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Classification- Supervised learning 
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Classification 

Basically we want our system to classify a set of patterns as belonging to a 
given class or not.
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Classification 
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Linear Classifier



6

Supervised learning 
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Supervised learning 
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Learning phase 
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The Perceptron
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The first model of a biological neuron 
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Perceptron for Classification 
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Classification

Simple case
(two classes – one output neuron)

General case
(multiple classes – Several output neurons)
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3 Types of Classification

• Binary Classification 
• Multi-class Classification
• Multi-label Classification



Complexity of PR – An Example

Problem: Sorting incoming fish 

on a conveyor belt.

Assumption: Two kind of fish:

(1) sea bass

(2) salmon
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Pre-processing Step

Example

(1) Image enhancement 

(2) Separate touching

or occluding fish 

(3) Find the  boundary of 

each fish
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Feature Extraction

 Assume a fisherman told us that a sea bass is 
generally longer than a salmon.

 We can use length as a feature and decide 
between sea bass and salmon according to a 
threshold on length.

 How should we choose the threshold?
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“Length” Histograms

• Even though sea bass is longer than salmon on the 
average, there are many examples of fish where 
this observation does not hold.
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threshold l* 
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“Average Lightness” Histograms

• Consider a different feature such as “average lightness”

• It seems easier to choose the threshold x* but we still 

cannot make a perfect decision.
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threshold x* 
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Multiple Features

 To improve recognition accuracy, we might have 
to use more than one features at a time.

 Single features might not yield the best performance.

 Using combinations of features might yield better 
performance.

 How many features should we choose?

1

2

x

x

 
 
 

1

2

:

:

x lightness

x width

18



Classification

 Partition the feature space into two regions by finding 
the decision boundary that minimizes the error.

 How should we find the optimal decision boundary?
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What a Perceptron does?

For a perceptron with 2 input variables namely x1 and x2 

Equation WTX = 0 determines a line separating positive from 

negative examples.
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What a Perceptron does?

For a perceptron with n input variables, it draws a Hyper-plane as the 
decision boundary over the (n-dimensional) input space. It classifies 
input patterns into two classes.

The perceptron outputs 1 for instances lying on one side of the
hyperplane and outputs –1 for instances on the other side.
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What can be represented using Perceptrons?

and or

Representation Theorem: perceptrons can only represent 
linearly separable functions. 
Examples:  AND,OR, NOT.
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Limits of the Perceptron

A perceptron can learn only examples that are called 

“linearly separable”. These are examples that can be perfectly 

separated by a hyperplane.   

+

+

+

-

-

-

+

+

+
-

-

-

Linearly separable Non-linearly separable



24

Learning Perceptrons

• Learning is a process by which the free parameters of a neural network 
are adapted through a process of stimulation by the environment in which 
the network is embedded. The type of learning is determined by the 
manner in which the parameters changes take place.

• In the case of Perceptrons, we use a supervised learning.

• Learning a perceptron means finding the right values for W that satisfy 
the input examples {(inputi, targeti)

*}

• The hypothesis space of a perceptron is the space of all weight vectors.



How to find the weights? 

We want to find a set of weights that enable our perceptron to correctly 
classify our data. 

 we know 𝜕𝐸/𝜕𝑤𝑖 then we can search for a minimum of E in weight 

space 
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Learning Perceptrons

Principle of learning using the perceptron rule:

1. A set of training examples is given: {(x, t)*} where x is the input 
and t the target output [supervised learning]

2. Examples are presented to the network.

3. For each example, the network gives an output o.

4. If there is an error, the hyperplane is moved in order to correct the 
output error.

5. When all training examples are correctly classified, Stop learning.
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More formally, the algorithm for learning Perceptrons is as follows:

1. Assign random values to the weight vector

2. Apply the perceptron rule to every training example

3. Are all training examples correctly classified?

Yes. Quit
No. Go Back to Step 2.

Learning Perceptrons



28

Perceptron Training Rule

The perceptron training rule:

For a new training example [X = (x1, x2, …, xn), t] 
update each weight according to this rule:

wi =  wi +  Δwi

Where Δwi =  η.(t-o).xi

t: target output
o: output generated by the perceptron
η: constant called the learning rate (e.g., 0.1)
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Comments about the perceptron training rule:

• If the example is correctly classified the term (t-o) equals zero, and no 
update on the weight is necessary.

• If the perceptron outputs –1 and the real answer is 1, the weight is 
increased.

• If the perceptron outputs a 1 and the real answer is -1, the weight is 
decreased.

• Provided the examples are linearly separable and a small value for η is 
used, the rule is proved to classify all training examples correctly. 

Perceptron Training Rule
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Consider the following example: (two classes: Red and Green)

Perceptron Training Rule
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Random Initialization of perceptron weights …

Perceptron Training Rule
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Apply Iteratively Perceptron Training Rule on the different examples:

Perceptron Training Rule
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Apply Iteratively Perceptron Training Rule on the different examples:

Perceptron Training Rule
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Apply Iteratively Perceptron Training Rule on the different examples:

Perceptron Training Rule
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Apply Iteratively Perceptron Training Rule on the different examples:

Perceptron Training Rule
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All examples are correctly classified … stop Learning 

Perceptron Training Rule
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The straight line w1x+ w2y + w0=0 separates the two classes

Perceptron Training Rule



Example

 We want to classify the following 21 characters written 
by 3 fonts into 7 classes.
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Example

Single-layer network



Example
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Multi-Layer 
Perceptron (MLP)

41
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MultiLayer Perceptron

In contrast to perceptrons, multilayer networks can learn not only 

multiple decision boundaries, but the boundaries may be nonlinear.

Input nodes Internal nodes Output nodes
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MultiLayer Perceptron- Decision Boundaries
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Solution for XOR : Add a hidden layer !!

Input nodes Internal nodes Output nodes
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X1 XOR X2
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Solution for XOR : Add a hidden layer !!

Input nodes Internal nodes Output nodes

X1

X2

The problem is: How to learn Multi Layer Perceptrons??

Solution: Backpropagation Algorithm invented by Rumelhart and 
colleagues in 1986

X1 XOR x2



Problems

 How do we train a multi-layered network?

 What is the desired output of hidden neurons?
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Backpropagation learning Algorithm



1- Feed Forward

2- Error 
Backpropagation

3- Update the 
weights
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Backpropagation- Algorithm



Backpropagation: Objectives
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Backpropagation (Error or cost)
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Backpropagation (Error or cost)



Error space (Multi-Modal Cost Surface)

-3
-2

-1
0

1
2

3

-2

0

2

-10

-5

0

5

global min

local min

Gradient descent

52



Optimizers

 Gradient Descent: most fundamental technique 
to train Neural Networks

 Variants:

- Momentum

- SGD  

- AdaGrad

- AdaDelta

- RMSprop

- Adam 
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Local vs. global minimum
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Weight updates



Backpropagation- Algorithm
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Minimizing Error Using Steepest Descent

 The main idea:

Find the way downhill and take a step:

E

x

minimum

downhill = - _____d E
d  x

 = step size 

x      x -
d  E
d  x
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Convergence 
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Updating weights
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Back-propagating error
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Back-propagating- computing δj (for output layer)



62

Back-propagating- computing δj (for hidden layers)
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Updating weights
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Minimizing the global error
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Backpropagating- remarks
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Backpropagating- remarks



Learning rate
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Initializing weights
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Hyper parameters
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Type of data sets
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(Used to decide when to stop training only by monitoring the error.)



Consistency of the TS
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If some examples are inconsistent, convergence of learning is not guaranteed:

In real cases, inconsistencies can be introduced by
similar noisy patterns belonging to different classes

Examples of problematic training patterns taken from 
images of handwritten characters:



Stopping criteria
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Generalization in Classification

 Suppose the task of our network is to learn a classification decision 
boundary

 Our aim is for the network to generalize to classify new inputs 
appropriately. If we know that the training data contains noise, we don’t 
necessarily want the training data to be classified totally accurately, as 
that is likely to reduce the generalization ability.



75

The problem of overfitting …

 Approximation of the function y = f(x) :

2 neurons in hidden layer

5 neurons in hidden layer

40 neurons in hidden layer

x

y

• The overfitting is not detectable in the learning phase …

• So use Cross-Validation ...



Overfitting and underfitting
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If the network is well dimensioned, both the errors  ETS and  EVS are small
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Generalization in Function Approximation



If  the  network  does  not  have  enough  hidden neurons,  it  is  not  able  to  
approximate  the  function and both errors are large:
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Generalization in Function Approximation



If  the  network  has  too  many  hidden  neurons,  it could  respond  correclty  
to  the  TS  (ETS<  ε),  but could not generalize well (EVS too large):
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Generalization in Function Approximation



To  avoid  the  overtraining  effect,  we  can  train  the network using the TS, but 
monitor EVS and stop the training when (EVS< ε):
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(network must learn the rule, not just the examples 

Generalization in Function Approximation
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Use of a validation set allows periodic testing to see whether the model has overfitted

Stop here

Earlier Stopping - Good Generalization

Training stops when the 
validation loss starts to 
increase, indicating that 
the model is overfitting.



Regularization: Dropout 

 Dropout regularizes the network by randomly dropping 
neurons from the neural network during training
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K-Fold Cross Validation
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Application of MLPs

Network

Stimulus Response
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encoding
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The general scheme when using ANNs is as follows:
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Application: Digit Recognition
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Learning XOR Operation: Matlab Code

P = [ 0 0 1 1; ...

0 1 0 1]

T = [ 0 1 1 0];

net = newff([0 1;0 1],[6 1],{'tansig' 'tansig'});

net.trainParam.epochs = 4850;

net = train(net,P,T);

X = [0 1];

Y = sim(net,X);

display(Y);



Solving the XOR operation

y55

x1 31

x2

Input

layer

Output

layer

Hiddenlayer

42

3

w13

w24

w23

w24

w35

w45

4

5

1

1

1

87



 The effect of the threshold applied to a neuron in 
the hidden or output layer is represented by its 
weight, , connected to a fixed input equal to 1.

 The initial weights and threshold levels are set 
randomly as follows:                                                 
w13 = 0.5, w14 = 0.9, w23 = 0.4, w24 = 1.0, w35 = 
1.2, w45 = 1.1, 3 = 0.8, 4 = 0.1 and 5 = 0.3.
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Solving the XOR operation



 We consider a training set where inputs x1 and x2 are equal 
to 1 and desired output yd,5 is 0. The actual outputs of 
neurons 3 and 4 in the hidden layer are calculated as

 Now the actual output of neuron 5 in the output layer is 
determined as:

 Thus, the following error is obtained:

5250.01/1)( )8.014.015.01(
32321313  ewxwxsigmoidy

8808.01/1)( )1.010.119.01(
42421414 

ewxwxsigmoidy

5097.01/1)(
)3.011.18808.02.15250.0(

54543535  ewywysigmoidy

5097.05097.0055,  yye d
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Solving the XOR operation



 The next step is weight training. To update the weights and threshold 
levels in our network, we propagate the error, e, from the output layer 
backward to the input layer.

 First, we calculate the error gradient for neuron 5 in the output layer:

 Then we determine the weight corrections assuming that 
the learning rate parameter, a, is equal to 0.1:

1274.05097).0(0.5097)(10.5097)1( 555  eyy

0112.0)1274.0(8808.01.05445  yw

0067.0)1274.0(5250.01.05335  yw

0127.0)1274.0()1(1.0)1( 55 
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Solving the XOR operation



 Next we calculate the error gradients for neurons 3 and 4 in the 
hidden layer:

 We then determine the weight corrections:

0381.0)2.1(0.1274)(0.5250)(10.5250)1( 355333  wyy

0.0147.114)0.127(0.8808)(10.8808)1( 455444  wyy

0038.00381.011.03113  xw

0038.00381.011.03223  xw
0038.00381.0)1(1.0)1( 33 

0015.0)0147.0(11.04114  xw

0015.0)0147.0(11.04224  xw
0015.0)0147.0()1(1.0)1( 44 
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Solving the XOR operation



 At last, we update all weights and threshold:

 The training process is repeated until the sum of squared 
errors is less than 0.001.

5038.00038.05.0131313  www

8985.00015.09.0141414  www

4038.00038.04.0232323  www

9985.00015.00.1242424  www

2067.10067.02.1353535  www

0888.10112.01.1454545  www

7962.00038.08.0333


0985.00015.01.0444 

3127.00127.03.0555 
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Solving the XOR operation



Learning curve for operation XOR
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Final results of three-layer network learning
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Training Modes

 Incremental mode (on-line, sequential, 
stochastic, or per-observation): Weights 
updated after each instance is presented

 Batch mode (off-line or per-epoch):
Weights updated after all the patterns are 
presented
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NN: Universal Approximator

 Any desired continuous function can be 
implemented by a three-layer network given 
sufficient number of hidden units, proper 
nonlinearitiers and weighs (Kolmogorov)
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● Data representation

● Network Topology

● Network Parameters

● Training 

NN DESIGN ISSUES
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● Data representation depends on the problem.

● In general ANNs work on continuous (real valued) attributes.
Therefore symbolic attributes are encoded into continuous
ones.

● Attributes of different types may have different ranges of
values which affect the training process.

● Normalization may be used, like the following one which
scales each attribute to assume values between 0 and 1.

for each value xi of ith attribute, mini and maxi are the minimum

and maximum value of that attribute over the training set.

Data Representation 
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● The number of layers and neurons depend on the 
specific task. 

● In practice this issue is solved by trial and error.

● Two types of adaptive algorithms can be used:

− start from a large network and successively remove some 
neurons and links until  network performance degrades.

− begin with a small network and introduce new neurons until 
performance is satisfactory.

Network Topology
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● How are the weights initialized?

● How is the learning rate chosen?

● How many hidden layers and how many 
neurons?

● How many examples in the training set? 

Network parameters 
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Initialization of weights

● In general, initial weights are randomly chosen, with
typical values between -1.0 and 1.0 or -0.5 and 0.5.

● If some inputs are much larger than others, random
initialization may bias the network to give much more
importance to larger inputs.

● In such a case, weights can be initialized as follows:
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● The right value of  depends on the application. 

● Values between 0.1 and 0.9 have been used in many 
applications.

● Other heuristics is that adapt  during the training as 
described in previous slides. 

● It is common to start with large values and decrease 
monotonically.

- Start with 0.9 and decrease every 5 epochs

- Use a Gaussian function

-  = 1/k

- …

Choice of learning rate 
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Size of Training set

● Rule of thumb: 

− the number of training examples should be at least five to 
ten times the number of weights of the network.

● Other rule:

|W|= number of weights

a=expected accuracy on test seta)-(1

|W|
 N 
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MLP- Summary
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• Design the architecture, choose activation functions 
(e.g. sigmoids)

• Choose a way to initialize the weights (e.g. random 
initialization)

• Choose a loss function (e.g. log loss) to measure how 
well the model fits training data

• Choose an optimizer (typically an SGD variant) to update 
the weights
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