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RBF networks

= Radial basis function network (RBFN) represent a
special category of the feedforward neural
networks architecture.

= The basic RBFN structure consists of an input
layer, a single hidden layer with radial activation
function and an output layer.
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RBF networks

A complex pattern-classification problem cast in a high-
dimensional space non-linearly is more likely to be linearly
separable than in a low-dimensional space

« Implementing this procedure using a network architecture, yields the
RBF networks, if the nonlinear mapping functions are radial basis
functions.

« Radial Basis Functions:
— Radial: Symmetric around its center

— Basis Functions: A set of functions whose linear combination can
generate an arbitrary function in a given function space.
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RBF networks

A complex pattern-classification problem cast in a high-
dimensional space non-linearly is more likely to be linearly
separable than in a low-dimensional space
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RBF networks

Definition :

Radial basis function (RBF) networks are a special class of

single hidden-layer feed forward neural
application to problems of supervised learning.

The model ‘7 ° is expressed as a linear
combination of a set of ¢/’ fixed functions
often called basis functions by analogy with
the concept of a vector being composed of a
linear combination of basis vectors.

networks for
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RBFN: A 3-layer network

More likely to be linearly separated

@.(X) :non linear function

Increased dimension:
Nn—>m
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RBFN: A 3-layer network

= Input layer

- Source nodes that connect the network to its
environment

= Hidden layer

- Hidden units provide a set of basis function
- High dimensionality

= Output layer

- Linear combination of hidden functions
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RBF networks

= Unlike most FF neural networks, the connection
weights between the input layer and the neuron units
of the hidden layer for an RBFN are all equal to unity.

= Each hidden neuron calculates a norm that represents
the distance between the input to the network and the
so-called position of the neuron (center). This is
inserted into a radial activation function which
calculates and outputs the activation of the neuron.
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RBF parameters

A function is radial basis (RBF) if its output depends on the distance of the input
from a given stored vector (a nonincreasing function).

- Radial activation function
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Radial activation function

2
A typical radial function is the Gaussian  ¢(x,c)=exp —%[%j

which in the case of a scalar input is

Gaussian in 1D Gaussian in 2D

h(r)
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RBN First idea (Function approximation)
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RBN First idea (Function approximation)
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RBN First idea (Function approximation)
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RBN First idea (Function approximation)
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f(x)

RBN First idea (Function approximation)
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XOR Problem

= Input space: X;
(0,1)T (1,1)
(0,0)' T ™
0 1
= QOutput space: - o—Y

= Construct an RBF pattern classifier such that:

(0,0) and (1,1) are mapped to 0, class C1
(1,0) and (0,1) are mapped to 1, class C2
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XOR Problem

In the feature (hidden layer) space:

pllx-th=e™
oo(I x—t, [) = t, =(L1)and t, = (0,0)

When mapped into the feature space < ¢, , ¢, > (hidden layer), C1
and C2 become /inearly separable. So a linear classifier with ¢,(x) and
@,(x) as inputs can be used to solve the XOR problem.
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XOR Problem

X2 1 The nonlinear ¢ function transformed a nonlinearly
11 e o separable problem into a linearly separable one !!!
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Learning Algorithms

= Parameters to be learnt are:
= Centers
= Spreads
= Weights

= Different learning algorithms
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Learning method1

= Centers are chosen randomly from the training
set (can be equal to total training set)

= Spreads are chosen by normalization:

o Maximum distance between any 2 centers  dax

Jnumber of centers \/mil
m
oli-tF)-e| - g ix-1 |
| e [1, ml]
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Learning method1

= Weights are found by means of pseudo-inverse
method

N
Yi = Wk(”(”Xi—Xk”) = Y=0w

k=1 o )
Y1 P P - - O || Wy
Yo P P - - - Py || Wy
YN LPN1 PN - - - O W l
W = -1
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Learning method1

object center Distance (x)
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Learning method1 (XOR example)
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Learning method1 (XOR example)

X y
(0,0) 0
(0,1) 1
(1,0) 1
(1,1) 0
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Learning method?2

= Hybrid Learning Process:
» Self-organized learning stage for finding the centers
= Spreads chosen by normalization

= Supervised learning stage for finding the weights,
using LMS algorithm

Centers are obtained from unsupervised learning (clustering).

Spreads are obtained as variances of clusters, w are obtained through LMS
algorithm. Clustering (k-means) and LMS are iterative. This is the most
commonly used procedure. Typically provides good results.

26
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RBF structure with learning method 2

= Network structure
= N input neurons
= M RBF neurons
= P output neurons
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Learning method2 (XOR example)
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Learning method2 (XOR example)
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Comparison with MLP
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Comparison with MLP

= Both are examples of non-linear layered feed-forward
networks.

= Both are universal approximators.
= Hidden layers:

= RBF networks have one s/ing/e hidden layer.
= MLP networks may have more hidden layers.
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Comparison with MLP

= Neuron Models:

»« The computation nodes in the hidden layer of a RBF network are
different. They serve a different purpose from those in the output
layer.

» Typically computation nodes of MLP in a hidden or output layer
share a common neuron model.

= Linearity:
= The hidden layer of RBF is non-linear, the output layer of RBF is
linear.
« Hidden and output layers of MLP are usually non-linear.

Z/University of Kurdistan
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Comparison with MLP

s Activation functions:

= The argument of activation function of each hidden unit in a
RBF NN computes the Euclidean distance between input
vector and the center of that unit.

« The argument of the activation function of each hidden unit

in @ MLP computes the inner product of input vector and the
synaptic weight vector of that unit.

= Approximations:

= RBF NN using Gaussian functions construct local
approximations to non-linear I/O mapping.

= MLP NN construct global approximations to non-linear I/O
mapping.
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RBF in python

)

import matplotlib.pyplot as plt
import numpy as np

def rbf(x, c, s):

return np.exp(-1 / 2*((x-c)/s) **2
# 100 linearly spaced numbers
X = np.linspace(-10,10,100)

)

1.4

vyl = rbf(x, 0.5, 2) 134
y2 = rbf(x, 2, 4)
y3 = rbf(x, -3, 3) =07

y= -1.4*y1 +.9%y2+ 1.3*y3 084
pit.plot(x, y1, 'g", label="RBF 1)
plt.plot(x, y2, 'b', label="RBF 2')
plt.plot(x, y3, 'r', label='RBF 3') = |
plt.plot(x, v, 'k--', label="Combir **’

plt.legend() 0.0

—— RBF1
—— RBF 2
—— RBF 3
——- Combined RBF

=z, Plt.show()

T T
-10.0 -7.5

T T
-3.0 =25
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» Questions



