Wl syS olSuduils
University of Kurdistan
Ul sygS, 595l

Department of Computer Engineering
University of Kurdistan

Neural Networks (Graduate level)
Radial Basis Function Networks

By: Dr. Alireza Abdollahpouri

RBF networks

= Radial basis function network (RBFN) represent a
special category of the feedforward neural
networks architecture.

= The basic RBFN structure consists of an input
layer, a single hidden layer with radial activation
function and an output layer.

X/ University of Kurdistan
"Sity of ¥ =

RBF networks

A complex pattern-classification problem cast in a high-
dimensional space non-linearly is more likely to be linearly
separable than in a low-dimensional space

« Implementing this procedure using a network architecture, yields the
RBF networks, if the nonlinear mapping functions are radial basis
functions.

« Radial Basis Functions:
— Radial: Symmetric around its center

— Basis Functions: A set of functions whose linear combination can
generate an arbitrary function in a given function space.

Z/University of Kurdistan

RBF networks

A complex pattern-classification problem cast in a high-
dimensional space non-linearly is more likely to be linearly
separable than in a low-dimensional space

Data projected to R~2 (nonseparable)

1.5
Data in R™3 (separable)
o ° L)
1.0+ % °g Se®
° o: ®e °) M
oo s . 14 1
L
e
o 8 . 5 .
e i € o
05} * * 1 12 .n oo 2 o0 e
: ° A o o L3 .
A ‘ ° j) o (]
- gy ol . 10 £ Ty P e 3
4 L4 N a’oﬂ ° % & '-;-:
T e A, .t 5 08 L e
© 00F ° . ““ a n. g 5 .
> ° o A oo 0.6 7
L% ’
L]
L4 4 ® . 0.4
—0.5} ee 4 4 ° 8 s 4 s
®e &, 0.2 1 ‘4 - “Aff“n
o ° ° ° a Aa—p—p=d
e, ° °
° ° o0 -1.0
~1.0}F . *% 00e® ®° ¢ d 1 -0.3 0.0 0.5 -10
e . e e Yiap *° 10 o5 00 ©
e/ . 1.0 ' \
¥ Labe
R 10 05 0.0 05 10 15
X Label

goss inessying

University of Kurdistan

RBF networks

Definition :

Radial basis function (RBF) networks are a special class of

single hidden-layer feed forward neural
application to problems of supervised learning.

The model ‘7 ° is expressed as a linear
combination of a set of ¢/’ fixed functions
often called basis functions by analogy with
the concept of a vector being composed of a
linear combination of basis vectors.

networks for

Z/University of Kurdistan

RBFN: A 3-layer network

More likely to be linearly separated

@.(X) :non linear function

Increased dimension:
Nn—>m

X7 University of Kurdistan

RBFN: A 3-layer network

= Input layer

- Source nodes that connect the network to its
environment

= Hidden layer

- Hidden units provide a set of basis function
- High dimensionality

= Output layer

- Linear combination of hidden functions

X/ University of Kurdistan
"Sity of V¢ .

RBF networks

= Unlike most FF neural networks, the connection
weights between the input layer and the neuron units
of the hidden layer for an RBFN are all equal to unity.

= Each hidden neuron calculates a norm that represents
the distance between the input to the network and the
so-called position of the neuron (center). This is
inserted into a radial activation function which
calculates and outputs the activation of the neuron.

X/ University of Kurdistan 8
"Sity of ¥ =

RBF parameters

A function is radial basis (RBF) if its output depends on the distance of the input
from a given stored vector (a nonincreasing function).

- Radial activation function
‘x

ol <)

—

Radial activation function

2
A typical radial function is the Gaussian ¢(x,c)=exp —%[%j

which in the case of a scalar input is

Gaussian in 1D Gaussian in 2D

h(r)

10

RBN First idea (Function approximation)

Vi Unknown Function
to Approximate

Training

7 Data

> X

11

RBN First idea (Function approximation)

)| Unknown Function
to Approximate

Training
' o’ Data

"

Basis Functions (Kernels)

RBN First idea (Function approximation)

V=19 =2 W ()

N Function
y Learned

—

Basis Functions (Kernels)

— =\ > X

13

RBN First idea (Function approximation)

=109 = Y W (9

Nontraining

. Sample Fynction
Learned

=\ » X

"

Basis Functions (Kernels)

2

f(x)

RBN First idea (Function approximation)

e | (¥

RBF neurons

fx)

Qutput neurons .

15

XOR Problem

= Input space: X;
(0,1)T (1,1)
(0,0)' T ™
0 1
= QOutput space: - o—Y

= Construct an RBF pattern classifier such that:

(0,0) and (1,1) are mapped to 0, class C1
(1,0) and (0,1) are mapped to 1, class C2

X7/ University of Kurdistan
TSty of WO, .

16

XOR Problem

In the feature (hidden layer) space:

pllx-th=e™
oo(I x—t, [) = t, =(L1)and t, = (0,0)

When mapped into the feature space < ¢, , ¢, > (hidden layer), C1
and C2 become /inearly separable. So a linear classifier with ¢,(x) and
@,(x) as inputs can be used to solve the XOR problem.

X7 University of Kurdistan

17

XOR Problem

X2 1 The nonlinear ¢ function transformed a nonlinearly
11 e o separable problem into a linearly separable one !!!
O+ O e
: > X4 P21
0 1
(0,0)
1 0Te
01(X) | 9:(x) 0.8+%.. Secision bound
| 0.1353 . eCision pounaary
0.3678 | 03678 || v) (41
. (071).
0.3678 | 0.3678 0.2+ @O
. © (L1
0.1353 I 0 —tt @
0 02 04 06 08 10 12

18

X2

[
»

. X1
lif || x—¢, ||x=7l

O1f || x—¢, |[> 7]

o (|| x—1,|]) :{

tl ,t2 are centers of the circles

lif || x -1, |[x=72
Oif || x—2, |>r2

o, (Il x—1, ||):{

19

%/University of Kurdistan

Learning Algorithms

= Parameters to be learnt are:
= Centers
= Spreads
= Weights

= Different learning algorithms

20

Learning method1

= Centers are chosen randomly from the training
set (can be equal to total training set)

= Spreads are chosen by normalization:

o Maximum distance between any 2 centers dax

Jnumber of centers \/mil
m
oli-tF)-e| - g ix-1 |
| e [1, ml]

X/ University of Kurdistan
"Sity of W .

Learning method1

= Weights are found by means of pseudo-inverse
method

N
Yi = Wk(”(”Xi—Xk”) = Y=0w

k=1 o)
Y1 P P - - O || Wy
Yo P P - - - Py || Wy
YN LPN1 PN - - - O W l
W = -1
=0y

Learning method1

object center Distance (x)

NN T
NN T

T

¢

W

exp(

exp(

exp(

X2

20

2

X2

20

X2
20

2

2

) x ||
) x [
) x [

> > output

Hidd. nodes = # objects

l

Exact Fitting

23

X7 University of Kurdistan

Learning method1 (XOR example)

’

»

X
(0,0)
(0,1)
(1,0)
(1,1)

O R = OX

%k:¢QVi—dezeﬂx—aﬂVi_XHF)

Y1 P11
Yo _| %z
Y3 P31
Ya] [Pa

Pr2
P22
P32
)

i3
P23
P33
D3

Pra
Dog
D3y

Das |

o kO

(-3.03]
3.42
3.42

-3.03)

Learning method1 (XOR example)

X y
(0,0) 0
(0,1) 1
(1,0) 1
(1,1) 0

4
fXpXp)= Y Wygy =X +x3 _%\/Xlzﬂxz—l)z —%J(xl—l)%xi Xy D)2+ (x, ~ 1)
k=1

4 2 2) Y
f(x1.X0) =) Wi =—3-0359e><p[—%}3.4233@@[—Xl +(’;2)]
k

o
+3.4233exp(—(x1 1; +X2J—3.0359exp(—(xl D" +(x;-1) J

2

25

Learning method?2

= Hybrid Learning Process:
» Self-organized learning stage for finding the centers
= Spreads chosen by normalization

= Supervised learning stage for finding the weights,
using LMS algorithm

Centers are obtained from unsupervised learning (clustering).

Spreads are obtained as variances of clusters, w are obtained through LMS
algorithm. Clustering (k-means) and LMS are iterative. This is the most
commonly used procedure. Typically provides good results.

26

X7/ University of Kurdistan
TSty of WO, *

RBF structure with learning method 2

= Network structure
= N input neurons
= M RBF neurons
= P output neurons

27

Learning method2 (XOR example)

X y 1
(0,0) 0 »
(0,1) 1 &
(1,0) 1] o ——0
(1,1) 0
w =11 w=[00]
e = o] = V2 = o= G =

2
R L S

J
2 2
m=ep(-[x-m) e =exp(~[x-w[") x=Dxx]

y =Wy +W, 0 +W 0,

X7 University of Kurdistan

Learning method2 (XOR example)

X
(0,0)
(0,1)
(1,0)
(1,1)

O~ o<

y;=0=w,+w,exp
Yo, =1=w,+W, exp
Yo, =1=w,+W, exp

y;=0=w,+w,exp

[0,1]-[0,0]

[1,0]-[0,0]

[1,1]-[0,0]|

Jruzenl
" |+w, exp (-

|2

2
)+w2exp(—|

0
1
1
0_

)+w2exp(—

1 1
1 0.3679
1 0.3679

1 01353

0.1353]
0.3679
0.3679

1 —

[0,0]—[0, 0]) W, exp(—||[0, 0] —[1,1]||2) —W y +W, +0.1353W
[0.1-[L11|f) —W o +0.3679W , +0.3679W ,
1,0]-[L.13)°) —W o +0.3679W , +0.3679W ,

[L1] —[1,1]||2) —W, +0.1353, 1w,

w,] [28404
w, |=| -25018
w,| |-2.5018

Wy
e
W,

29

Comparison with MLP

30

Comparison with MLP

= Both are examples of non-linear layered feed-forward
networks.

= Both are universal approximators.
= Hidden layers:

= RBF networks have one s/ing/e hidden layer.
= MLP networks may have more hidden layers.

31

Comparison with MLP

= Neuron Models:

»« The computation nodes in the hidden layer of a RBF network are
different. They serve a different purpose from those in the output
layer.

» Typically computation nodes of MLP in a hidden or output layer
share a common neuron model.

= Linearity:
= The hidden layer of RBF is non-linear, the output layer of RBF is
linear.
« Hidden and output layers of MLP are usually non-linear.

Z/University of Kurdistan

32

Comparison with MLP

s Activation functions:

= The argument of activation function of each hidden unit in a
RBF NN computes the Euclidean distance between input
vector and the center of that unit.

« The argument of the activation function of each hidden unit

in @ MLP computes the inner product of input vector and the
synaptic weight vector of that unit.

= Approximations:

= RBF NN using Gaussian functions construct local
approximations to non-linear I/O mapping.

= MLP NN construct global approximations to non-linear I/O
mapping.

Z/University of Kurdistan

33

< ;
"e,A.,.

RBF in python

)

import matplotlib.pyplot as plt
import numpy as np

def rbf(x, c, s):

return np.exp(-1 / 2*((x-c)/s) **2
100 linearly spaced numbers
X = np.linspace(-10,10,100)

)

1.4

vyl = rbf(x, 0.5, 2) 134
y2 = rbf(x, 2, 4)
y3 = rbf(x, -3, 3) =07

y= -1.4*y1 +.9%y2+ 1.3*y3 084
pit.plot(x, y1, 'g", label="RBF 1)
plt.plot(x, y2, 'b', label="RBF 2')
plt.plot(x, y3, 'r', label='RBF 3') = |
plt.plot(x, v, 'k--', label="Combir **’

plt.legend() 0.0

—— RBF1
—— RBF 2
—— RBF 3
——- Combined RBF

=z, Plt.show()

T T
-10.0 -7.5

T T
-3.0 =25

Z/University of Kurdistan

34

» Questions

