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RBF networks

 Radial basis function network (RBFN) represent a 
special category of the feedforward neural 
networks architecture.

 The basic RBFN structure consists of an input 
layer, a single hidden layer with radial activation 
function and an output layer.
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A complex pattern-classification problem cast in a high-
dimensional space non-linearly is more likely to be linearly 

separable than in a low-dimensional space
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• Implementing this procedure using a network architecture, yields the 
RBF networks, if the nonlinear mapping functions are radial basis 
functions.

• Radial Basis Functions:

– Radial: Symmetric around its center

– Basis Functions: A set of functions whose linear combination can 
generate an arbitrary function in a given function space.

RBF networks
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RBF networks

A complex pattern-classification problem cast in a high-
dimensional space non-linearly is more likely to be linearly 

separable than in a low-dimensional space



The model ‘f ’ is expressed as a linear
combination of a set of ‘m’ fixed functions

often called basis functions by analogy with
the concept of a vector being composed of a
linear combination of basis vectors.

Definition :

Radial basis function (RBF) networks are a special class of
single hidden-layer feed forward neural networks for
application to problems of supervised learning.
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RBF networks
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RBFN: A 3-layer network



 Input layer

Source nodes that connect the network to its 

environment

 Hidden layer
Hidden units provide a set of basis function

High dimensionality

 Output layer
Linear combination of hidden functions
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RBFN: A 3-layer network



 Unlike most FF neural networks, the connection 
weights between the input layer and the neuron units 
of the hidden layer for an RBFN are all equal to unity.
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RBF networks

 Each hidden neuron calculates a norm that represents 
the distance between the input to the network and the 
so-called position of the neuron (center). This is 
inserted into a radial activation function which 
calculates and outputs the activation of the neuron.



RBF parameters
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Radial activation function

A function is radial basis (RBF) if its output depends on the distance of the input 
from a given stored vector (a nonincreasing function).



Radial activation function
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A typical radial function is the Gaussian 
which in the case of a scalar input is
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x

y Unknown Function 
to Approximate

Training
Data
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RBN First idea (Function approximation)



x

y Unknown Function 
to Approximate

Training
Data

Basis Functions (Kernels)

12

RBN First idea (Function approximation)
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RBN First idea (Function approximation)
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RBN First idea (Function approximation)
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RBN First idea (Function approximation)



 Input space:

 Output space:

 Construct an RBF pattern classifier such that:

(0,0) and (1,1) are mapped to 0, class C1

(1,0) and (0,1) are mapped to 1, class C2

(1,1)(0,1)

(0,0) (1,0)
x1

x2

y
10

16

XOR Problem



 In the feature (hidden layer) space:

 When mapped into the feature space < j1 , j2 > (hidden layer), C1 
and C2 become linearly separable. So a linear classifier with j1(x) and 
j2(x) as inputs can be used to solve the XOR problem. 
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XOR Problem



0 1

0

1

x1

x2

Input x j1(x) j2(x)

(1,1) 1 0.1353

(0,1) 0.3678 0.3678

(1,0) 0.3678 0.3678

(0,0) 0.1353 1
0     0.2     0.4    0.6     0.8    1.0     1.2

|             |            |            |             |             |                                              

_

_

_

_

_

_

1.0

0.8

0.6

0.4

0.2

0

(1,1)

(0,0)

(0,1)

(1,0)



The nonlinear j function transformed a nonlinearly 

separable problem into a linearly separable one !!!

φ2

φ1

Decision boundary

18

XOR Problem
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Learning Algorithms

 Parameters to be learnt are:

 Centers

 Spreads 

 Weights

 Different learning algorithms



 Centers are chosen randomly from the training 
set (can be equal to total training set)

 Spreads are chosen by normalization:
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 Weights are found by means of pseudo-inverse 
method
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Learning method1

1

( )

N

i k i k

k

y w x xj

=

=   = y φw

1=w φ y

1 11 12 1 1

2 21 22 2 2

1 2

. . .

. . .

. . . .

. . . .

. . . .

. . .

N

N

N N N NN N

y w

y w

y w

j j j

j j j

j j j

     
     
     
     

=     
     
     
     
          



S

center
object

)
2

exp()(
2

2



x
xf =

w

output

Distance (x)

)
2

exp()(
2

2



x
xf =

)
2

exp()(
2

2



x
xf =

×

×

×



# Hidd. nodes = # objects

Exact Fitting

Learning method1

23



x y
(0,0)               0
(0,1)               1
(1,0)               1
(1,1)               0

2
( ) exp( 0.5 )ik i k i kj j=  =  x x x x

0 0.5 0.5 1

1 1 111 12 13 14

0.5 0 1 0.5
2 221 22 23 24

0.5 1 0 0.5
3 31 32 33 34 3

1 0.5 0.5 041 42 43 444 4

0

1

1

0

e e e ey w w

y w we e e e

y w e e e e

y w e e e e

j j j j

j j j j

j j j j

j j j j

  

  

  

  

       
       
       =  =        
       
            

1

2 2

3 3

4 4

3.03

3.42

3.42

3.03

w

w

w w

w w

     
     
      =
     
     

        

24

X1

X2

φ1

φ2

φ3

φ4

y

w4

w3

w2

w1

Learning method1 (XOR example)



x y
(0,0)               0
(0,1)               1
(1,0)               1
(1,1)               0

4
2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2

1

1 1
( , ) ( 1) ( 1) ( 1) ( 1)

2 2
k ik

k

f x x w x x x x x x x xj

=

= =           

4 2 2 2 2
1 2 1 2

1 2

1

2 2 2 2
1 2 1 2

( 1)
( , ) 3.0359exp 3.4233exp

2 2

( 1) ( 1) ( 1)
3.4233exp 3.0359exp

2 2

k ik

k

x x x x
f x x w

x x x x

j

=

     
= =       

   
   

       
      

   
   



25

X1

X2

φ1

φ2

φ3

φ4

y

w4

w3

w2

w1

Learning method1 (XOR example)



 Hybrid Learning Process:

 Self-organized learning stage for finding the centers

 Spreads chosen by normalization 

 Supervised learning stage for finding the weights,

using LMS algorithm

Centers are obtained from unsupervised learning (clustering). 

Spreads are obtained as variances of clusters, w are obtained through LMS 
algorithm. Clustering (k-means) and LMS are iterative. This is the most 
commonly used procedure. Typically provides good results.
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Learning method2



 Network structure

 n input neurons

 m RBF neurons

 p output neurons
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RBF structure with learning method 2
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Learning method2 (XOR example)
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RBFMLP

30

Comparison with MLP
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Comparison with MLP

 Both are examples of non-linear layered feed-forward
networks.

 Both are universal approximators.

 Hidden layers:
 RBF networks have one single hidden layer.

 MLP networks may have more hidden layers.
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 Neuron Models:

 The computation nodes in the hidden layer of a RBF network are 
different. They serve a different purpose from those in the output 
layer.

 Typically computation nodes of MLP in a hidden or output  layer 
share a common neuron model.

 Linearity:

 The hidden layer of RBF is non-linear, the output layer of RBF is 
linear. 

 Hidden and output layers of MLP are usually non-linear.

Comparison with MLP
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 Activation functions:
 The argument of activation function of each hidden unit in a 

RBF NN computes the Euclidean distance between input 
vector and the center of that unit.

 The argument of the activation function of  each hidden unit 
in a MLP computes the inner product of input vector and the 
synaptic weight vector of that unit.

 Approximations:
 RBF NN using Gaussian functions construct local 

approximations to non-linear I/O mapping.

 MLP NN construct global approximations to non-linear I/O 
mapping.

Comparison with MLP
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RBF in python

import matplotlib.pyplot as plt
import numpy as np

def rbf(x, c, s):
return np.exp(-1 / 2*((x-c)/s) **2 )

# 100 linearly spaced numbers
x = np.linspace(-10,10,100)

y1 = rbf(x, 0.5, 2)
y2 = rbf(x, 2, 4)
y3 = rbf(x, -3, 3)
y= -1.4*y1 +.9*y2+ 1.3*y3

plt.plot(x, y1, 'g', label='RBF 1')

plt.plot(x, y2, 'b', label='RBF 2')

plt.plot(x, y3, 'r', label='RBF 3')

plt.plot(x, y, 'k--', label='Combined RBF')

plt.legend()
plt.show()



Questions


