Ui 35S oLSLidinils
University of Kurdistan
Ul g5 S§5lj

Department of Computer Engineering
University of Kurdistan

Neural Networks (Graduate level)

Single layer and multi layer perceptron
(Supervised learning)

By: Dr. Alireza Abdollahpouri

X7 University of Kurdistan

Classification- Supervised learning

Given a Training Set of examples (pattern, label) the objective
Is to “learn” to classify a new pattern with the correct label.

pattern label
Example 1 H cat 8 Lm.
— # cat
4 - .
A -
Example 2 == not cat
¥ = —
Example 3 cat IS {(xka tk)a k 19 R M}
i
x \
Kl
Example 4 ﬁ not cat X, € R
. X = X2
\ k - .
Example 5 & not cat ; t, € [0,1]
xim J
Example 6 ! cat

Classification

Basically we want our system to classify a set of patterns as belonging to a
given class or not.

If x € R> we can represent the situation on a plane:

A
X

v

Classification

[——
A simple approach to classify a new pattern is to look at the

closest neighbor and return its label.

A better way is to find a line that best separates the data set:

A This is called a
X5 Linear Classifier

Linear Classifier

|
GOAL.: identify the line that “best separates” the two data sets.

Error: the quality of separation is measured by a /oss function
that measures the error of the classifier:

If y, IS the output on x;

|
E, :5(1} _yk)2

Supervised learning

In a supervised learning paradigm, a neural network
operates in two distinct phases:

1. A learning phase

The network is trained to classify the examples in the
Training Set (weights are modified based on errors).

2. An operating phase

The network is used on new data never seen before
(weights are kept fixed)

Supervised learning

Regression Classification
+ ‘I-
\ ® &
e - v @9
® .9 N @
0o @ e . o0 o
'_!',,-l" @ .. e
Y
- 4 ® e® g -,
L~ -. . %
- N) A
1 N a2 Log Loss = -1; ; yilogyi + (1-yi)log(1-yi)
MSE = FZ(Y' -Yi)

K
A
Loss = - YJlog(yj)
is number of classes in the data

J =1 where k is

Learning phase

Teacher <

L NEURAL W
input NETWORKJ
pattern

‘A
Learning

k Rule

desired
\ output

~ Kk
Output
pattern

The Perceptron

The first model of a biological neuron

n
y =5sgn Zwixi +Wy
1=1

Perceptron for Classification

* A perceptron can be trained to recognize
whether an input pattern X belongs or not to

a class C:

o | @ @ @
(1)

NOT

CUBE i O V A

(0)

Classification

1 = concave

0 = convex 1
1 0
0
Simple case General case
(two classes — one output neuron) (multiple classes — Several output neurons)

11

3 Types of Classification

 Binary Classification
« Multi-class Classification
« Multi-label Classification

Binary Classification Multiclass Classification

Multilabel Classification

- —

v v vy v oY v

Dog Cat Bus Plant Dog Cat Bus Plant
0.09 0.01 0.4 0.8 0.2 0.04 0.7

%/ University of Kurdistan 12

Complexity of PR — An Example

Problem: Sorting incoming fish
on a conveyor belt.

~

I Preprocessing |

Assumption: Two kind of flsh |"?|
(1) sea bass P | P |
(2) salmon

y(d) ® ~a|mﬁxf'/>bass"
salmon salmon salmon

sea bass

sea bass

13

Pre-processing Step

Example
[Preprocessing | (1) Image enhancement
v
| Feature extraction | (2) Separa‘te touchlng
! T or occluding fish

| Classification |

7\ (3) Find the boundary of
il e each fish

14

Feature Extraction

s Assume a fisherman told us that a sea bass is
generally longer than a salmon.

= We can use length as a feature and decide
between sea bass and salmon according to a
threshold on length.

= How should we choose the threshold?

X/ University of Kurdistan
"Sity of WX .

15

“Length” Histograms

salmon sea bass
count .
22t — :
20+ I
I8t
161 [s
12t |
10t
o -
6L
st i
2 ; '—I
1
el Mo o 5 F oo o 0 Bpg e § g e F % e oo By o b »length
5 10 15 20 25
l*
“threshold I*

Even though sea bass is longer than salmon on the
average, there are many examples of fish where
this observation does not hold.

X7/ University of Kurdistan
TSty of WO, *

“Average Lightness” Histograms

Consider a different feature such as “average lightness”

count

144 salmon sea bass
2

10}

S NRA N

L nl i

— : lightness
x¥
2 8 10

4 6
threshold x*

It seems easier to choose the threshold x* but we still
«=Cannot make a perfect decision.

®)

X7/ University of Kurdistan
TSty of WO, *

17

Multiple Features

= 1O improve recognition accuracy, we might have
to use more than one features at a time.
= Single features might not yield the best performance.
« Using combinations of features might yield better

performance.

X, :lightness
X, :width

nould we choose?

18

Classification

= Partition the feature space into two regions by finding
the decision boundary that minimizes the error.

width

P salmon sea bass
22
21 e® 8
20 &
19
18 © e e,

°

17
16

15

14

> lightness
2 4 6 8 10

19

What a Perceptron does?

For a perceptron with 2 input variables namely x; and x,

Equation WX = 0determines a line separating positive from
negative examples.

20

What a Perceptron does?

For a perceptron with n input variables, it draws a Hyper-plane as the
decision boundary over the (n-dimensional) input space. It classifies
input patterns into two classes.

o o oo
(=]

0
0
02\ 0

o
o o g
o

The perceptron outputs 1 for instances lying on one side of the
hyperplane and outputs —1 for instances on the other side.

X7 University of Kurdistan

21

What can be represented using Perceptrons?

and or N\

X7 University of Kurdistan 22

Limits of the Perceptron

A perceptron can learn only examples that are called
“linearly separable”. These are examples that can be perfectly

separated by a hyperplane.

Non-linearly separable

23

Learning Perceptrons

e Learning is a process by which the free parameters of a neural network
are adapted through a process of stimulation by the environment in which
the network is embedded. The type of learning is determined by the
manner in which the parameters changes take place.

e In the case of Perceptrons, we use a supervised learning.

e Learning a perceptron means finding the right values for W that satisfy
the input examples {(input;, target)*}

e The hypothesis space of a perceptron is the space of all weight vectors.

Z/University of Kurdistan 24

How to find the weights?

We want to find a set of weights that enable our perceptron to correctly
classify our data.

{ y: is the correct output

. - 1 2
We can define a cost function: E = E(y—g(z)) g(z): is the actual output

= we know 0E/dwi then we can search for a minimum of E in weight
space

W1 W2

25

Learning Perceptrons

Principle of learning using the perceptron rule:

1. A set of training examples is given: {(x, t)*} where x is the input
and t the target output [supervised learning]

2. Examples are presented to the network.
3. For each example, the network gives an output o.

4. If there is an error, the hyperplane is moved in order to correct the
output error.

5. When all training examples are correctly classified, Stop learning.

Z/University of Kurdistan 26

Learning Perceptrons

More formally, the algorithm for learning Perceptrons is as follows:
1. Assign random values to the weight vector
2. Apply the perceptron rule to every training example
3. Are all training examples correctly classified?

Yes. Quit
No. Go Back to Step 2.

X7 University of Kurdistan

27

Perceptron Training Rule

The perceptron training rule:

For a new training example [X = (X4, X5, ..., X;,), t]
update each weight according to this rule:

W, = W, + Aw,

Where Aw; = n.(t-0).x;

t: target output
0: output generated by the perceptron
n: constant called the learning rate (e.g., 0.1)

X/ University of Kurdistan
"Sity of W .

28

Perceptron Training Rule

Comments about the perceptron training rule:

o If the example is correctly classified the term (t-o0) equals zero, and no
update on the weight is necessary.

e If the perceptron outputs —1 and the real answer is 1, the weight is
increased.

e If the perceptron outputs a 1 and the real answer is -1, the weight is
decreased.

e Provided the examples are linearly separable and a small value for n is
used, the rule is proved to classify all training examples correctly.

Z/University of Kurdistan

29

Perceptron Training Rule

Consider the following example: (two classes: Red and Green)

30

Perceptron Training Rule

Random Initialization of perceptron weights ...

31

Perceptron Training Rule

Apply Iteratively Perceptron Training Rule on the different examples:

32

Perceptron Training Rule

Apply Iteratively Perceptron Training Rule on the different examples:

33

Perceptron Training Rule

Apply Iteratively Perceptron Training Rule on the different examples:

\

/‘

34

Perceptron Training Rule

Apply Iteratively Perceptron Training Rule on the different examples:

35

Perceptron Training Rule

All examples are correctly classified ... stop Learning

36

Perceptron Training Rule

The straight line wyx+ w,y + w,=0 separates the two classes

37

Example

= We want to classify the following 21 characters written

by 3 fonts into 7 classes.

.-

s s

*a i tada e Input from satale
Input from Tlatels : ::::ﬁ il Font 2 e
Font 1 :'M': . ﬁ?ifi SOSSH: :gt“.*'.*g‘
iiiégi #hihait LT N
Aceenns Boveoe e C.cww 1}*??# 4!-,:“!?!?
'H”;t' # ##### i3 HfH--44 0 Be.o Ty Re....
I SOREE. SRS ¥ A S0A. 15000t S
. Mgl : i 135 e #H4e:
. . *g.. #.... e P
i TEIRIIL SRS ¥ b 36 9N ST LA TETTES:
gl it S b 4 #E" - $444EE
' FPAL P BT s i e .
e & BE.e. @ eeees Je seasse K
e L
3 (1D !::::::
: Iiiig ciillh
#HERRS LA
«Biseoese . Covene
I 4 14 L 1008 {4
----- . --*oo
ooooo - 0#..
..... - *.a-
..... - - .*--
DS i 304
..**'.. . #-.t*
..... J. sssssaK

38

Example

Single-layer network

39

Example

iiiiii

11111
iiiii

iiiii

llllll

llllll

X7 University of Kurdistan

40

Multi-Layer
Perceptron (MLP)

MultiLayer Perceptron

In contrast to perceptrons, multilayer networks can learn not only
multiple decision boundaries, but the boundaries may be nonlinear.

Internal nodes Output nodes

42

MultiLayer Perceptron- Decision Boundaries

Single-layer

A

HALF PLANE
BOUNDED BY
HYPERPLANE

Two-layer

CONVEX

OPEN OR
CLOSED

REGION

Three-layer

ARBITRARY
(complexity
limited by
number of
neurons)

43

Solution for XOR : Add a hidden layer !

X1

X1 XOR X2

X2
Input nodes Internal nodes Output nodes

e R

X7/ University of Kurdistan 44
TSty of WO, .

Solution for XOR : Add a hidden layer !!

X1
X1 XOR x2
X2
Input nodes Internal nodes Output nodes

The problem is: How to learn Multi Layer Perceptrons??

Solution: Backpropagation Algorithm invented by Rumelhart and
colleagues in 1986

X7/ University of Kurdistan
TSty of WO, *

45

Problems

= How do we train a multi-layered network?

= What is the desired output of hidden neurons?

This problem remained unsolved for many
years, causing the so called “Al winter”.

Rumelhart Hinton

X7/ University of Kurdistan
r"{yof\t\“& [

46

Backpropagation learning Algorithm

(Rumelhart-Hinton-Williams, 1986)
» Multi-layer feedforward networks;
» Output is generated using a sigmoid function: y; = f(a;)

4 |
f(a)=——
l+e

-

47

48

IIII

oHn oHo ﬁm&

ooooooooobow

.v.;.,/.\\

-...E. ,.x...... t.\t.. ...-l...r
T T ey o T, T
* - &+ & & ‘. * - ., &+ 3

2- Error
ackpropagation

T
v .,
Y -
n l.('_ﬂ_-\. s
Lt .
S
) P
Sk
L -

1- Feed Forward

3- Update the
weights

Backpropagation- Algorithm

Backpropagation: Objectives

» Learning

Teach the network a set of desired associations (x,, t,)
provided by the Training Set.

» Convergence

Reduce the global error £ by changing weights, such
that /~ < g, in a finite amount of time.

» Generalization

Make the network to respond well on inputs that were
never shown (i.e., not in the Training Set).

X7/ University of Kurdistan
TSty of WO, .

49

Backpropagation (Error or cost)

What’s the “cost”
of this difference?

. Oo Qo0
, O1
7102 O2
1@3 &
SN ¥ - O4
/ 16 O6
{7 OF

par ¥ O8

@9 Q9

Utter trash

Q
Q
O
O\
QS
@53

ol 1 lete(oler | 1 Jelel Jof T
000 800000080000

QOQQLO000Q -+

Z7University of Kurdistan
Sty of WX -

Backpropagation (Error or cost)

What’s the “cost”
of this difference”

Do

0.1863
0.0809
0.0357
00138
0.0242
0.000]
0.4079
0.7388
0.9817
| 0.3998

—

N

(%)
|

Do

)

28 — (.00
0.19 — 0.00
0.88 — 1.00

Qo 00
O1 O1
@:>2 02
@ @
@/ O4
O5 O5
@6 O6
L X o)
| B O8
@9 O9

Utter trash

[\

‘

[\

¢

\V}

AV

.01 — 0.00
0.64 — 0.
0.86 — ().
0.99 — 0.00
0.63 — 0.00

(\V)

V)

+ 4+ 4+ + + + + + +

(\V)

(V)

TTTTTTTTTT

PN N AT T S N S, N
7
\—/
\/\/_/\/\/C/_/\./_/\./

77 University of Kurdistan

Error space (Multi-Modal Cost Surface)

Gradient descent

52

Optimizers

= Gradient Descent: most fundamental technique
to train Neural Networks

= Variants:

. —>&— AdaGrad |
_ 0.030 ¢ SE5
Momentum L o
- SGD 0.025 4 —A—::aoena,
- AdaGrad
0.020 -
- AdaDelta Loss
- RMSpI‘Op 0.015 -
- Adam
0.010 -
0 20 40 60 80 100
Step

Local vs. global minimum
|

There are two approaches to escape local minima:

A

1. Reset the network £ \

Restart training with new /
random weights. You may
be luckier!

2. Make a random jump E]

Add a random value to the
weights. |t may be enough
to escape.

X7/ University of Kurdistan 54
"Sig f\L\l‘& .

Weight updates

Wy
w1
wo

w13.000

W13,001
W13.002

wo should increase somewhat
w, should increase a
wo should decrease a lot

w13.000 should increase a lot
w13.001 Should decrease somewhat

w13.002 should increase a little

55

Backpropagation- Algorithm

1

)

n,;

Input
layer

-~ o0 0>

[-1

()

ny_;

[

)

n

yi

&

hidden layers

—)

—_— 00—

[

layer

output

56

Minimizing Error Using Steepest Descent

= The main idea:
Find the way downhill and take a step:

downhill = - ==

d x
\

d E minimum

X—X- 14—
/o

X7/ University of Kurdistan 57
r"{yof\t\“& [

1 = step size

Convergence

To reduce the error by changing weights, the
following strategy is adopted:

E
_6E >0 —aE <0
ay Wi
- I >
Aw <0 Aw >0 Wﬂ

X7 University of Kurdistan 58

Updating weights

Therefore, the weights are changed according
to the following law:

. oE Gradient
wﬁ N _n awﬁ rule

1 = Learning coeflicient (learning rate)

59

Back-propagating error

(k) = -7 aE = -7 aEk aaj
6w da, ow,
oa ,
being ZW X;+b, we have: L — b
i=l1 awjf

and by 2 OF, | -
defining o, = ~ then: | Aw (k) =n0, x,
J

S0, now the problem is to compute 5}{ for each neuron.

60

Back-propagating- computing 0j (for output layer)

o = _aEk — _aEk ayj
J f}aj E}y‘ ; od ;
| |
being E, = 52(1@_ -¥7)” we have: ok, _ (1, - ")
= Y,

. Vi A -
and since = f'(a,) Wwe obtain:

Gaj

o =ty =y f'(a})

X7 University of Kurdistan 61

Back-propagating- computing 9j (for hidden layers)
Note that the same formula é':_l = (7, —y:_l)f'(a:_l)

cannot be used for hidden neurons, since 7, is unknown!

f 5551 Hence the idea is to backpropagate

52; the errors back through the weights
' to assign a blame to hidden neurons.

Lo ‘

&
‘ = [— [[
W 57 =1 w5
J=1

X7 University of Kurdistan 62

Updating weights

Delta Rule:

Generalized AWﬂ. (k) . 775jx1' l

For the output - L L
neurons: 5}' B (tfg' -V)f'(aj) l

Neurons

LD
For the hidden -1 _ pvyp1-1 I ol
5:? _f(a;:)Zwﬁ 5]

j=1

X7 University of Kurdistan 63

Back Propagation: Algorithm

randomly 1initialize the weights;
do {
initializes the global error E = 0;
for each (X, t,) € TS {
compute y, and error E; ;
compute O; on the output layer;
compute 8. on the hidden layer;

S R

updates the global error: E=E + E_; }
10. } while (E> ¢€);

update weights of the network: Aw =ndx ;

X7 University of Kurdistan

64

Minimizing the global error

M

1
Aw .. = —E Aw (k
/! M 5 ﬂ()

-

Hence a single learning step
requires:

» show all the M examples;
» store all the weights variations for each example;
» update all the weights after completing the training set.

A pass of the entire training set is called an epoch.

X7 University of Kurdistan 65

Backpropagating- remarks

* The error has a quadratic form 1n the space of

weights:
E, !

n

E, = z(tkj_ykj)z
4=

J= 1=

66

Backpropagating- remarks

Aw ;; =n0; X, |

Aw

n too small = slow learning

M too big = fluctuations

X7 University of Kurdistan

67

Learning rate

Possible solutions

e Vary n as a function of the error, to speed up
convergence at the beginning and reduce
oscillations at the end.

o Attenuate oscillations with a low-pass filter on
the weights:

Aw (1) =no x, + ptAw, (1 —1)

L 1S called momentum

X7/ University of Kurdistan
TSty of WO, .

68

Initializing weights

|
To favor the learning phase, weights have to be
initialized with random small values. In fact:

Aw = nox o« f(a)
small [w| = small |a|] = bigf'(a) = bigAw

A

1

i d

Hence, weights are initialized as random variables with
normal distribution with mean 0 and standard deviation,/1/n,,
where n_, is the number of inputs of the neuron.

-y =o(a)

e

a =2 WX,

%/ University of Kurdistan

69

Hyper parameters

People distinguish two types of parameters in a neural network:

Model parameters = Weights
They are those that are found by learning: = Bijases

Network hyper-parameters
They are those that have to be tuned to optimize learning:

= Number of hidden layers = |Loss function (error)
= Number of hidden neurons = Activation function
= Weight initialization range = Number of epochs
* Training set size = | earning rate

= Mini-batch size = Momentum

Z/University of Kurdistan

70

Type of data sets

Trainin .
Set : Used for training the model parameters
Validation .
Set Used for tuning the hyper-parameters
(Used to decide when to stop training only by monitoring the error.)
Test Used for assessing the performance of
Set a fully-trained network

X7/ University of Kurdistan 71
TSty of WO, *

Consistency of the TS

If some examples are inconsistent, convergence of learning is not guaranteed:

In real cases, inconsistencies can be introduced by

similar noisy patterns belonging to different classes
sample target

o |

6

Examples of problematic training patterns taken from
images of handwritten characters:

3

SESSS

Stopping criteria

Once we have trained our network, how can we
evaluate its performance?

E A

Remember, we can stop
for one of two conditions

stop

stop

max_epochs epochs

X7 University of Kurdistan 73

Generalization in Classification

= Suppose the task of our network is to learn a classification decision
boundary

= Our aim is for the network to generalize to classify new inputs
appropriately. If we know that the training data contains noise, we don't
necessarily want the training data to be classified totally accurately, as
that is likely to reduce the generalization ability.

74

The problem of overfitting ...

o ApprOX|mat|on of the function y= f{x) :

y / 2 neurons in hidden layer

ﬁ/x\ / 5 neurons in hidden layer
A\ 40 neurons in hidden layer

X

The overfitting is not detectable in the learning phase ...
So use Cross-Validation ...

X7/ University of Kurdistan 75
TSty of WO, *

Overfitting and underfitting

+
+ ++
+ t + ©
+ B T4+ 0
+°++ ++ 00 o
¥ 0 ©
T S o o]
+o © 000 o 0 © o
0
o © ° 0 o
underfitting good fit

overfitting

%/ University of Kurdistan

76

Generalization in Function Approximation

If the network is well dimensioned, both the errors E;s and E,¢ are small

function
A to learn
TN T

learned
function

input
pattern

77

Generalization in Function Approximation

If the network does not have enough hidden neurons, it is not able to
approximate the function and both errors are large:

function
A to learn

learned
function

input
pattern

78

Generalization in Function Approximation

If the network has too many hidden neurons, it could respond correclty
to the TS (Es< €), but could not generalize well (E, s too large):

overtraining function
4 to learn

learned
function

input

pattern

Generalization in Function Approximation

To avoid the overtraining effect, we can train the network using the TS, but
monitor E,s and stop the training when (E< €):

(network must learn the rule, not just the examples .
function

& to learn

learned
function

input
pattern

80

Earlier Stopping - Good Generalization

Use of a validation set allows periodic testing to see whether the model has overfitted

A

Training stops when the
validation loss starts to

— — validation set increase, indicating that
the model is overfitting.

training set

CITor

>

Stop here number of epochs

81

Regularization: Dropout

= Dropout regularizes the network by randomly dropping
neurons from the neural network during training

Before dropout After dropout

82

K-Fold Cross Validation

K=6

DS

F1 VS L (1)
k2 VS E(2)
F3 VS E.(3)
F4 VS E (%)
ES VS E_(5)
Fo6 VS | E,(6)

1 & _ 1 &
E, =g 2B | A=A,

X7/ University of Kurdistan
TSty of WO, .

Application of MLPs

The general scheme when using ANNs is as follows:

Input Output
Pattern Pattern
0) 1
1 1
4) 0 NNetwork)/ 0 4)
Stimulus | g i |y (])_ —» Response
encoding| 1 0) decoding
N Y, 9 /k s& 1 N Y,
0) 0)

Application: Digit Recognition

85

00000 O
H

Learning XOR Operation: Matlab Code

P=[0011:..
0101]
T=[0110];

net = newff([0 1,0 1],[6 1],{'tansig' 'tansig'});

net.trainParam.epochs = 4850;
net = train(net,P,T);

X=[01];
Y = sim(net,X);
display(Y);

86

Solving the XOR operation

Output
layer

87

Solving the XOR operation

B The effect of the threshold applied to a neuron in
the hidden or output layer is represented by its
weight, 6, connected to a fixed input equal to —1.

B The initial weights and threshold levels are set
randomly as follows:
w3 = 0.5, wi, = 0.9, wy; = 0.4, wy, = 1.0, g =
1.2, wy,s = 1.1, 05, =0.8, 6, =-0.1 and 6; = 0.3.

X/ University of Kurdistan
"Sity of W .

88

Solving the XOR operation

B We consider a training set where inputs x; and x, are equal
to 1 and desired output y, s is 0. The actual outputs of
neurons 3 and 4 in the hidden layer are calculated as

y3 = signoid (W 3+ XoWp3—03) =1/ [1+ e_(1'0'5+1'0'4_1'0'8)d =0.5250

Yq = SIgI’TDId (X]_\N]_4 + XoWoy — 94) = 1/[1+ e_(1'0'9+1'1'0+1'0'1)‘ =0.8808

B Now the actual output of neuron 5 in the output layer is
determined as:

Vi = SIgMDId(YaWas + YaVizs — B) =1/ [1 N e—(—0.52501.2+0.88081.1—1-0.3)] 05097

B Thus, the following error is obtained:
== €= Yq 5 Y5=0-0.5097=-0.5097

X/ University of Kurdistan 89
"Sity of W .

Solving the XOR operation

B The next step is weight training. To update the weights and threshold

levels in our network, we propagate the error, ¢ from the output layer
backward to the input layer.

B First, we calculate the error gradient for neuron 5 in the output layer:
05 = Y5 (1- y5) e=0.5097- (1-0.5097)- (—0.5097)= -0.1274

B Then we determine the weight corrections assuming that
the learning rate parameter, «, is equal to 0.1:

AWs = 0 - Y5 - 85 = 0.1.0.5250 (~0.1274) = —0.0067
AW45 =0-Yy '65 =0.1-0.8808 (—01274) =-0.0112
 AOs=0-(-1)-85 = 0.1 (-1)-(~0.1274 = ~0.0127

X/ University of Kurdistan 90
"Sity of WX *

Solving the XOR operation

B Next we calculate the error gradients for neurons 3 and 4 in the
hidden layer:

53 = Ya(l— ya) -85 - Wag = 0.5250- (1 0.5250)- (—0.1274)- (~1.2) = 0.0381
54 = y4(1— y4) '55 "Wy = 0.8808 (1—08808) (— 01274) 1.1=-0.0147

B We then determine the weight corrections:

AWys = a- X - 65 = 0.1-1-0.0381= 0.0038
AWos = 0 - X - 85 = 0.1-1-0.0381= 0.0038

AO; =0t (~1)-65 = 0.1- (~1) -0.0381= —0.0038
AW =% -0,=0.1.1.(-0.0147) =-0.0015
AW24 =0 Xy - 54 =0.1-1. (—00147) =-0.0015

X/ University of Kurdistan
"Sity of W .

91

Solving the XOR operation

B At last, we update all weights and threshold:
Wy 3 = Wy3+ Awg 5 = 0.5+0.0038= 0.5038
Wy4 = Wyg + Awg, = 0.9-0.0015= 0.8985
W3 = Wog + AWsyg = 0.4+ 0.0038= 0.4038
Woy = Woy + AWy, =1.0-0.0015=0.9985
W3e = Was + Awge = —1.2—0.0067 = —1.2067
Wy5 = Wy5 + Awys =1.1-0.0112 =1.0888
0,=05+A05 =0.8-0.0038=0.7962
0,=0,+A0, =-0.1+0.0015= -0.0985

O =6+ A0 =0.3+0.0127= 0.3127

B The training process is repeated until the sum of squared
=\ errors is less than 0.001.

X7/ University of Kurdistan

92

Learning curve for operation XOR

) Sum-Squared Network Error for 224 Epochs
10 - . .

o
o
o

H
o
N

Sur'D-Squared Error
o

0 50 100 150 200
Epoch

%/ University of Kurdistan

93

Final results of three-layer network learning

Inputs | Desired | Actual Error Sun of
output output squared
X1 | X2 Yd Y5 e errors
1|1 0 0.0155 | -0.0155 0.0010
0|1 1 0.9849 0.0151
110 1 0.9849 0.0151
00 0 0.0175 | -0.0175

94

Training Modes

= Incremental mode (on-line, sequential,
stochastic, or per-observation): Weights
updated after each instance is presented

= Batch mode (off-line or per-epoch):
Weights updated after all the patterns are
presented

X/ University of Kurdistan
"Sity of W .

95

NN: Universal AEEroximator

= Any desired continuous function can be
implemented by a three-layer network given
sufficient number of hidden units, proper
nonlinearitiers and weighs (Kolmogorov)

X/ University of Kurdistan
"Sity of W .

96

NN DESIGN ISSUES

e Data representation
e Network Topology

e Network Parameters
e [raining

X7/ University of Kurdistan
TSty of WO, .

97

Data Representation

e Data representation depends on the problem.

e In general ANNs work on continuous (real valued) attributes.
Therefore symbolic attributes are encoded into continuous
ones.

e Attributes of different types may have different ranges of
values which affect the training process.

e Normalization may be used, like the following one which
scales each attribute to assume values between 0 and 1.

X, = _
max, — min.

for each value x; of it" attribute, min. and max; are the minimum

=, and maximum value of that attribute over the training set.

X/ University of Kurdistan
"Sity of W .

98

Network Topology

e The number of layers and neurons depend on the
specific task.

e In practice this issue is solved by trial and error.

e Two types of adaptive algorithms can be used:

— start from a large network and successively remove some
neurons and links until network performance degrades.

— begin with a small network and introduce new neurons until
performance is satisfactory.

X7/ University of Kurdistan

99

Network parameters

e How are the weights initialized?
e How is the learning rate chosen?

e How many hidden layers and how many
neurons?

e How many examples in the training set?

100

Initialization of weights

e In general, initial weights are randomly chosen, with
typical values between -1.0 and 1.0 or -0.5 and 0.5.

e If some inputs are much larger than others, random
initialization may bias the network to give much more
importance to larger inputs.

e In such a case, weights can be initialized as follows:

ij 2N % For weights from the input to the first layer

For weights from the first to the second layer

101

Choice of learning rate

e The right value of n depends on the application.

e Values between 0.1 and 0.9 have been used in many
applications.

e Other heuristics is that adapt n during the training as
described in previous slides.

e [t is common to start with large values and decrease
monotonically.

- Start with 0.9 and decrease every 5 epochs
- Use a Gaussian function
-n = 1/K

- - r - 102
X/ University of Kurdistan
"Sity of W .

Size of Training set

e Rule of thumb:

— the number of training examples should be at least five to
ten times the number of weights of the network.

e Other rule:

N > ‘ W | IW|= number of weights
(1 - a) a=expected accuracy on test set

- - r - 103
X7/ University of Kurdistan
TSty of WO, *

MLP- Summary

« Design the architecture, choose activation functions
(e.g. sigmoids)

* Choose a way to initialize the weights (e.g. random
initialization)

« Choose a loss function (e.g. log loss) to measure how
well the model fits training data

* Choose an optimizer (typically an SGD variant) to update
the weights

X/ University of Kurdistan 104
"Sity of W .

