
Department of Computer Engineering

University of Kurdistan

Neural Networks (Graduate level)
Single layer and multi layer perceptron

(Supervised learning)

By: Dr. Alireza Abdollahpouri

2

Classification- Supervised learning

3

Classification

Basically we want our system to classify a set of patterns as belonging to a
given class or not.

4

Classification

5

Linear Classifier

6

Supervised learning

7

Supervised learning

8

Learning phase

9

The Perceptron

x1 w0

y

x2

x3

x4

x5

w1

w2

w3

w4

w5














 



0

1

sgn wxwy
n

i

iiΣ

The first model of a biological neuron

1

10

Perceptron for Classification

11

Classification

Simple case
(two classes – one output neuron)

General case
(multiple classes – Several output neurons)

12

3 Types of Classification

• Binary Classification
• Multi-class Classification
• Multi-label Classification

Complexity of PR – An Example

Problem: Sorting incoming fish

on a conveyor belt.

Assumption: Two kind of fish:

(1) sea bass

(2) salmon

13

Pre-processing Step

Example

(1) Image enhancement

(2) Separate touching

or occluding fish

(3) Find the boundary of

each fish

14

Feature Extraction

 Assume a fisherman told us that a sea bass is
generally longer than a salmon.

 We can use length as a feature and decide
between sea bass and salmon according to a
threshold on length.

 How should we choose the threshold?

15

“Length” Histograms

• Even though sea bass is longer than salmon on the
average, there are many examples of fish where
this observation does not hold.

16

threshold l*

16

“Average Lightness” Histograms

• Consider a different feature such as “average lightness”

• It seems easier to choose the threshold x* but we still

cannot make a perfect decision.

17

threshold x*

17

Multiple Features

 To improve recognition accuracy, we might have
to use more than one features at a time.

 Single features might not yield the best performance.

 Using combinations of features might yield better
performance.

 How many features should we choose?

1

2

x

x

 
 
 

1

2

:

:

x lightness

x width

18

Classification

 Partition the feature space into two regions by finding
the decision boundary that minimizes the error.

 How should we find the optimal decision boundary?

19

19

20

What a Perceptron does?

For a perceptron with 2 input variables namely x1 and x2

Equation WTX = 0 determines a line separating positive from

negative examples.

x2

x1

x1

y

x2

w1

w2

Σ

w0

y = sgn(w1x1+w2x2+w0)

21

What a Perceptron does?

For a perceptron with n input variables, it draws a Hyper-plane as the
decision boundary over the (n-dimensional) input space. It classifies
input patterns into two classes.

The perceptron outputs 1 for instances lying on one side of the
hyperplane and outputs –1 for instances on the other side.

x3

x2

x1

22

What can be represented using Perceptrons?

and or

Representation Theorem: perceptrons can only represent
linearly separable functions.
Examples: AND,OR, NOT.

23

Limits of the Perceptron

A perceptron can learn only examples that are called

“linearly separable”. These are examples that can be perfectly

separated by a hyperplane.

+

+

+

-

-

-

+

+

+
-

-

-

Linearly separable Non-linearly separable

24

Learning Perceptrons

• Learning is a process by which the free parameters of a neural network
are adapted through a process of stimulation by the environment in which
the network is embedded. The type of learning is determined by the
manner in which the parameters changes take place.

• In the case of Perceptrons, we use a supervised learning.

• Learning a perceptron means finding the right values for W that satisfy
the input examples {(inputi, targeti)

*}

• The hypothesis space of a perceptron is the space of all weight vectors.

How to find the weights?

We want to find a set of weights that enable our perceptron to correctly
classify our data.

 we know 𝜕𝐸/𝜕𝑤𝑖 then we can search for a minimum of E in weight

space

25

26

Learning Perceptrons

Principle of learning using the perceptron rule:

1. A set of training examples is given: {(x, t)*} where x is the input
and t the target output [supervised learning]

2. Examples are presented to the network.

3. For each example, the network gives an output o.

4. If there is an error, the hyperplane is moved in order to correct the
output error.

5. When all training examples are correctly classified, Stop learning.

27

More formally, the algorithm for learning Perceptrons is as follows:

1. Assign random values to the weight vector

2. Apply the perceptron rule to every training example

3. Are all training examples correctly classified?

Yes. Quit
No. Go Back to Step 2.

Learning Perceptrons

28

Perceptron Training Rule

The perceptron training rule:

For a new training example [X = (x1, x2, …, xn), t]
update each weight according to this rule:

wi = wi + Δwi

Where Δwi = η.(t-o).xi

t: target output
o: output generated by the perceptron
η: constant called the learning rate (e.g., 0.1)

29

Comments about the perceptron training rule:

• If the example is correctly classified the term (t-o) equals zero, and no
update on the weight is necessary.

• If the perceptron outputs –1 and the real answer is 1, the weight is
increased.

• If the perceptron outputs a 1 and the real answer is -1, the weight is
decreased.

• Provided the examples are linearly separable and a small value for η is
used, the rule is proved to classify all training examples correctly.

Perceptron Training Rule

30

Consider the following example: (two classes: Red and Green)

Perceptron Training Rule

31

Random Initialization of perceptron weights …

Perceptron Training Rule

32

Apply Iteratively Perceptron Training Rule on the different examples:

Perceptron Training Rule

33

Apply Iteratively Perceptron Training Rule on the different examples:

Perceptron Training Rule

34

Apply Iteratively Perceptron Training Rule on the different examples:

Perceptron Training Rule

35

Apply Iteratively Perceptron Training Rule on the different examples:

Perceptron Training Rule

36

All examples are correctly classified … stop Learning

Perceptron Training Rule

37

The straight line w1x+ w2y + w0=0 separates the two classes

Perceptron Training Rule

Example

 We want to classify the following 21 characters written
by 3 fonts into 7 classes.

38

39

Example

Single-layer network

Example

40

Multi-Layer
Perceptron (MLP)

41

42

MultiLayer Perceptron

In contrast to perceptrons, multilayer networks can learn not only

multiple decision boundaries, but the boundaries may be nonlinear.

Input nodes Internal nodes Output nodes

43

MultiLayer Perceptron- Decision Boundaries

A

B

A

B

A

B

A

A

B

B

A

A

B

B

A

A

B

B

HALF PLANE

BOUNDED BY

HYPERPLANE

CONVEX

OPEN OR

CLOSED

REGION

ARBITRARY

(complexity

limited by

number of

neurons)

Single-layer

Two-layer

Three-layer

44

Solution for XOR : Add a hidden layer !!

Input nodes Internal nodes Output nodes

X1

X2

X1 XOR X2

x1

x2

x1

x2

x1

45

Solution for XOR : Add a hidden layer !!

Input nodes Internal nodes Output nodes

X1

X2

The problem is: How to learn Multi Layer Perceptrons??

Solution: Backpropagation Algorithm invented by Rumelhart and
colleagues in 1986

X1 XOR x2

Problems

 How do we train a multi-layered network?

 What is the desired output of hidden neurons?

46

47

Backpropagation learning Algorithm

1- Feed Forward

2- Error
Backpropagation

3- Update the
weights

48

Backpropagation- Algorithm

Backpropagation: Objectives

49

50

Backpropagation (Error or cost)

51

Backpropagation (Error or cost)

Error space (Multi-Modal Cost Surface)

-3
-2

-1
0

1
2

3

-2

0

2

-10

-5

0

5

global min

local min

Gradient descent

52

Optimizers

 Gradient Descent: most fundamental technique
to train Neural Networks

 Variants:

- Momentum

- SGD

- AdaGrad

- AdaDelta

- RMSprop

- Adam

53

54

Local vs. global minimum

55

Weight updates

Backpropagation- Algorithm

56

57

Minimizing Error Using Steepest Descent

 The main idea:

Find the way downhill and take a step:

E

x

minimum

downhill = - _____d E
d x

 = step size

x x -
d E
d x

58

Convergence

59

Updating weights

60

Back-propagating error

61

Back-propagating- computing δj (for output layer)

62

Back-propagating- computing δj (for hidden layers)

63

Updating weights

64

Minimizing the global error

65

66

Backpropagating- remarks

67

Backpropagating- remarks

Learning rate

68

Initializing weights

69

Hyper parameters

70

Type of data sets

71

(Used to decide when to stop training only by monitoring the error.)

Consistency of the TS

72

If some examples are inconsistent, convergence of learning is not guaranteed:

In real cases, inconsistencies can be introduced by
similar noisy patterns belonging to different classes

Examples of problematic training patterns taken from
images of handwritten characters:

Stopping criteria

73

74

Generalization in Classification

 Suppose the task of our network is to learn a classification decision
boundary

 Our aim is for the network to generalize to classify new inputs
appropriately. If we know that the training data contains noise, we don’t
necessarily want the training data to be classified totally accurately, as
that is likely to reduce the generalization ability.

75

The problem of overfitting …

 Approximation of the function y = f(x) :

2 neurons in hidden layer

5 neurons in hidden layer

40 neurons in hidden layer

x

y

• The overfitting is not detectable in the learning phase …

• So use Cross-Validation ...

Overfitting and underfitting

76

If the network is well dimensioned, both the errors ETS and EVS are small

77

Generalization in Function Approximation

If the network does not have enough hidden neurons, it is not able to
approximate the function and both errors are large:

78

Generalization in Function Approximation

If the network has too many hidden neurons, it could respond correclty
to the TS (ETS< ε), but could not generalize well (EVS too large):

79

Generalization in Function Approximation

To avoid the overtraining effect, we can train the network using the TS, but
monitor EVS and stop the training when (EVS< ε):

80

(network must learn the rule, not just the examples

Generalization in Function Approximation

81

Use of a validation set allows periodic testing to see whether the model has overfitted

Stop here

Earlier Stopping - Good Generalization

Training stops when the
validation loss starts to
increase, indicating that
the model is overfitting.

Regularization: Dropout

 Dropout regularizes the network by randomly dropping
neurons from the neural network during training

82

K-Fold Cross Validation

83

84

Application of MLPs

Network

Stimulus Response

0
1
0
1
1
1
0
0

1
1
0
0
1
0
1
0

Input

Pattern

Output

Pattern

encoding
decoding

The general scheme when using ANNs is as follows:

85

Application: Digit Recognition

86

Learning XOR Operation: Matlab Code

P = [0 0 1 1; ...

0 1 0 1]

T = [0 1 1 0];

net = newff([0 1;0 1],[6 1],{'tansig' 'tansig'});

net.trainParam.epochs = 4850;

net = train(net,P,T);

X = [0 1];

Y = sim(net,X);

display(Y);

Solving the XOR operation

y55

x1 31

x2

Input

layer

Output

layer

Hiddenlayer

42

3

w13

w24

w23

w24

w35

w45

4

5

1

1

1

87

 The effect of the threshold applied to a neuron in
the hidden or output layer is represented by its
weight, , connected to a fixed input equal to 1.

 The initial weights and threshold levels are set
randomly as follows:
w13 = 0.5, w14 = 0.9, w23 = 0.4, w24 = 1.0, w35 = 
1.2, w45 = 1.1, 3 = 0.8, 4 = 0.1 and 5 = 0.3.

88

Solving the XOR operation

 We consider a training set where inputs x1 and x2 are equal
to 1 and desired output yd,5 is 0. The actual outputs of
neurons 3 and 4 in the hidden layer are calculated as

 Now the actual output of neuron 5 in the output layer is
determined as:

 Thus, the following error is obtained:

5250.01/1)()8.014.015.01(
32321313  ewxwxsigmoidy

8808.01/1)()1.010.119.01(
42421414 

ewxwxsigmoidy

5097.01/1)(
)3.011.18808.02.15250.0(

54543535  ewywysigmoidy

5097.05097.0055,  yye d

89

Solving the XOR operation

 The next step is weight training. To update the weights and threshold
levels in our network, we propagate the error, e, from the output layer
backward to the input layer.

 First, we calculate the error gradient for neuron 5 in the output layer:

 Then we determine the weight corrections assuming that
the learning rate parameter, a, is equal to 0.1:

1274.05097).0(0.5097)(10.5097)1(555  eyy

0112.0)1274.0(8808.01.05445  yw

0067.0)1274.0(5250.01.05335  yw

0127.0)1274.0()1(1.0)1(55 

90

Solving the XOR operation

 Next we calculate the error gradients for neurons 3 and 4 in the
hidden layer:

 We then determine the weight corrections:

0381.0)2.1(0.1274)(0.5250)(10.5250)1(355333  wyy

0.0147.114)0.127(0.8808)(10.8808)1(455444  wyy

0038.00381.011.03113  xw

0038.00381.011.03223  xw
0038.00381.0)1(1.0)1(33 

0015.0)0147.0(11.04114  xw

0015.0)0147.0(11.04224  xw
0015.0)0147.0()1(1.0)1(44 

91

Solving the XOR operation

 At last, we update all weights and threshold:

 The training process is repeated until the sum of squared
errors is less than 0.001.

5038.00038.05.0131313  www

8985.00015.09.0141414  www

4038.00038.04.0232323  www

9985.00015.00.1242424  www

2067.10067.02.1353535  www

0888.10112.01.1454545  www

7962.00038.08.0333


0985.00015.01.0444 

3127.00127.03.0555 

92

Solving the XOR operation

Learning curve for operation XOR

0 50 100 150 200

10 1

Epoch

Sum-Squared Network Error for 224 Epochs

10
0

10 -1

10 -2

10
-3

10
-4

S
u

m
-S

q
u

a
re

d
 E

rr
o

r

93

Final results of three-layer network learning

Inputs

x1 x2

1

0

1

0

1

1

0

0

0

1

1

Desired

output

yd

0

0.0155

Actual

output

y5 e

Sum of

squared

errors

0.9849

0.9849

0.0175

0.0010

94

Training Modes

 Incremental mode (on-line, sequential,
stochastic, or per-observation): Weights
updated after each instance is presented

 Batch mode (off-line or per-epoch):
Weights updated after all the patterns are
presented

95

NN: Universal Approximator

 Any desired continuous function can be
implemented by a three-layer network given
sufficient number of hidden units, proper
nonlinearitiers and weighs (Kolmogorov)

96

● Data representation

● Network Topology

● Network Parameters

● Training

NN DESIGN ISSUES

97

● Data representation depends on the problem.

● In general ANNs work on continuous (real valued) attributes.
Therefore symbolic attributes are encoded into continuous
ones.

● Attributes of different types may have different ranges of
values which affect the training process.

● Normalization may be used, like the following one which
scales each attribute to assume values between 0 and 1.

for each value xi of ith attribute, mini and maxi are the minimum

and maximum value of that attribute over the training set.

Data Representation

i

i

minmax

min






i

i
i

x
x

98

● The number of layers and neurons depend on the
specific task.

● In practice this issue is solved by trial and error.

● Two types of adaptive algorithms can be used:

− start from a large network and successively remove some
neurons and links until network performance degrades.

− begin with a small network and introduce new neurons until
performance is satisfactory.

Network Topology

99

● How are the weights initialized?

● How is the learning rate chosen?

● How many hidden layers and how many
neurons?

● How many examples in the training set?

Network parameters

100

Initialization of weights

● In general, initial weights are randomly chosen, with
typical values between -1.0 and 1.0 or -0.5 and 0.5.

● If some inputs are much larger than others, random
initialization may bias the network to give much more
importance to larger inputs.

● In such a case, weights can be initialized as follows:





Ni

N

,...,1

|x|
1

2
1

ij i
w For weights from the input to the first layer

For weights from the first to the second layer





Ni

N
i,...,1
)xw(

1
2
1

jk ij
w



101

● The right value of  depends on the application.

● Values between 0.1 and 0.9 have been used in many
applications.

● Other heuristics is that adapt  during the training as
described in previous slides.

● It is common to start with large values and decrease
monotonically.

- Start with 0.9 and decrease every 5 epochs

- Use a Gaussian function

-  = 1/k

- …

Choice of learning rate

102

Size of Training set

● Rule of thumb:

− the number of training examples should be at least five to
ten times the number of weights of the network.

● Other rule:

|W|= number of weights

a=expected accuracy on test seta)-(1

|W|
 N 

103

MLP- Summary

104

• Design the architecture, choose activation functions
(e.g. sigmoids)

• Choose a way to initialize the weights (e.g. random
initialization)

• Choose a loss function (e.g. log loss) to measure how
well the model fits training data

• Choose an optimizer (typically an SGD variant) to update
the weights

105

