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Chapter 8

Beams and Frames

In wide journal bearings and Winkler foundations, we use stiffness per unit length,
s, of the supporting medium (Fig. 8.8b). Over the length of the support, this adds the
following term to the total potential energy:

1/t
Z/stdx

In Galerkin’s approach, this term is j;f svd dx. When we substitute for v = Hgq for the
discretized model, the previous term becomes

(8.41)

1
5 ; q's [ H™Hdx g (8.42)
We recognize the stiffness term in this summation, namely,
se +1
ki==s / H™Hdx = ?“’ / H'H d¢ (8.43)
€ -1
On integration, we have
156 22¢, 34 134,
s€,| 22¢, 46 13¢, -3¢
ke = [ & 3 L4
C 420 54 13¢, 156 -22¢, (8.44)
-13¢, —3¢2 -22¢,  4€

For elements supported on an elastic foundation, this stiffness has to be added to the
clement stiffness given by Eq. 8.29. Matrix k¢ is the consistent stiffness matrix for the elas-
tic foundation.

8.7 PLANE FRAMES

Here, we consider plane structures with rigidly connected members. These members
will be similar to the beams except that axial loads and axial deformations are present.
The elements also have different orientations. Figure 8.9 shows a frame element, We

have two displacements and a rotational deformation for each node. The nodal dis-
placement vector is given by

9= (995,960 G5, 4] (845)

We also define the local or body coordinate system x’, y’, such that x’ is oriented along
1-2, with direction cosines €, m (where £ = cos 6, m = sin 9). These are evaluated using
relationships given for the truss element, shown in Fig. 4.4. The nodal displacement vec-
tor in the local system is

9 = [q1.92. 95,95 q5. q5)" (8.46)

Recognizing that g3 = g: and g5 = g,, which are rotations with respect to the body, ¥e
obtain the local-global transformation

(8.47)

where
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FIGURE 8.9 Frame element.

£ m 0 0 0 0
-m € 0 0 0 0
o o0 1 0 0 0
L= 0O 0 0 €& m O (8.48)
0 0 0 -m ¢ 0
0 0 0 0 0 1]

It is now observed that g5, g3, g5, and g;, are like the beam degrees of freedom, while
g, and g, are similar to the displacements of a rod element, as discussed in Chapter 3.
Combining the two stiffnesses and arranging in proper locations, we get the element
stiffness for a frame clement as

[ EA —EA
0 0
. 0 0
12E]  6EI ~12EI  6EI
° = e R
o, SEL 4EI ~6EI 2E
2 2 £
we= |, € £ N £ ‘ (8.49)
0
i Y
, CI2El -6EI . 12El 6K
£ & e &
6EI 2Bl <6El 4EI
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As discussed in the development of a truss element in Chapter 4, we recognize that the
element strain energy is given by

U, = 14"'k"q = 3q'L'k"Lq 859
or in Galerkin’s approach, the internal virtual work of an element is
w. = wTk'q = $L'k"“Lg (8.51)

where W' and s are virtual nodal displacements in local and global coordinate systems,
respectively. From Eq.8.50 or 851, we recognize the element stiffness matrix in global

coordinates 1o be

K = LTkreL (852)

In the finite element program implementation, k' can first be defined, and then this
matrix multiplication can be carried out.
If there is distributed load on a member, as shown in Fig. 8.10, we have

q’Tf' = TLTf' (8.53)
where
. pt.  pt: pt. _pt|
f = 0! ] k] L] T - . N
[ 2 12 0 2’ 12 (8:54)
The nodal loads due to the distributed load p are given by
f=LTf (8.55)
e,
»
pti
12

FIGURE 8.10 Distributed load on a frame element.
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OF: Equations of Motion
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4
8! i
X %
The values of f are added to the global load vector. Note here that positive p is in the | } .
y’ direction. i
'The point loads and couples are simply added to the global load vector. On gath- {
ering stiffnesses and loads, we get the system of equations i
KQ=F

where the boundary conditions are considered by applying the penalty terms in the
energy or Galerkin formulations.

. ¥ I
Example 8.2 f |
Determine the displacements and rotations of the joints for the portal frame shown in i E
Fig. ER2. 1'f i
i

(4T

(il

a :
500 Ib/tt

05 !
Q== [ Q“d—»&
3000 Ik > 'l'l'*#}‘ l"" Yy . ;

Y k

@ 2 E =30 % 10 psi
r=65in’ AL
R
A=68in? ST

B it i
@ © N

7R Tz
L 12 4t 'Ii

{a) Portal frame

3000 ib 3000 16

 J
HOO0 Tb-1t
(?g({})no% ll?a:fitn.)c, @ \){?2 K) Tb-in.)

(b) Equivalent load for element 1

FIGURE E8.2 {a) Portal frame. (b} Equivatent load for Element 1.
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Solution We follow the steps given below:

Step 1. Connectivity
The connectivity is as follows:

Node
Element No. 1 2
1 1 2
2 3 1
3 4 A

Step 2. Element Stiffnesses
Element I. Using the matrix given in Eq. 8.45 and noting that k' = k'!, we find that

01 Qz 03 Oq 05 06 _

1417 0 0 -1417 0 0
0 0.784 564 0 —0.784 564
k' = 10* X 0 564 5417 0 —56.4 2708
-1417 © 0 1417 0 0
0 -0.784 564 0 0784 —364
L o 564 2708 0 —-56.4 5417

Elements 2 and 3. Local element stiffnesses for elements 2 and 3 are obtained by
substituting for E, A, I and £; in matrix k' of Eq. 8.49:

2125 0 0 -2125 0 0
0 265 127 0 -265 127
0 127 8125 0 —127 4063

~2125 0 0 2125 0 0
0 -265 -127 0 265 —127

| o 127 4063 0 -127 8125 |

k't = 10* x

Transformation matrix L. We have noted that for element 1,k = k' Forelements2 and
3, which are oriented similarly with respect to the x- and y-axes,we have ¢ = O,m = 1. Then,

[0 1 0o 0 0o 0]
-1 0 ¢ 0 o0 0
L=| 9 ¢ 1 0o 0 0
o0 0 0 1 0
0 0 0 -1 0 ¢
Lo o o o o 1]
Noting that k* = LTk’ZL, we get
€= Qs Qs Qg

E=2——-)Q1 Oz 03



k=10 x

[ 2.65
0
-127
-2.65
0

Section 8.8
1] —127
2125 ]
0 3125
0 127
=2125 O
0 4063

Three-Dimensional Frames

—2.65
0
127
2.65
o
127

0
=212.5
0
0
2125
0

—
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—-127 |
0

4063

127
0

| —127 8125 |
Stiffness k' has all its elements in the global locations, For elements 2 and 3, the shaded
part of the stiffness matrix shown previously is added to the appropriate global locations
of K. The global stiffness matrix is given by

" 144.3 0 127 -1417 0 0
0 2133 564 0 -0784 564
127 564 13542 O -S6.4 2708
— 1
K=1"X1 a7 o 0 1443 0 127
0 078 -S564 0 2133 -56.4
0 564 2708 127 564 13542

From Fig. E8.2, the load vector can easily be written as : i
[ 3000
—3000
) —72000
Q
~3000
| +72 000

The set of equations is given by
KQ=F
On solving, we get

[ 0.092in.

—0.00104 in.

~0.00139 rad
0.0901 in.

-0.0018 in.

| —3.88 X 107%rad )

8.8 THREE-DIMENSIONAL FRAMES

Three-dimensional frames, also called as space frames, are frequently encountered in
the analysis of multistory buildings. They are also to be found in lhe‘ modeling of car
body and bicycle frames. A typical three-dimensional frame is shown in Fig. 8.11. Each
node has six degrees of freedom (dofs) (as opposed to only three dofs in a plane frame).
The dof numbering is shown in Fig. 8.11: for node /, dof 6/-5, 6/-4, and 6/-3 represent

N
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F 3
4 3
4 &y
4>Qﬁ 4)‘212
1 - — £
Q% —V Q2 Qlﬂz/ u
2 On
Qs
85 o
S 1o+
3 o 6 o,
x / O -3
A
Oy
Ly
Qos-1 }_EV—.. Por-a
% Qss1
D)5
dof £ at node J

FIGURE 8.11 Degrees of freedom numbering for a three-cdimensional frame.

the x-, y-, and z-translational dofs, while 6/-2,6J-1, and 6J represent the rotational dofs
along the x-, y-, and z-axes. The element displacement vectors in the local and global
coordinate systems are denoted as q' and g, respectively. These vectors are of dimension
(12 % 1) as shown in Fig. 8.12.

Orientation of the local x’-, y'-, and z'-coordinate system is established with the
use of three points. Points 1 and 2 are the ends of the element; the x'-axis is along the lin
from point 1 to point 2. just as in the case of two-dimensional frames. Point 3 is any e/~
erence point not lying along the line joining points 1 and 2. The y’-axis is to lie in the plane
defined by points 1,2, and 3. This is shown in Fig. 8.12. The z’-axis is then automatical-
ly defined from the fact that x', ', and z' form a right-handed system. We note that ¥
and z’ are the principal axes of the cross section, with 1, and 1, the principal moments
of inertia. The cross-sectional properties are specified by four parameters: area A and
moments of inertia Is, I, and J. The product GJ is the torsional stiffness, wher®
G = shear modulus. For circular or tubular cross sections, J is the polar moment of in-
ertia. For other cross-sectional shapes, such as an I-section, the torsional stiffness is given
in strength of materials texts.

_idd
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Section 8.8

Flane formed
by1,2,3

I —
L
N\.

1,2

Endview

9 =[a" 9" 99495 96" 97, 95" 9o"- 910" 911 ‘?12']T

© e mmmem e

translations
at node 1
along x',v', z

rotations
at node 2

translations
at node 2

rotations
at node 1

r

q= (4. 930 - qn]T = displacement vector
in global (x, v, 7) system

FIGURE 8.12 Three-dimensional frame element in local and global coordinate systems.

The (12 X 12) element stiffness matrix k' in the local coordinate system is obtainted
by a straightforward generalization of Eq. 8.49 as

J

AS 0 0 0O 0 O -AS 0 0 0 0 0
a. 0 0 0 bs 0 —ar O 0 O b
a4y 0 -by 0O O 0 -a 0 ~bs O

S 0 0 0 0o 0 -TS O 0

¢, 0 0 0 K 0 d, 0

e, 0 —b, 0O 0 0 d

- AS © 0 0 0 0 (8.56)

a. 0 0 0 -5

.0 by O

TS 00

Symmetric ¢ 0
e |
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where AS = EA/L, I, = length of the element, TS = GJ/l., as = 12EL/E,
by = 6EL/I, ¢, = 4ELfl,, dy = 2EL/l. ay = 12E1,/13, and so on. The global-local
transformation matrix is given by

q' = Lqg (8.57)
The (12 X 12) transformation matrix L is defined from a (3 X 3)A matrix as
A 0
Ak
L= N (8.58)
0 A
The A is a matrix of direction cosines;
il ml ﬂl
h = !2 mz n2 (8‘59)
L ms n,

Here, I, m,, and n, are the cosines of the angles between the x'-axis and the global x-,
y-,and z-axes, respectively. Similarly,,, m,, and n,, are the cosines of the angles between
the y'-axis and the x-, y-, and z-axes, and /;, ms, and n; are associated with the z’-axis.
These direction cosines and hence the A matrix are obtainable from the coordinates of
the points 1,2, and 3 as follows. We have

fl

Xy — X - -
I 2 1 m1=J’2 byl _ LT

I I e
[ = '\/(xz —x )P+t {p—-y)P+ (z, — 2,)°

Now,let Vo = [}, m; n,])" denote the unit vector along the x'-axis. Also, let

V,, = [xai" X BTy Lz zl:|
13 I!13 I”

where /; = distance between points 1 and 3. The unit vector along the 7 -axis i8
now given by

Vo=(l m n]' = Yo X Vi
Ve X V)
The cross product of any two vectors is given by the determinant
i ‘i k u}'pz - v
uXv=|u w, | =|vu, — u._rp:
Vo Ve Ve Wy — Vi,

Finalty, we have the direction cosines of the y’-axis given by
Vo=[L m nm]" =V, xV,

These calculations to define the L matrix are coded in program FRAME3D. The elernent
stiffness matrix in global coordinates is



1

Section 8.9 Some Comments 257

k = L'K'L (8.60)

where k’ has been defined in Eq. 8.56.
If a distributed load with components w,s and w_ (units of force/unit length) is
applied on the element, then the equivalent point loads at the ends of the member are

Example 8.3

8.9 SOME COMMENTS

element analysis.

2

Figure E8.3 shows a three-dimensional frame subjected to various loads. Our task is to run
program FRAMEZ3D to obtain the maximum bending moments in the structure. The input
and output files are as given in the third data set, which follows the BEAM and FRAME2ZD
data sets. From the output, we obtain the maximum M,» = 3.680E + 0.5 N+ m occurring in
member 1 at node 1 {the first node) and maximum M. = —1413E + 0.5 N-m occurring
in member 3 at node 4. [ |

A=
I, =L =000 m*
J=002m

207 12 1222 120 12

wyle wyl, _wz’ig wyl wyl, wel,  wyl] _w}"lg T
r=10— 0 ' : (8.61)

These loads are transferred into global components by f = L'F. After enforcing
boundary conditions and solving the system equations KQ = F, we can compute the
member end forces from

R’ = k'q’ + fixed-end reactions (8.62)

where the fixed-end reactions are the negative of the f” vector and are only associated with
those elements having distributed loads acting on thern. The member end forces provide
the bending moments and shear forces from which the beam stresses can be determined.

001 m?

Steel y ¢ 6 (reference node)
L)
L)

60 kN
180 kN-m
{—ve s-axis)

240 &N
(0.3,0)
2 3./

OIELIO) @20
40 kN/m =1(1)
T A x
{reference 1(0.0,0)
d
node) 5(9.0.3)
FIGURE EB.3

Symmetric beams and plane and space frames have becn discussed in this chapter. In
engineering applications, there are several challenging problems._such as frames and
mechanisms with pin-jointed members, unsymmetric beams, buckling qf members dL_le
to axial loads, shear considerations, and structures with large deformations. For help in
formulating and analyzing such problems, the reader may refer to some la(.jva nced pub
lications in mechanics of solids, structural analysis. elasticity and plasticity, and finite

_J

-
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Input Data File

<< Baam Analysia >>

EXAMFLE 8.1

NN NE NM NDIM NEN NDN
a2 11 2 2

ND NL HNMPC
4 4 0
Node¥ Coordinates
1 o
2 1000
3 2000
Elem$# N1 N2 Mat¥ Mom_Inertia
1 1 2 1 4eh
2 2 3 1 4a6
DOF4 Displacemant
1 it
2 0
3 0
5 0
DOF# Load
3 -6000
4 -leb
5 -6000
6 leb
MATH E
1 200000

Multi-point Constraints Bl1*Qi+B2*Qf=B3

Progran Baam - CHANDRUPATLA & BELEGUNDU

Cutput
EXAMPLE B.1
NCDE% Displ. Rotation(radians)
1 2.0089E-11 6.6961E-09
2 -1.2723B-10 -2.6786E~-04
3 ~B.0357E~11 4.4643E-04
DOF# Reaction
1 =1.2B57E+03
2 -4.2B55E+05H
3 B8.1428E+03
5 S.142%E+(03

<<2-D Frama Analysis >>
EXAMMPLE 8.2

NN NE NM HNDIM NEN NDH
4 31 2 2 3
ND NL NMPC

& 1 o
Node# X Y

1 o 9é

2 144 96

3 1) 0

4 144 0

- )
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czontinued
ELEM# N1 N2 MAT# Area Inertia Distr load
1 2 1 1 6.8 65 41.6667
2 3 i 1 6.8 65 0.
3 4 2 1l 6.8 65 G.
DOF¥ Displacement
7 o
a 0
] o]
10 4]
11 0
12 0
DOF4 Load
1 3000
MATH E
1 A0ed

Bl i B2 j B3 (Multi-point constr. Bl*Qi+B2+*Qj=B3)

Cutput
EXAMPLE 8.2

Member End-Forces
Member# 1
2.3342E+03 -7.9884E+02 -3,9255E+04
-2.3342E+03 7.9884E+02 -7.57TBE+04
Member$ 2
2.2012E+03 6.6500E+02 6.0139E+04
~2.2012E+03 -6.65B0E+02 3.777BE+03
Memberd 3
3.79BBE+03 2,3342E+03 1,1ZB3E+05
-3.7988E+03 -2.3342E+03 1.1125E+0%S
DOF% Reaction

7 -6.6580E+02

B 2.2012E+03

9 6.0139E+04

10 -2.3342E+03

11 3.7988E+03

12 1.1283E+05

Progran Frame2?D - CHANDRUPATLA & BELEGUNDU

NODE# X=-Disgpl Y=-Displ Z-Rotation
1 9.i770E-02 -1.0358E-03 -1.3874E-G3
2 9.0122E-02 -1.7877E-03 -3.8835E-0S
3 4.9167E-10 ~1.62Z55E-09 -4.4410E-08
4 1.7237E-09% -2.8053E-09 -8.3320E-0B

<<3-D Frame Analysis >3

EXAMPLE 8.3

NN NE MM NDIM NEN NDN NNREF
5 4 1 3 2 6 2

ND NL NMPC

12 3 0

Node# X Y F
1 G 0 0
2 0 3 0

| 3 3 3 0

BN = = TN

P g

I (R

e T e gy T AT T - -

T
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continued
4 6 3
5 9 0 3
[ 6 6 0
7 -3 0 0
Elem$ N1 N2 Ref Pt Mat¥ RArea Iy Iz J UDLy* UDLz'
1 102 T 1 .01 1E-3 iE-3 2E-3  =40000. O.
b 2 3 6 1 .01 1E-3 1E-3 2E-3 0. 0.
3 3 4 [ 1 .01 1E-3 1E-3 28-3 0. 0.
4 4 5 6 1 .01 1E-3 1E-3 2E-3 0. 0.
DOF# Displacement
1 Q
2 0
3 0
4 Q
L) 0
[ 0
25 0
26 0
27 0
28 Q
29 0
ag 0
DOF$  Load
15 240000
20 -60000
24 -180000
MAT# Propl{E} PropZ(G&)
1 200E9 BOES
BlL i B2 3 (Multi-point constr, BL*Qi+B2+Qj=B3) ]
Progran Frama3lD - CHANDRUPATILA & BELEGUNDU
Output
EXAMPLE 8,3
Node#) X-Displ ¥Y-Displ Z-Displ X=-Rot Y=-Rot Z=-Rot
1) 3.127E-09 1.972E-09 9.900E-09 2.760E-08 =7.145E-09 5.348E-09
2 ) -1.868E-03 3,944E-05 5.310E-03 2.550E-03 -1,796E-03 1.198E-03
3 ) -1.985E-03 3.141E-03 9.B42E-03 2.025E-03 ~2.452E-04 7.624E-04
4 3} -2.103E-03 3.431E-03 6.241E-03 1.500E-03 1.B36E-03 =7.6R2E-04
5 ) 5.B73E-09 -6.472E-09 8.100E~0% 6.98%E-09% B8,429B-09 -1.101E-0%9
Member End-Forces
Menber$é 1
—% . 620E+04 =1.830E+D4 -~1.320E+05 9.526E+04 3.6B0E+05 -1.013E+05
2 _629F+0d 1.B3DE+04 1.320E+405 -9.526E+04 2.BO0E+Q4 4.641E+404
Member¥ 2
7.930E+04 -2.629E+04 -1.320E+05 2.BOOE+04 9.526E+04 -1.641E+04
-7.830E+04 2.629E+04 1,320E+05 -2.800E+04 3.007E405 -6.247E+0D4
Member$ 3
7.B30E+04 -2.8629E+04 1.0B0E+Q5 2.800E+04 -3.007E+05 6.247E+04
~7.830E+04 2.629E+04 -1.080E+053 -2.800E+04 =-2.328E+04 -1.413E+05
Memberf 4
1.574E+05 5.600E+03 2.100E+04 -1.959E+04 1.465E+04 =4.713E+04
-1.574E+05 ~5.600E+03 -2.100E+04 1.959E+04 -1.23BE+05 7.623E+04
__._,_.—-—"'
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PROBLEMS

8.1. Find the deflection at the load and the slopes at the ends for the steel shaft shown in .
Fig. P8.1. Consider the shaft to be simply supported at bearings 4 and B. e

L=125x10*mm* 3000N
\ L =4 x 10* mm*

AN ;L ' NB

! 150 mm 75 mm |‘ 125mm‘>‘ . !

E=200GPa

e
PR

FIGURE P8.1 Problems 8.1 and 8.4.

i
R

8.2. A three-span beam is shown in Fig. P8.2. Determine the deflection curve of the beam and
evaluate the reactions at the supports.

e—ea -

5000 1b

TP SETRITIN

LT T R Y P

1204 Ib/fi
l u{r\ T Yy "E =!i!
A - . i
S .
73 % Z ‘ :
}75 ft 51t ri~ 8 ft 6 ft P
E =130 x 10° psi s
I = 305 in* -

FIGURE P8.2

8.3. A reinforced concrete slab floor is shown in Fig. P8.3. Using a unit width of the slab.in the
z direction, determine the deflection curve of the neutral surface under its own weight.

Concrete
slab

DA

For concrete use £ = 4.5 X 10° psi
Weight per cubic foot = 145 [b

FIGURE P8.3

I
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8.4. In the shaft shown in Fig. P8.1, determine the deflection at the loads and the slopes at the
ends if the bearings at A and B have radial stiffnesses of 20 and 12 kN/mim, respectively.

8.5. Figure P8.5 shows a beam AD pinned at A and welded at B and C to long and slender
rods BE and CF. A load of 3000 Ib is applied at D as shown. Model the beam AD using
beam elements and determine deflections at B, C, and D and stresses in rods BE and CF.

| Vi

| F

i

|

| v

| E | | Material: steel Length 201in.
Area 0.08 in?

Length 12 in.\\A / \

Material: steel

. ., . I=064in?
© -

- 7 I 4in.—fe—din ! 6in. 1
3000 1b

E for steel = 30 x 10° psi
FIGURE P3.5

8.6. Figure P8.6 shows a cantilever beam with three rectangular openings. Find the deflections
for the beam shown and compare the deflections with a beam without openings.

10000 b

| 2
|

3
6 tn 12in.  12in.
| 3 in.

N

FENRMTRMNNNNR

6 in. 12 in. 6&1‘1: 12 in. 6in. 12in. |hin
i T

E=3ﬂ>(1[)“'psi

HGURE P8.6

8.7. A simplified section of a machine tool spindle is shown in Fig. P8,7, Bearing B has a radial
stiffness of 60 N/um and a rotational stiffness {against momén}) of 8 % 10° N.m/rad-
Bearing € has a radial stiffness of 20 N/um and its rotational stiffness can be neglected'
For a load of 1000 N, as shown. determine the deflection and slope at 4. Also, give the de-
flected shape of the spindle center line (1 pm = 107° m). ' |
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50 mm diam
80 mm diam

42 mm diam 50 mm diam 60 mm diam
P=1KON

30 mm diam

L C Bm ! r
V2 ,f‘/

o A e A ////% i

X J.
15 mm

Machine tool spindle

FIGURE P&.7

8.8. Determine the deflection at the center of BC for the frame shown in Fig. P8.8, using pro-
gramm FRAMEZ2D. Also determine the reactions at A and D. B

1200 Ib/f
BY Y YYYYYY YO

1=305in? \ =305 in?
A=15\1:: I=125in’ A= 15in:

A=75in 20 ft

f . E—
A 2
101t 20 ft =10 n«‘
FIGURE P8.8

8.9. Figure P8.9 shows a hollow square section with two loading conditions. Using a 1-in. width
perpendicular to the section, determine the deflection at the load for each of the two cases.

RN

1000 b |
—_— 12 in.

RN
RN

PN S AT,

i- 12 in.

E =30 x 10% psi

FIGURE P8.9

o
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8.10. Figure P8.10 shows a five-member steel frame subjected to loads at the free end. The cross

section of each member is a tube of wall thickness ¢ = 1 cm and mean radius R = 6cm.

Determine the following:
(a) the displacement of node 3 and
{b) the maximum axial compressive stress in a member.

1

..H

z
g
SRR

7
g o000 N
T
15 ‘
80 cm *i‘ 45 cm
(Steel)
(a)
3 W
R=6cm
t=1cm
t
)

FIGURE P8.10

8.11. Dimensions of a common paper staple are shown in Fig. P8.11. While the staple is pene-

trating into the paper, a force of about 120 N is applied. Find the deformed shape for the

following cases:

{a) load uni_forrnly distributed on the horizontal member and pinned condition at A at entry:
{b) load asin (a) with fixed conditicn at A after some penetration;

(¢) load divided into two point loads, with A pinned; and
(d) load asin {c) with A fixed.

1273 mm

\ ]

0.5 mm radius’ 1

! 6.31 mm
—{ |+—0.502 nm diam

A 1

e 12.63} mm—————

4,

FIGURE PB.11

Total load
120N
A
Model 1
60N
A
Model 2
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8.12. A commonly used street light arrangement is shown in Fig. P8.12. Assuming fixed condi-
tion at A, compare the deformed shapes for the following two cases:
(a) without the rod BC (that is, only member ACD supperts the light) and
{b) with tie rod BC.

Electric tight-
fixture weight

E = 30 X 10° psi B

C D

%-in. diam rod

A{

e
AT

Fe——

=3

1-in. diam tube, L-in.
wall thickness |

FIGURE P8.12

8.13. Figure P8.13a shows a cab of a van. A simplified finite element frame model is shown in
Fig. P8.13b. The model consists of 28 nodes. x—z is a plane of symmetry; thus, nodes 1" ~13'
have the same x- and z-coordinates as nodes 1-13, with y-coordinates reversed in sign. Each
beam element is made of steel with A = 0.2in2. /,» = I = 0.003in.", and / = 0.006 in.”
The loading corresponds to a frontal impact test based on Swedish standards and consists
of a load at node 1 (only) with components F, = —3194.01b and F, = ~856.01b. Treat
nodes 11,117, 12, and 12’ as fixed (boundary conditions). Nodat coordinates in inches are

as follows:

Node X ¥ by Node x v Z
1 58.0 38.0 0 9 0 38.0 75.0
2 48.0 380 0 10 58.0 17.0 420
3 31.0 38.0 0 11 580 17.0 0
4 7.0 380 220 12 0 17.0 a
5 0 38.0 240 13 0 17.0 4.0
6 58.0 380 42,0 14 180 0 720
7 48.0 38.0 42.0 15 0 0 375
8 36.0 380 700

{¥oie: Number the nodes 1o keep bandwidth to a minimurm.)

Determine the deflections at nodes 1,2.6.7,10.and 11 and the location and magnitude of
the maximum bending moments using program FRAMES3D.

—
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(&)

FIGURE P8.13 (a) Van Frame. (b) Frame finite element model.

8.14. Consider the steel frame in Figure P8.14, which is subjected to a wind load and roof load
as shown. Determine the bending moments in the structure (maximum M, and M).

0001 =F

S 100 Ib/sq.ft

Y4

L J

'
)

— — ]

{
!

e o ff—
o = e |
et epf— af—

e

]
] e

e
B R e

h
L

+ L
30001b = P Y g,
ﬁ VILls 77,
15" ;
.___.-—/* 15
777, 7 /
- 10 >
Artﬁa I_v. I, I Y
(i3 (%) (nh (inY '.
Columns | 60 375 sip 024 I
Beams 30 1.26 17.0 0.08

FIGURE P8.14
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1 e oie o e oir o ol o o o e e ke ol o o U o e ok e e e e e o e e e o e e e e e ok
. FROGRAM BEAM *
' Beam Bending Analysis *
'* T.R.Chandrupatla and A.D.Belegundu *

1o e vk v ke e e e de o ol e e e ok ok ol o g e ok e W e e b ey i e e e

Private Sub cmdStart Click(}
Call InputData
Call Bandwidth
Call Stiffness
Call ModifyForBC
Call BandsSolver
Call ReactionCalc
Call output
cmdView. Enabled = True
cmdStart.Enabled = False
End Sub

=

= == ELEMENT STIFFNESS AND ASSEMBLY ======
Frivate Sub Stiffness()
ReDim 5 (NQ, NBW)
femmmm Glabal Stiffness Matrix —----
For N = 1 Tc NE
picBox.Print "Forming Stiffness Matrix of Element "; N
N1 = NOC(N, 1)
N2 = NOC{N, 2]
M = MAT{N)
EL = Abs (X(N1}) - X (N2}
EIL = PM{M, 1) * SMI{N} / EL " 3

e Elamant Stiffness Matrix ———
SEfl, 1) = 12 * EIL
SE{l, 2) = EIL * & * EL
S5E{1l, 3) = ~-12 * EIL
SE{l, 4} = EIL * & * EL
SE{2, 1) = SE(l, 2]
S3E{2, 2) = EIL * 4 * EL * EL
SE{2, 3) = -EIL * 6 * EL
SE{2, 4} = EIL * 2 * EL * EL
SE(3, 11 = SE(l, 3}
3E(3, 2) = 3E{(2, 3)
58(3, 3) = EIL * 12
SE(3, 4) = -EIL *~ € * EL
sE(4, 1} = sSE({l, 4}
SE(4, 2) = S5E(Z2, 4}
SE(4, 3} = BE{3, 4}
SE(4, 4) = EIL * 4 * EL * EL

picBox.Print ".... Placing in Global Locaticns"™

Call PlacaG)obal (N}

Next N
End Sub

L = ===

3
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1w hok ks w mzn e e e W
il 2-D FRAME ANALYSIS BY FEM -
*+ T,R.Chandrupatla and A.D.Belequndu *
1 t*i**i***i*i*iii*****l‘*i’***ti*iit***ti*ii
Ve = MATIN PROGRAM ========
Private Sub cmdstart_Click()

Call InputData

Call Bandwidth

Call Stiffness

Call AddLoads

Call ModifyForBC

Call BandSolver

Call EndActions

Call Reactiontalc

Call Qutput

cmdview.Enabled = True

cmdStart.Enabled = False
End Sub

& ==

‘=== = ELEMENT STIFFNESS AND ASSEMBLY ==

Private Sub Stiffness(}
ReDim 3(NQ, NBW)
f————- Global Stiffness Matrix -----
For N = 1 To NE
picBox.Print "Forming Stiffness Matrix of Element "; N

ISTF = 2
Call Elstif (N)
picBox.Print ".... Placing in Global Locations"
Call PlaceGlobal (W)
Hext N
End Sub
ve=—=m=r======== ELEMENT STIFFNESS =====s——c===x

Private Sub Elstif{N]
e Elament Stiffness Matrix ---—--
Il = NOCIN, 1): IZ = NOCI{N, 2): M = MAT(N)

= ¥X{Ir2, 1) - X{(il, 1}
¥21 = %{12, 2) - X{Il, 2}
! EL = Sgr(X2l * X21 + ¥21 * Y21}
: EAL = PM{M, 1} * ARININ, 1) / EL
; EIZL = PM(M, 1} * ARIN{N, 2} / EL
For I = 1 To &

for J = 1 To &

SEP(I, JI = 0!

Next J

Next I

e

[S]

b
|
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continued

SEP{1, 1} EAL: SEP(1l, 4} = -EAL: S5EP(4, 4) = EAL
SEP(2, 2) = 12 * EIZL / EL *~ 2: SEP{2, 3} = 6 * EIZL / EL
S5ER{2, 5} = -3EP(2, 2): SEP(2, 6) = SEP{2, 3}

SEP(3, 3} = 4 * EIZL: SEF({3, 5) = -¢ * EIZL / EL: SEP({3, 6} = 2 * EIZL
SEP(5, 5t = 12 * EIZL / EL ~ 2: SEP({5, 6} = -6 * EIZL / EL
SEP(6, 6} = 4 * EIZL

For I =1 To &
for 2 =1 To &
SER{J, I) = SEPI(I, J)
Next J: Next I
e CONVERT ELEMENT STIFFNESS MATRIX TO GICQOHAL SYSTEM
DCos(1, 1} ¥21 / EL: DCOs{l, 2} = v21 / EL: DCOS{l, 3} =0
DCOS (2, 1} -DCO3{1l, 2): DCOS(2, 2} = DCOS(1l, 1}: DCC3(2, 3) = 0
DCosi3, 1) = 0: DCOS(3, 21 = 0: DCOs(3, 3) =1
For 1 =1 To 6
For J=1To &
ALAMBDA(IL, J} = 0!
I
2

Next J: Next
For K = 1 To
IK =3 * (K- 1)
For I = 1 To 3
For J =1 To 3
ALAMEDA{I + IK, J + IK] = DCOS{I, J|
Next J: Next I

Next K
If ISTF = 1 Then Exit Sub
For I =1 To &
For I = 1 To 6
S5E{I, J) =10
For K =1 Te €
SE{I, J) = SE(I, J) + SEP{I, K} * ALAMBDA(K, J}
Naxt K

Mext J: Next I

For I = 1 To 6; For J =1 To 6: SEP{I, J) = SE(I, J): Next J: Next I
For I = 1 Te 61 For J =1 To 6: SE(I, J) = Q
For K =1 To 6
SE{I, J) = SE(I, J} + ALAMMBDA(K, I) * SEF(K, J)
Next K
Hext J: Next I
End Sub
‘—————-== LOADS DUE TO UNIFORMLY DISTRIBUTED LOAD ========

Private Sub AddLeads!)
oo Loads duae to uniformly distributed load on alanent
For N = 1 To NE !
If Abhs (UDL(N}} > O Then
IsTE = 1
Call Elstif (N}
It = NOC{N, 1): IZ2 = NQOCi{K, 2)
%21 = X(I2, 1) - X{I1l, 1}: ¥21 = X1z, 2) - X(Il, &}
EL = Sqr(x21 * X21 + Y21 * ¥21)
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coptinued
ED{1} = O: ED{4} = ©
ED{2} = UDL{N) * EL / 2: ED(5) = ED(2)
ED{3) = UDL(N} * EL ~ 2 / 12: EDB(6) = -ED(3)
For I =1Tao &
EDP(I} = 0

For K= 1 To ©
EDP(I) = EDP(I) + ALAMBDA{K, I} * ED{EK)
Hext K
Next I
For I =1 To 3
F{3 * I1 - 3 + I}
Fl(3 + I2 - 3 + I}

Fia *+ I1 - 3 + I} + EDP(I)

Fi3 * I2 - 3 + I) + EDE{I + 3}

Hext I
End Tf
Next N
End Sub
‘e —mm—e—======= MEMBER END FQRCES =s===========

Private Sub EndActions{]
ReDim EF{NE, &)
Vo calonlating Mamber End-Forces
For N = 1 Te NE
ISTF = 1
Call Elstif (N}
I1 = NOC(N, 1}: I2 = NOCIN, 2}
For I =1 To 3

Next I
For 1 = 1 To &: EDP(I} = 0
For K=1 To b
EDP(I] = EDPI(I) + ALAMBDA(I, K) * ED(K}
Next K: Next I
= END FORCES DUE TO DISTRIBUTID LOADS
If Abs (UDL(N}) > 0 Then
ED(1} = 0: ED{4}) = 0: ED{2) = -UDL(N) * EL / 2:
ED{3} = -UDL(N) * EL ~ 2 / 12: ED(6) = -ED({3}
Else
For K
End If
For I =1 To & : EF(N, I
For K= 1 To &
EF(N, I} = EF{N, I} + SEP(I, K\ * EDE (K}
Next K: Next T

1 To 6: EDIK} = 0: Next K

ED{1}

ED{5}

ED(I) = F{3 * I} - 3 + I): ED(I + 2) = F(3 * I2 - 2 + I}

ED{2)

Next N
End Sub
[T L L EL SRS PROGARAM FRAMEAD e ek e
' 3-D FRAME ANALYSIS BY FEM >

'+ T,R.Chandrupatla and A.D.Belegundu ~

r+i***+++****i*****ii*******ii&&i*********
\zomm======== MAIN PROGRAM s==cs==========
private Sub cmdStart_Click{)

-y
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Call InputData
Call Bandwidth

Call Stiffness

Call AddLoads

Call ModifyForBC

Call BandSolver

Call EndActions

Call ReactionCalc

Call Qutput

cmdView. Enabled = True

cmdStart.Enabled = False
End Sub

ELEMENT STIFFNESS AND ASSEMBLY
Private 5ub Stiffness()
ReDim 5 (NQ, NBW)
e Global Stiffness Hatxix —-——-
For N =1 To NE
picBox.Print "Forming Stiffness Matrix of Element "; N
I5TF = 2
Call Elstif (N)
picBox.Print ".... Placing in Global Locations®
Call FlaceGlebal (N)
Hext N
End Sub

b -

r== ELEMENT STIFFNESS ===

Private Sub Elstif(N)
te———- Element Stiffness Matrix -----

I1 = NOC (N, 1}: I2 = NOC(N, 2}: 13 = NOC(N, 3): M = MAT(N]

X21 = ¥X(I2, 1y - X(Il1, 1)
Y21 = X(I12, 2} - X(I1, 2)
221 = X{I2, 3) - X{Il, 3)

EL = Sqr(X21 * X21 + Y21 * ¥21 + 221 * 221)
EAL = PM(M, 1} * ARIN(N, 1) / EL
BIYL = PM{M, 1) * ARIN(N, 2) / EL: EIZL = BEM(M, 1) * ARINI[N, 3} / EL
GJL = PFM(M, 2) * ARIN(N, 4) / EL
For I =1 To 12
For J = 1 To 12
SEP{I, I} = 0!
Next J: Next I
SEP{1, 1} = EAL: SEP(1, 7) = -EAL: SEP{7, 7} = EAL
SEP{4, 4) = GJL: SEP{4, 10) = -GJL: SEP(10, 10} = &JL
SEP(2, 2] = 12 * EIZL / EL ~ 2: SEP{2, 6) = 6 * EI3L / EL

SEP2, B} = ~SEP{2, 2): SEP{2, 1l2) = SEP{2, 6}

SEP({3, 3} = 12 * EIYL / EL =~ 2: SEP{3, £y = -6 * EIYL / EL

SEP(3, 9} = -SEP{3, 3): SEP(3, 11} = SEP(3, 5]

SEP{S, 5} = 4 * EIYL: SEP(5, %} = 6 * EIYL / EL: SEP{5, 1ll1) = 2 * EIYL

"
i
i

L —————— e
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coptihued
SEPFt{G, 6} = 4 * BEIZL: SEP(6, 8) = -6 * EIZL / EL: SEP(6, 12) = 2 * EIZL
SEP(8, 8y = 12 * EIZL / EL * 2: SEF(B, 12) = -6 * EIZL / EL
SEP(9, 9y = 12 * EIYL / EL ~ 2: SEP(9, 11} = 6 * EIYL / EL

SEP{11, 11) = 4 * EIYL: S5EP(l2, 12) = 4 * EIZL
For I =1 To 12
For J =1 To 12
SEP(J, 1} = SEF(I, I}
Next J: Next I
'--- CONVERT ELEMENT STIFFNESS MATRIX TO GLOBAL SYSTEM
pces(l, 1) = X221 / EL: DCOS{l, 2) = Y21 / EL: DCOS(1, 3) = 221 / EL

|
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EIP1 = X{I3, 1) - X(I1, 1): EIP2 = X(I3, 2} - X(I1, 2)
|

|

EIP3 = X{I3, 3) - X(I1, 3)
€l = DCOS(l, 2) * EIP3 - DCOS(1, 3) * EIP2
€2 = DCOS{1l, 3) * EIPl - DCOS(l, 1) * EIP3
C3 = DCOS{l, 1) * EIP2 - DCOS(1, 2) * EIP1
CC = 5qr(Cl * €1 + C2 * C2 + C3 * C3)
| DCOS(3, 1) = Cl / CC: DCOS(3, 2) = C2 / CC: DCOS{3, 3} = C3 / CC
| DCOS {2, 1) = DCOS(3, 2} * DCOS(1, 3) - DCOS(l, Z) * DCOS{3, 3)
' DCOS (2, 2) = DCOS{1l, 1} * DCOS(3, 3) - DCOS{3, 1) * DCOS(Ll, 3}
DCOS(2, 3) = DCos(3, 1) * DCOs(l, 2) - DCOS(1, 1) * DCOS(3, 2}

For I =1 To 12: For J =1 To 12
ALAMBDA (I, J) = 0!

Next J: Next T

For K =1 To &

p— IK = 3 * (K - 1)

For I =1 To 3

For J =1 Toe 3
ALAMBDA(I + IK, J + IK) = DCOS(I, J)

Next J: Next I

Next K
If ISTF = 1 Then Exit Sub
For I =1 To 12
For J =1 Te 12
SE(I, J) = 0
For K = 1 To 12
SE{I, J} = SBE(I, J) + SEF(I, K) * ALAMBDA(X, J)
Next K

Next J: Next I

For I =1 To 12: For T = 1 To 12: SEP{I, J) = SE{I, J}: Next J: Next I
For I = 1 To 12
For J =1 To 12

5E{I, J) = D
Fox K =1 To 12
! SE(I, J) = SE(I, J) + ALAMBDA(K, 1) * SEP{K, J)
Next K
Next J: Next I
End Sub
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Private Sub AddLoads ()
- Ioads due to nnifermly distributed load cn elemant
For N = 1 To NE
1f Abs(UDL(N, 1}) » © Or Abs{UDL(N, 2}} > 0 Then
ISTF = 1
Call Elstif (N}
Il = NOC(N, 1j: I2 = NOC(N, 2}

X21 = X(I2, 1} - X{(I1, 1)
Y21 = X{12, 2} - X{(I1, 2)
z21 = X{I2, 3) = X(Il, 3)

EL = Sgr(¥21 * X21 + Y21 * Y2l + Z21 * 221}

ED(l} = 0: ED{4) = 0: ED(7} = 0: ED{10} = 0
ED(2) = UDL{N, 1) * EL / 2: EDI(8) = ED(2}
ED{%) = UDL{(N, 1) = EL ™ 2 / 12: ED(12} = -ED{6}
ED(3) = UDL{N, 2) * EL / 2: ED(9) = ED(3)
ED({5}) = =UDL(N, 2) * EL * Z / 12: ED(11l) = -ED(5})
For I = 1 To 12

EDF(I) = 0

For K =1 To 12

EDF{I}) = EDP{I) + ALAMBDA (K, I} * EDIK)

Next K

Next I

For I =1 To 6
Fi{e *+ I1 - &6 + I}
F{6 + 12 - 6 + I}

Fi6 * I1 - 6 + I) + EDRI(I}
F{é6 * I2 — 6 + I} + EDPI{I + 6}

Next I
End If
Next N
End Sub
A= oo MEMBER END FORCES =

Private 5ub Endhctions(}
ReDim EF{NE, 12}
P Calculating Member End-Forces
For ¥ = 1 To NE
ISTF = 1
Call Elstif (N}
11 = NOG(N, 1): I2 = NOC(N, 2]
tor I =1 To &

EDIT} = F(6 * I1 - 6 + T): ED(I + 6} = F{6 * I2 - 6 + I)
Next I
For I =1 To 12

EDE{I} = 0

For K= 1 To 12
EDE(I) = EDP(I) + BRLAMEDA (I, K} * EDI{K}

Next X
Next I
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continued

'-—~ END FORCES DUE TO DISTRIBUTED LOADS
If Abs{UDL{N, 1)) > 0 Or Abs(UDLIN, 2)) > 0 Then

ED(1l) = 0: ED(4) = 0: ED(T} = 0: ED(1Q) = 0O

ED{2) = ~UDL{N, 1) * EL / 2: ED{8} = ED(2!}

ED{6} = ~UDL{N, 1) * EL ~ 2 / 12:; ED{12} = -ED{6)

ED{2) = -UDL(N, 2) * EL / 2: ED(9) = ED{3}

ED(5) = UDL[N, 2} * EL "~ 2 J 12: BD(1l) = -ED{5)
Else

For K = 1 To 12: ED{K} = O: Next K
End If

For I = 1 To 12
EF{N, I) = ED{TI}
For K =1 To 12

EF(N, I) = EF{N, I) + SEP{I, K} * EDP(K)

Next K

Next 1

Next N
End Sub
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