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Associative networks

• To an extent, learning is forming associations.  

• Human memory associates 

– similar items, 

– contrary/opposite items, 

– items close in proximity,  

– items close in succession  (e.g., in a song)
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 The patterns we associate together may be 

– of the same type or sensory modality (e.g. a visual 

image may be associated with another visual image)

– or of different types (e.g. a fragrance may be 

associated with a visual image or a feeling).

 Memorization of a pattern (or a group of patterns) may be 

considered to be associating the pattern with itself.
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Associative networks



An associative network is a single-layer 

Network in which the weights are determined 
in such a way that the net can store a set of 

pattern associations. 
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Associative networks
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Associative networks



Associative

Networks

Auto-

associative

Hetero-

associative

Feed-forward Recurrent Feed-forward Recurrent
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Types of Associative networks



 Hetero associative

 Auto associative

n Input  m Output

n Input  n Output
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Types of Associative networks



Auto-association

AA

Hetero-association

Niagara Waterfall

memory

memory
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Types of Associative networks



 Whether auto- or hetero-associative, the net can associate 
not only the exact  pattern pairs used in training, but is 
also able to obtain associations if the input is similar to 
one on which it has been trained.

 �Information recording: A large set of patterns (the priori 
information) are stored (memorized)

 �Information retrieval/recall: Stored prototypes are excited 
according to the input key patterns
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Associative networks



AM- Representation

 Before training an AM NN, the original patterns 
must be converted to an appropriate 
representation for computation

 In a simple example, the original pattern might 
consist of “on” and “off” signals, and the 
conversion could be:

“on”  +1 , “off”  0 (binary representation) or 

“on”  +1, “off”  -1 (bipolar representation).
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Examples of Hetero-association

Mapping from 4-inputs to 2-outputs. 

Whenever the net is shown a 4-bit input pattern, it 
produces a 2-bit output pattern 
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Hebbian Learning
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1

Input n 
dimensional

Output: m 
dimensional

Weight matrix- using 
Hebb rule
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Examples of Hetero-association



(1, 0, 0, 0):(1, 0)s : t

.

   
   
        
   
      

1 1 0

0 0 0
1 0

0 0 0

0 0 0

.

   
   
        
   
      

1 1 0

1 1 0
1 0

0 0 0

0 0 0

(1, 1, 0, 0):(1, 0)s : t
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weight matrix to store the first pair:

weight matrix to store the second pair:

Examples of Hetero-association



.

   
   
        
   
      

0 0 0

0 0 0
0 1

0 0 0

1 0 1

.

   
   
        
   
      

0 0 0

0 0 0
0 1

1 0 1

1 0 1

(0, 0, 0, 1):(0, 1)s : t

(0, 0, 1, 1):(0, 1)s : t

         
         
             
         
         
                  

W

1 0 1 0 0 0 0 0 2 0

0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 1 0 1 0 2
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weight matrix to store the third 
pair:

weight matrix to store the 
fourth pair:

Examples of Hetero-association



Test the network
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Using the activation function:

For the first input pattern

This is the correct 
response for the first 
training pattern



Similarly, applying the same algorithm, with x equal to each of 
the other three training input vectors, yields: 
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Test the network



18

Testing a hetero-associative net with input similar to the 
training input

Thus, the net also associates a known output pattern with this input

Testing a heteroassociative net with input that is not similar to the 
training 
input

The output is not one of the outputs with which the net was trained; in other 
words, the net does not recognize the pattern.

Test the network
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Bi-polar representation

Weight 
matrix



( , , , , , , , , , , , , , , )    1 1 1 1 11 1 11 1 11 1 11
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A heteroassociative net for associating letters from different fonts 

Hetero-associative network- example
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Response  of 
heteroassociative  net to 
several noisy versions  of  
pattern A.

Hetero-associative network- example



Response of heteroassociative net to 
patterns A, B, and C with mistakes in  
1/3 of the components.
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Hetero-associative network- example



Auto-associative nets
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the weights are usually set 
from the formula 



 
 

 
 
 
    

W

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

( , , , ) x 1 1 1 1

_ ( , , , )in  y 4 4 4 4

( , , , ) ( , , , )f   y 4 4 4 4 1 1 1 1

( , , , ). ( , , , ) ( , , , )    W1 1 1 1 4 4 4 4 1 1 1 1

Correct recognition of input vector
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Auto-associative net- example

The vector s  = (1, 1, 1,  - 1)  is stored with the weight matrix:



( , , , ) s 1 1 1 1
 

 
 

 
 
    

W

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

( , , ) . ( , , , ) ( , , , )

( , , ) . ( , , , ) ( , , , )

( , , ) . ( , , , ) ( , , , )

( , , ) . ( , , , ) ( , , , )

     

     

     

   

W

W

W

W

1 1 1 1 2 2 2 2 1 1 1 1

1 1 1 1 2 2 2 2 1 1 1 1

1 1 1 1 2 2 2 2 1 1 1 1

1 1 1 1 2 2 2 2 1 1 1 1

One mistake in 
input vector

Correct 
recognition
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Testing an autoassociative net: one mistake in the input vector

Auto-associative net- example



( , , , ) s 1 1 1 1

 
 

 
 
 
    

W

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

two "missing" 
entries

Correct 
recognition

( , , , ) . ( , , , ) ( , , , )

( , , , ) . ( , , , ) ( , , , )

( , , , ) . ( , , , ) ( , , , )

( , , , ) . ( , , , ) ( , , , )

( , , , ) . ( , , , ) ( , , , )

( , , , ) . ( , , , ) ( , , ,

    

    

   

    

   

   

W

W

W

W

W

W

0 0 1 1 2 2 2 2 1 1 1 1

0 1 0 1 2 2 2 2 1 1 1 1

0 1 1 0 2 2 2 2 1 1 1 1

1 0 0 1 2 2 2 2 1 1 1 1

1 0 1 0 2 2 2 2 1 1 1 1

1 1 0 0 2 2 2 2 1 1 1 1)
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Testing an autoassociative net: two 
"missing" entries in the input vector 

Auto-associative net- example



( , , , ) s 1 1 1 1

 
 

 
 
 
    

W

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Incorrect 
recognition

( , , , ). ( , , , )   W1 1 1 1 0 0 0 0

27

Testing an autoassociative net: two 
mistakes in the input vector 

Auto-associative net- example
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Storage Capacity

 An autoassociative net with four nodes can store 
three orthogonal vectors



1 2 1 2

(1, 1, 1, 1) ( 1, 1, 1, 1)

0 1 1 1 0 1 1 1 0 0 2 0

1 0 1 1 1 0 1 1 0 0 0 2

1 1 0 1 1 1 0 1 2 0 0 0

1 1 1 0 1 1 1 0 0 2 0 0

   

 



         
     

          
         
     
              

W W W W

It is fairly common 
for an 
autoassociative
network to have its 
diagonal terms set 
to zero
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Storage Capacity



1 2 1 2

(1, 1, 1, 1) ( 1, 1, 1, 1)

0 1 1 1 0 1 1 1 0 0 2 0

1 0 1 1 1 0 1 1 0 0 0 2

1 1 0 1 1 1 0 1 2 0 0 0

1 1 1 0 1 1 1 0 0 2 0 0

   

 



         
     

          
         
     
              

W W W W

1 2(1, 1, 1, 1).[ ] (1, 1, 1, 1)     W W

1 2( 1, 1, 1, 1).[ ] ( 1, 1, 1, 1)     W W
Correct 
recognition
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Storing two Orthogonal vectors in an autoassociative net 

Storage Capacity



( , , , ) 1 1 1 1( , , , )1 1 1 1

0 1 1 1 0 1 1 1 0 0 2 2

1 0 1 1 1 0 1 1 0 0 0 0

1 1 0 1 1 1 0 1 2 0 0 2

1 1 1 0 1 1 1 0 2 0 2 0

        
     
         
           
     

             

W

(1, 1, 1, 1). (1, 1, 1,1)    W

(1, 1, 1, 1). (1, 1, 1,1)   W





Incorrect 
Recognition
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Attempting to store two non-orthogonal vectors in an autoassociative net

Storage Capacity



1 2 3 1 2 3

(1, 1, 1, 1) ( 1, 1, 1, 1) ( 1, 1, 1, 1)

0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1

1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1

1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0

     

  

 

              
      

                
              
     
                   

W W W W W W






 
 

Correct recognition of 
all vectors
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Storing three Orthogonal vectors in an autoassociative net 

Storage Capacity



1 2 3 4 1 2 3 4

(1, 1, 1, 1) ( 1, 1, 1, 1) ( 1, 1, 1, 1) (1, 1, 1, 1)

0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1

1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1

1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0

     

   

  

           
     

            
          
     
                

W W W W W W W W

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

  
   
   
   
   
     

learning is erased.
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Storing four Orthogonal vectors in an autoassociative net 

Storage Capacity



 Hopfield neural network (HNN) is a model of 
autoassociative memory

 It is a single layer neural network with feedbacks.
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Hopfield Neural network



1 2 3 n. . .

v1 v2 v3 vn

I1 I2 I3 In

w21 w31 wn1

w12 w32 wn2

w13 w23 wn3

w1n w2n w3n

wij = wji

wii = 0
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Hopfield Neural network
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Hopfield Neural network



  2 ( ) 1 2 ( ) 1 , ; 0ij i i ii

p

w s p s p i j w    

( ) ( ), ; 0ij i j ii

p

w s p s p i j w  
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To store a set of binary patterns, the weight matrix W  =  is given by: 

To store a set of bipolar patterns, the weight matrix W  =  is given by: 

Hopfield Neural network



, ,...,i iy x i n 1

_ i i j ji

j

y in x y w  _

_

_ .

i i

i i i i

i i

if y in

y y if y in

if y in










 
 

1

0
iy
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Step 0.  Initialize weights to store patterns.

While activations of  the net are not converged, do Steps 1-7. 

Step 1.  For each input vector x, do Steps 2-6. 

Step 2.  Set  initial activations of  net equal  to the external 
input vector x: 

Step 3.  Do Steps 4-6 for each unit  (Units should be updated in random order.) 

Step 4.  Compute net input:

Step 5.  Determine activation (output signal): 

Step 6.  Broadcast the value of    to all other units. 
(This updates the activation vector.) 

Step 7.  Test for convergence.

Hopfield Neural network



 
 

 
 
 
    

W

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

Y 1 4Y 3Y
2Y
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Hopfield Neural network - example

The vector (1, 1, 1,0) (or its bipolar equivalent  (1, 1, 1, - 1)) was stored in a net

the  weight  matrix is bipolar

The input vector is x  = (0, 0, 1, 0)

For this example the update order is



( , , , )y  0 0 1 0

Y 1

_ j j

j

y in x y w   1 1 1 0 1

 
 

 
 
 
    

W

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

_y in y  1 10 1 ( , , , )y  1 0 1 0

_ ( )j j

j

y in x y w    4 4 4 0 2

( , , , )y  1 0 1 0

40

4Y

_y in y  4 40 0

Choose unit     to update its activation: 

Choose unit     to update its activation: 

Hopfield Neural network - example



3Y

2Y

_ j j

j

y in x y w   3 3 3 1 1

( , , , )y  1 0 1 0

_y in y  3 30 1 ( , , , )y  1 0 1 0

_ j j

j

y in x y w   2 2 2 0 2

_y in y  2 20 1 ( , , , )y  1 1 1 0
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Choose unit     to update its activation: 

Choose unit     to update its activation: 

further iterations do not change the activation of any unit. The net has 
converged to the stored vector. 

Hopfield Neural network - example
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• Image reconstruction.
• A 20 X 20 discrete Hopfield network was trained with 20 input patterns, 

including the one shown in the left figure and 19 random patterns as the one 
on the right.

Hopfield Neural network - example
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The Hopfield Network After providing only one fourth of the “face” image as 
initial input, the network is able to perfectly reconstruct that image within only 
two iterations.

Hopfield Neural network - example
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Adding noise by changing each pixel with a probability p = 0.3 does not impair the 
network’s performance. After two steps the image is perfectly reconstructed.

Hopfield Neural network - example
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for noise created by p = 0.4, the network is unable the original image. Instead, 
it converges against one of the 19 random patterns.

Hopfield Neural network - example



The stored dada in memory

Network input: Distorted 6

Perfect Recall
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Network input: Distorted 9Network input: Distorted 2

Erroneous Recall

Perfect Recall
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E 0

Hopfield network- Energy function

Hopfield nets have a scalar value associated with 
each state of the network, referred to as the 
"energy", E, of the network, where:

a Hopfield network constantly 
decreases its energy
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 
 

 
 
 
    

W

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

Establishing Connection Weights

Hopfield network- example
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Network’ States and Their Code: Total number of states = 16

Hopfield network- example
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Calculating energy function for all states:
=0

Hopfield network- example
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For state A = [O1, O2, O3, O4] [ 1 , 1, 1, 1] 

Hopfield network- example
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Minimum 
energy

(Stable states)

Similarly, we can compute 
the energy level of the other 
states.

Hopfield network- example
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State Transition for State J = [−1 , −1 , 1 , −1]

As a result, the first component of the state J changes from −1 to 1. In other words, 
the state J transits to the state G

Hopfield network- example
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B= [1, 1, 1, -1]

As a result, the second component of the state G changes from −1 to 1. In other 
words, the state G transits to the state B

Hopfield network- example
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As state B is a fundamental pattern, no more transition will occur

Hopfield network- example
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Storage Capacity of Hopfield Net

 Binary

 Bipolar

P: # of patterns that can be stored an recalled in 
a net with reasonable accuracy

n: # of neurons in the net

nP 15.0

n

n
P

2log2




Questions


