

vΔ

Velocity Curve
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Curvilinear Motion:  Position, Velocity & Acceleration

instantaneous acceleration (vector)

• Consider velocity    of a particle at time t and velocity       at t + Δt,v v′

dt
vd

t
va

t
=

Δ
Δ=

→Δ 0
lim
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Curvilinear Motion:  Position, Velocity & Acceleration

• In general, the acceleration vector is 
not tangent to the particle path and 
velocity vector.
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Derivatives of Vector Functions

( )uP• Let be a vector function of scalar variable u,

( ) ( )
u

uPuuP
u
P

du
Pd

uu Δ
−Δ+=

Δ
Δ=

→Δ→Δ 00
limlim
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Derivatives of Vector Functions
• Derivative of vector sum,

du
Qd

du
Pd

du
QPd +=+ )(

• Derivative of product of scalar and vector functions,

du
PdfP

du
df

du
Pfd +=)(

• Derivative of scalar product and vector product,

du
QdPQ

du
Pd

du
QPd

du
QdPQ

du
Pd

du
QPd

×+×=×

•+•=•

)(

)(
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Rectangular Components of Velocity & Acceleration

• When position vector of particle P is given by its 
rectangular components,

kzjyixr ++=

• Velocity vector,

kvjviv

kzjyixk
dt
dzj

dt
dyi

dt
dxv

zyx ++=

++=++=
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Rectangular Components of Velocity & Acceleration

• When position vector of particle P is given by its 
rectangular components,

kzjyixr ++=

• Acceleration vector,

kajaia

kzjyixk
dt

zdj
dt

ydi
dt

xda

zyx ++=

++=++= 2

2

2

2

2

2

The curvilinear motion of a particle is
defined by and ,
where is in meters per second, y is in
meters, and t is in seconds. It is also
known that x=0 when t=0.
Plot the path of the particle and
determine its velocity and acceleration
when the position y=0 is reached.
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Sample Problem 09

tvx 1650 −= 24100 ty −=

xv
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Sample Problem 09

SOLUTION:

Determine motion components in x direction

Determine motion components in y direction
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Sample Problem 09

SOLUTION:

2 68 84

3 78 64

4 72 36

5 50 0

t r i j

t r i j

t r i j

t r i j

= = +

= = +

= = +

= = +
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Sample Problem 09
SOLUTION:

04100 2 =−= tyWhen y=0     a , v =? st 5=
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Rectangular Components of Velocity & Acceleration

• Rectangular components particularly effective 
when component accelerations can be integrated 
independently, e.g., motion of a projectile,

with initial conditions,

Integrating twice yields

00 ==−==== zagyaxa zyx

0)(0)(,)(0 000000 =≠=== zyx vvvzyx

0)()(
0)()(

2
2
1

00

00

=−==
=−==

zgttvytvx
vgtvvvv

yx

zyyxx
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Rectangular Components of Velocity & Acceleration

tvx x 0)(=

2
2
1

0)( gttvy y −=

• Equation motion of projectile
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Rectangular Components of Velocity & Acceleration

• Motion in horizontal direction is uniform.

• Motion in vertical direction is uniformly 
accelerated.

• Motion of projectile could be replaced 
by two independent rectilinear motions.

Independently motion of a projectile



A projectile is fired from the edge
of a 150-m cliff with an initial
velocity of 180 m/s at an angle of
30 with the horizontal. Neglecting
air resistance, find
(a) the horizontal distance from the

gun to the point where the
projectile strikes the ground,

(b) the greatest elevation above the
ground reached by the
projectile.
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Sample Problem 10

SOLUTION:

Given: (v)o =180 m/s (y)o =0

(a)y = - 9.81 m/s2 (a)x = 0 m/s2

Vertical motion – uniformly accelerated: 
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Sample Problem 10

(1)

(2)

(3)



SOLUTION:

Given: (v)o =180 m/s (y)o =150 m

(a)y = - 9.81 m/s2 (a)x = 0 m/s2

Horizontal motion – uniformly motion: 
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Sample Problem 10

Choose positive x to the right as shown

SOLUTION:
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Sample Problem 10

Projectile strikes the ground at:

Solving for t, we take the positive root

Substitute into equation (1) above

Substitute t into equation (4)

my 150−=



SOLUTION:
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Sample Problem 10

Maximum elevation occurs when vy=0

Maximum elevation above the ground
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Concept Quiz

If you fire a projectile from 150 
meters above the ground, what 
launch angle will give you the 
greatest horizontal distance x?

a) A launch angle of 45
b) A launch angle less than 45
c) A launch angle greater than 45
d) It depends on the launch velocity
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Sample Problem 11
A baseball pitching machine “throws” baseballs with a
horizontal velocity v0. If you want the height h to be 42
in., determine the value of v0.

Kinematics of Particles

86

Sample Problem 11

Analyze the motion in the 
y-direction

Given: x= 40 ft, yo = 5 ft, 
yf= 42 in. 

Analyze the motion in the 
x-direction

SOLUTION:
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Sample Problem 11

Given: x= 40 ft, yo = 5 ft, 
yf= 42 in. 

Other Solution

SOLUTION:
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Motion Relative to a Frame in Translation

A soccer player must consider the
relative motion of the ball and her
teammates when making a pass.

It is critical for a pilot to know the relative
motion of his aircraft with respect to the
aircraft carrier to make a safe landing.
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Motion Relative to a Frame in Translation
• Designate one frame as the fixed frame of 

reference.  All other frames not rigidly 
attached to the fixed reference frame are 
moving frames of reference.

• Position vectors for particles A and B with respect to 
the fixed frame of reference Oxyz are        . and BA rr

• Vector joining A and B defines the position of 
B with respect to the moving frame and

ABr
zyxA ′′′ ABAB rrr +=
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Motion Relative to a Frame in Translation

• Differentiating twice,

• Absolute motion of B can be obtained by 
combining motion of A with relative motion of 
B with respect to moving reference frame 
attached to A.

ABAB rrr +=

=ABv velocity of B relative to A.ABAB vvv +=

=ABa acceleration of B relative to A.ABAB aaa +=
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Sample Problem 12

Automobile A is traveling east at the 
constant speed of 36 km/h. As automobile 
A crosses the intersection shown, 
automobile B starts from rest 35 m north 
of the intersection and moves south with a 
constant acceleration of 1.2 m/s2.  

Determine the position, velocity, and 
acceleration of B relative to A,  5s after A 
crosses the intersection.

Kinematics of Particles

92

Sample Problem 12
SOLUTION:

• Define axes along the road

Given:
vA=36 km/h,  aA= 0,  (xA)0 = 0

(vB)0= 0,  aB= - 1.2 m/s2,  (yB)0 = 35 m

Determine motion of Automobile A:
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Sample Problem 12
SOLUTION:

We have uniform motion for A so:

At t = 5 s
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Sample Problem 12
SOLUTION:

Determine motion of Automobile B:

We have uniform acceleration for B so:
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Sample Problem 12
SOLUTION:

We can solve the problems geometrically, and apply the arctangent relationship:

Or we can solve the problems using vectors to obtain equivalent results:

Physically, a rider in car A would “see” car B travelling south and west.

↑=

↓=

↓=

m
sm

sm

B

B

B

20
)/(6

)/(2.1 2

r
v
a

→=
→=

=

m
sm

A

A

A

50
)/(10

0

r
v
a

8.21,9.53/ == αmABr 0.31,/66.11/ == βsmABv ↓= 2
/ /2.1 smABa
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Concept Quiz

If you are sitting in train 
B looking out the window, 
it which direction does it 
appear that train A is 
moving?

a)

b)

c)

d)25o

25o
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Tangential and Normal Components
If we have an idea of the path of a vehicle, it is often convenient 
to analyze the motion using tangential and normal components 
(sometimes called path coordinates).

• The tangential direction (et) is 
tangent to the path of the particle.  
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Tangential and Normal Components

x

y

et

en

• The normal direction (en) is 
perpendicular to et and points 
towards the inside of the curve.

v= vt et

ρ= the instantaneous 
radius of curvature

• The acceleration can have components 
in both the en and et directions

tvev =

nt
v

dt
dv eea

ρ

2

+=

• This velocity vector of a particle is in 
this direction 
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Tangential and Normal Components
• To derive the acceleration vector in tangential 

and normal components, define the motion of a 
particle as shown in the figure.

• are tangential unit vectors for the 
particle path at P and P’ .

tt ee ′ and 

1== ′tt ee

• When                are drawn with respect to the 
same origin, and       is the angle 
between them. 

ttt eee −′=Δ θΔ
tt ee ′ and 

( )
nn

t eee =
Δ

Δ=
Δ
Δ

→Δ→Δ 2
2sinlimlim

00 θ
θ

θ θθ

( )2sin2 θΔ=Δ te( )2sin2 θΔ=Δ tt ee

n
t e

d
ed =
θ

• With the velocity vector expressed as
the particle acceleration may be written as

tevv =

dt
edve

dt
dv

dt
vda t

t +==

but
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Tangential and Normal Components

tevv =

n
t e

d
ed =
θ

dsd =θρ v
dt
ds =

nt eve
dt
dva

ρ

2

+=)(1)( veve
dt
dva nt +=

ρ

After substituting,

+=
dt
ds

ds
d

d
edve

dt
dv t

t
θ

θ



• The tangential component of acceleration 
reflects change of speed and the normal 
component reflects change of direction.

• The tangential component may be positive or 
negative.  Normal component always points 
toward center of path curvature.

Kinematics of Particles

101

Tangential and Normal Components

nt eve
dt
dva

ρ

2

+=

2

2

2
3

2

1

dx
yd

dx
dy+

=ρ
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Tangential and Normal Components
• Relations for tangential and normal acceleration 

also apply for particle moving along a space curve.

• The plane containing tangential and normal unit 
vectors is called the osculating plane.

ntb eee ×=
• The normal to the osculating plane is found from

binormale

normalprincipal e

b

n

 

 

=

=

• Acceleration has no component along the binormal.

ρρ

22

, va
dt
dvaeve

dt
dva ntnt ==+=
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Sample Problem 13

A motorist is traveling on a curved
section of highway of radius 2500 ft
at the speed of 60 mi/h. The motorist
suddenly applies the brakes, causing
the automobile to slow down at a
constant rate. Knowing that after 8 s
the speed has been reduced to 45
mi/h, determine the acceleration of
the automobile immediately after the
brakes have been applied.

SOLUTION:

• Define your coordinate system

et en

• Determine velocity and acceleration in 
the tangential direction

• The deceleration constant, therefore
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Sample Problem 13



SOLUTION:

• Immediately after the brakes are applied, 
the speed is still 88 ft/s
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Sample Problem 13
et en
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Tangential and Normal Components
In 2001, a race scheduled at the Texas Motor Speedway was
cancelled because the normal accelerations were too high and
caused some drivers to experience excessive g-loads (similar to
fighter pilots) and possibly pass out. What are some things that
could be done to solve this problem?
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Sample Problem 14

The tangential acceleration of the 
centrifuge cab is given by

where t is in seconds and at is in 
m/s2.  If the centrifuge starts from 
rest, determine the total acceleration 
magnitude of the cab after 10 
seconds. 

20.5   (m/s )ta t=

In the side view, the tangential
direction points into the “page”

Define your coordinate system

et
en

en

Top ViewDetermine the tangential velocity
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Sample Problem 14
SOLUTION:



et
en

en

Top View

Determine the normal acceleration

Determine the total acceleration magnitude
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Sample Problem 14
SOLUTION:
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Group Problem Solving

a) The accelerations would remain the same
b) The an would increase and the at would decrease
c) The an and at would both increase
d) The an would decrease and the at would increase

Notice that the normal 
acceleration is much higher than 
the tangential acceleration.  
What would happen if, for a 
given tangential velocity and 
acceleration, the arm radius was 
doubled?



To anticipate the dip and hump in the road, the driver of a car applies her brakes to produce a 
uniform deceleration. Her speed is 100 km/h at the bottom A of the dip and 50 km/h at the 
top C of the hump, which is 120 m along the road from A. If the passengers experience a 
total acceleration of at A and if the radius of curvature of the hump at C  is 150m, 

Calculate
(a) the radius of curvature at A, 
(b) the acceleration at the inflection point B
(c) the total acceleration at C.
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Sample Problem 15

2/3 sm
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Sample Problem 15

The dimensions of the car are small compared with those of the
path, so we will treat the car as a particle. The velocities are

We find the constant deceleration along the path from

Is constant during the total path.

SOLUTION:
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Sample Problem 15

(a) Condition at A. With the total 
acceleration given and at determined, we can 
easily compute an and hence from

SOLUTION:
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Sample Problem 15

(b) Condition at B. Since the radius of curvature is 
infinite at the inflection point, an = 0 and

SOLUTION:
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Sample Problem 15

(c) Condition at C. The normal acceleration becomes

SOLUTION:

By knowing the distance to the aircraft and the 
angle of the radar, air traffic controllers can 
track aircraft.  

Fire truck ladders can rotate as well as extend; 
the motion of the end of the ladder can be 
analyzed using radial and transverse 
components.
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Radial and Transverse Components
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Radial and Transverse Components
• The position of a particle P is expressed as a distance r

from the origin O to P  – this defines the radial direction 
er.  The transverse direction eθ is perpendicular to er

• The particle velocity vector is

rerr =

θθ ererv r +=

• The particle acceleration vector is

θθθθ errerra r )2()( 2 ++−=

θθ rvrvr == & θθθ θ rrarrar 2&2 +=−=
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Radial and Transverse Components

• The particle velocity vector is

rerr =

dt
edre

dt
dr

dt
rdv r

r +==

θθ ererv r +=

• We can derive the velocity and acceleration 
relationships by recognizing that the unit vectors 
change direction.

dt
de

dt
d

d
ed

dt
ed

r
θθ

θ
θθ −==

dt
de

dt
d

d
ed
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ed rr θθ

θ θ==
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r e
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Radial and Transverse Components

++++==
dt
edre

dt
dre

dt
dr

dt
edre

dt
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dt
vda r
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θ

θθ θθθ

θθ ererv r +=

( ) ( ))( rr ererererer
dt
vda θθθθθ θθθ −++++==

θθθθ errerra r )2()( 2 ++−=

• Similarly, the particle acceleration vector is

dt
de

dt
d

d
ed

dt
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Radial and Transverse Components

The components of velocity and 
acceleration in circle motion

reθe

0=== rrcter

θθ erv =

θθθ erera r +−= 2

θθ ererv r +=

θθθθ errerra r )2()( 2 ++−=
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Concept Quiz

If you are travelling in a perfect 
circle, what is always true about 
radial/transverse coordinates and 
normal/tangential coordinates?

a) The er direction is identical to the en direction.
b) The eθ direction is perpendicular to the en direction.
c) The eθ direction is parallel to the er direction.

reθe

te

ne

• When particle position is given in cylindrical coordinates, it 
is convenient to express the velocity and acceleration vectors 
using the unit vectors . and ,, keeR θ

• Position vector,

• Velocity vector,

• Acceleration vector,
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Radial and Transverse Components

kzeRr R +=

dt
rdv = kzeReRv R ++= θθ

dt
vda = kzeRReRRa R +++−= θθθθ )2()( 2
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Sample Problem 16

Rotation of the arm about O is defined 
by θ = 0.15t 2 where θ is in radians and 
t in seconds.  Collar B slides along the 
arm such that r = 0.9 - 0.12t 2 where r is 
in meters.

After the arm has rotated through 30o, 
determine (a) the total velocity of the 
collar, (b) the total acceleration of the 
collar, and (c) the relative acceleration 
of the collar with respect to the arm.
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Sample Problem 16
SOLUTION:
• Evaluate time t for θ = 30o.

• Evaluate radial and angular positions, and first 
and second derivatives at time t.



• Calculate velocity
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Sample Problem 16

SOLUTION:

• Calculate acceleration.
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Sample Problem 16

SOLUTION:
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Sample Problem 16

• Evaluate acceleration with respect to arm.

Motion of collar with respect to arm is rectilinear 
and defined by coordinate r.

SOLUTION:
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Sample Problem 16
• Plotted in the final figure is the path of the slider B over the time interval               s. 

This plot is generated by varying t in the given expressions for r and    . Conversion 
from polar to rectangular coordinates is given by

θ
30 ≤≤ t

)sin(
)cos(

θ
θ

ry
rx

=
=

SOLUTION:



The angular acceleration of the 
centrifuge arm varies according to 

where θ is measured in radians.  If the 
centrifuge starts from rest, determine the 
acceleration magnitude after the gondola 
has travelled two full rotations.

20.05   (rad/s )θ θ=
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Sample Problem 17

In the side view, the transverse
direction points into the “page”

Define your coordinate system

eθ

er

er

Top ViewDetermine the angular velocity
Acceleration is a function
of position, so use:
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Sample Problem 17

SOLUTION:



eθ

er

er

Top View

Evaluate the integral
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Sample Problem 17

Determine the angular velocity

Determine the angular acceleration

SOLUTION:

eθ

er

er

Top View
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Sample Problem 17

Find the radial and transverse 
accelerations

Magnitude:

SOLUTION:
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Group Problem Solving

You could now have additional acceleration terms. This might
give you more control over how quickly the acceleration of the
gondola changes (this is known as the G-onset rate).

What would happen if you 
designed the centrifuge so 
that the arm could extend 
from 6 to 10 meters? 

r

θθθθ errerra r )2()( 2 ++−=

Kinematics of Particles

134

Sample Problem 18

An aircraft P takes off at A with a 
velocity of 250 km/h and climbs in 
the vertical plane at the constant

angle with an acceleration along its 
flight path of 0.8          . Flight progress 
is monitored by radar at point O. 
Resolve the velocity of P into 
cylindrical-coordinate components 60 
seconds after takeoff and find            
for that instant.

0v
zy ′−′

15
2/ sm

zandR θ,

r
R
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Sample Problem 18

r

RThe takeoff speed is

the speed after 60 seconds is

The distance s traveled after takeoff is The y-coordinate and associated angle     areθ

SOLUTION:
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Sample Problem 18 r

R

Rv

R

Rv

SOLUTION:
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