
Department of Computer Engineering

University of Kurdistan

Neural Networks (Graduate level)
Radial Basis Function Networks

By: Dr. Alireza Abdollahpouri

RBF networks

 Radial basis function network (RBFN) represent a
special category of the feedforward neural
networks architecture.

 The basic RBFN structure consists of an input
layer, a single hidden layer with radial activation
function and an output layer.

2

A complex pattern-classification problem cast in a high-
dimensional space non-linearly is more likely to be linearly

separable than in a low-dimensional space

3

• Implementing this procedure using a network architecture, yields the
RBF networks, if the nonlinear mapping functions are radial basis
functions.

• Radial Basis Functions:

– Radial: Symmetric around its center

– Basis Functions: A set of functions whose linear combination can
generate an arbitrary function in a given function space.

RBF networks

4

RBF networks

A complex pattern-classification problem cast in a high-
dimensional space non-linearly is more likely to be linearly

separable than in a low-dimensional space

The model ‘f ’ is expressed as a linear
combination of a set of ‘m’ fixed functions

often called basis functions by analogy with
the concept of a vector being composed of a
linear combination of basis vectors.

Definition :

Radial basis function (RBF) networks are a special class of
single hidden-layer feed forward neural networks for
application to problems of supervised learning.

5

RBF networks

...

x1

x2

x3

n
x

X

...

)(
1

Xj

)(
3

Xj

)(X
m
j

)(
2

Xj

Increased dimension:
n->m

functionlinear non :)(X
i

j

3
w

m
w

1w

2
w


Output

y

More likely to be linearly separated


=

=
m

i

ii
Xwy

1

)(j

m: Number of
radial functions

n: dimension
of input vector

6

RBFN: A 3-layer network

 Input layer

Source nodes that connect the network to its

environment

 Hidden layer
Hidden units provide a set of basis function

High dimensionality

 Output layer
Linear combination of hidden functions

7

RBFN: A 3-layer network

 Unlike most FF neural networks, the connection
weights between the input layer and the neuron units
of the hidden layer for an RBFN are all equal to unity.

8

RBF networks

 Each hidden neuron calculates a norm that represents
the distance between the input to the network and the
so-called position of the neuron (center). This is
inserted into a radial activation function which
calculates and outputs the activation of the neuron.

RBF parameters

()jx cj 

Input vector

Non-linear
function

Center

|| . ||

Usually, Euclidian distance

9

Radial activation function

A function is radial basis (RBF) if its output depends on the distance of the input
from a given stored vector (a nonincreasing function).

Radial activation function

10

A typical radial function is the Gaussian
which in the case of a scalar input is

2
1

(,) exp
2

x c
x cj



  
=   

   

x

y Unknown Function
to Approximate

Training
Data

11

RBN First idea (Function approximation)

x

y Unknown Function
to Approximate

Training
Data

Basis Functions (Kernels)

12

RBN First idea (Function approximation)

x

y

Basis Functions (Kernels)

Function
Learned

1

)) ((
m

i

iiwy f 
=

= = xx

13

RBN First idea (Function approximation)

x

y

Basis Functions (Kernels)

Function
Learned

Nontraining
Sample

1

)) ((
m

i

iiwy f 
=

= = xx

14

RBN First idea (Function approximation)

15

RBN First idea (Function approximation)

 Input space:

 Output space:

 Construct an RBF pattern classifier such that:

(0,0) and (1,1) are mapped to 0, class C1

(1,0) and (0,1) are mapped to 1, class C2

(1,1)(0,1)

(0,0) (1,0)
x1

x2

y
10

16

XOR Problem

 In the feature (hidden layer) space:

 When mapped into the feature space < j1 , j2 > (hidden layer), C1
and C2 become linearly separable. So a linear classifier with j1(x) and
j2(x) as inputs can be used to solve the XOR problem.

2
2

2
1

||||

22

||||

11

||)(||

||)(||

tx

tx

etx

etx





=

=

j

j

)0,0(and)1,1(21 == tt

x=[x1 x2]

17

XOR Problem

0 1

0

1

x1

x2

Input x j1(x) j2(x)

(1,1) 1 0.1353

(0,1) 0.3678 0.3678

(1,0) 0.3678 0.3678

(0,0) 0.1353 1
0 0.2 0.4 0.6 0.8 1.0 1.2

| | | | | |

_

_

_

_

_

_

1.0

0.8

0.6

0.4

0.2

0

(1,1)

(0,0)

(0,1)

(1,0)



The nonlinear j function transformed a nonlinearly

separable problem into a linearly separable one !!!

φ2

φ1

Decision boundary

18

XOR Problem

1

2

x1

x2

-

+

+

-

-

-

-

-

-

t1 و t2 are centers of the circles

19

20

Learning Algorithms

 Parameters to be learnt are:

 Centers

 Spreads

 Weights

 Different learning algorithms

 Centers are chosen randomly from the training
set (can be equal to total training set)

 Spreads are chosen by normalization:

1
m

maxd

centers ofnumber

centers 2any between distance Maximum
==

 

 1

2

i2

max

12

i

m,1i

tx
d

m
exptx











=ij

Learning method1

21

 Weights are found by means of pseudo-inverse
method

22

Learning method1

1

()

N

i k i k

k

y w x xj

=

=   = y φw

1=w φ y

1 11 12 1 1

2 21 22 2 2

1 2

. . .

. . .

. . . .

. . . .

. . . .

. . .

N

N

N N N NN N

y w

y w

y w

j j j

j j j

j j j

     
     
     
     

=     
     
     
     
          

S

center
object

)
2

exp()(
2

2



x
xf =

w

output

Distance (x)

)
2

exp()(
2

2



x
xf =

)
2

exp()(
2

2



x
xf =

×

×

×



Hidd. nodes = # objects

Exact Fitting

Learning method1

23

x y
(0,0) 0
(0,1) 1
(1,0) 1
(1,1) 0

2
() exp(0.5)ik i k i kj j=  =  x x x x

0 0.5 0.5 1

1 1 111 12 13 14

0.5 0 1 0.5
2 221 22 23 24

0.5 1 0 0.5
3 31 32 33 34 3

1 0.5 0.5 041 42 43 444 4

0

1

1

0

e e e ey w w

y w we e e e

y w e e e e

y w e e e e

j j j j

j j j j

j j j j

j j j j

  

  

  

  

       
       
       =  =        
       
            

1

2 2

3 3

4 4

3.03

3.42

3.42

3.03

w

w

w w

w w

     
     
      =
     
     

        

24

X1

X2

φ1

φ2

φ3

φ4

y

w4

w3

w2

w1

Learning method1 (XOR example)

x y
(0,0) 0
(0,1) 1
(1,0) 1
(1,1) 0

4
2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2

1

1 1
(,) (1) (1) (1) (1)

2 2
k ik

k

f x x w x x x x x x x xj

=

= =           

4 2 2 2 2
1 2 1 2

1 2

1

2 2 2 2
1 2 1 2

(1)
(,) 3.0359exp 3.4233exp

2 2

(1) (1) (1)
3.4233exp 3.0359exp

2 2

k ik

k

x x x x
f x x w

x x x x

j

=

     
= =       

   
   

       
      

   
   



25

X1

X2

φ1

φ2

φ3

φ4

y

w4

w3

w2

w1

Learning method1 (XOR example)

 Hybrid Learning Process:

 Self-organized learning stage for finding the centers

 Spreads chosen by normalization

 Supervised learning stage for finding the weights,

using LMS algorithm

Centers are obtained from unsupervised learning (clustering).

Spreads are obtained as variances of clusters, w are obtained through LMS
algorithm. Clustering (k-means) and LMS are iterative. This is the most
commonly used procedure. Typically provides good results.

26

Learning method2

 Network structure

 n input neurons

 m RBF neurons

 p output neurons

27

RBF structure with learning method 2

x y
(0,0) 0
(0,1) 1
(1,0) 1
(1,1) 0

X1

X2

φ1

φ2
y

w2

w1

w0

2

2

2
() exp exp

2

i j

ij i j

j

j


 
  =  =      

  

x μ
x x μ

1 [0,0]=μ1 [1,1]=μ

max
max 1 2

1
2

2 2

d
d

m
=  =  = =μ μ

   2 2

1 1 2 2 1 2exp exp [,]x xj j=   =   =x μ x μ x

0 1 1 2 2y w w wj j=  

28

Learning method2 (XOR example)

1

x y
(0,0) 0
(0,1) 1
(1,0) 1
(1,1) 0

   

   
   

2 2

1 0 1 2 0 1 2

2 2

2 0 1 2 0 1 2

2 2

2 0 1 2 0 1 2

1 0

0 exp [0,0] [0,0] exp [0,0] [1,1] 0.1353

1 exp [0,1] [0,0] exp [0,1] [1,1] 0.3679 0.3679

1 exp [1,0] [0,0] exp [1,0] [1,1] 0.3679 0.3679

0

y w w w w w w

y w w w w w w

y w w w w w w

y w

= =       =  

= =       =  

= =       =  

= =     2 2

1 2 0 1 2exp [1,1] [0,0] exp [1,1] [1,1] 0.1353w w w w w     =  

0 0

1 1

2 2

0 1 1 0.1353
2.8404

1 1 0.3679 0.3679
2.5018

1 1 0.3679 0.3679
2.5018

0 1 0.1353 1

w w

w w

w w

   
        
        =  = 
        
              

   
29

X1

X2

φ1

φ2
y

w2

w1

w0

1

Learning method2 (XOR example)

RBFMLP

30

Comparison with MLP

31

Comparison with MLP

 Both are examples of non-linear layered feed-forward
networks.

 Both are universal approximators.

 Hidden layers:
 RBF networks have one single hidden layer.

 MLP networks may have more hidden layers.

32

 Neuron Models:

 The computation nodes in the hidden layer of a RBF network are
different. They serve a different purpose from those in the output
layer.

 Typically computation nodes of MLP in a hidden or output layer
share a common neuron model.

 Linearity:

 The hidden layer of RBF is non-linear, the output layer of RBF is
linear.

 Hidden and output layers of MLP are usually non-linear.

Comparison with MLP

33

 Activation functions:
 The argument of activation function of each hidden unit in a

RBF NN computes the Euclidean distance between input
vector and the center of that unit.

 The argument of the activation function of each hidden unit
in a MLP computes the inner product of input vector and the
synaptic weight vector of that unit.

 Approximations:
 RBF NN using Gaussian functions construct local

approximations to non-linear I/O mapping.

 MLP NN construct global approximations to non-linear I/O
mapping.

Comparison with MLP

34

RBF in python

import matplotlib.pyplot as plt
import numpy as np

def rbf(x, c, s):
return np.exp(-1 / 2*((x-c)/s) **2)

100 linearly spaced numbers
x = np.linspace(-10,10,100)

y1 = rbf(x, 0.5, 2)
y2 = rbf(x, 2, 4)
y3 = rbf(x, -3, 3)
y= -1.4*y1 +.9*y2+ 1.3*y3

plt.plot(x, y1, 'g', label='RBF 1')

plt.plot(x, y2, 'b', label='RBF 2')

plt.plot(x, y3, 'r', label='RBF 3')

plt.plot(x, y, 'k--', label='Combined RBF')

plt.legend()
plt.show()

Questions

